CN105632919B - 绝缘栅双极型晶体管的制备方法 - Google Patents

绝缘栅双极型晶体管的制备方法 Download PDF

Info

Publication number
CN105632919B
CN105632919B CN201510643456.4A CN201510643456A CN105632919B CN 105632919 B CN105632919 B CN 105632919B CN 201510643456 A CN201510643456 A CN 201510643456A CN 105632919 B CN105632919 B CN 105632919B
Authority
CN
China
Prior art keywords
grid
bipolar transistor
insulated gate
gate bipolar
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510643456.4A
Other languages
English (en)
Other versions
CN105632919A (zh
Inventor
赵喜高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong keyia Semiconductor Technology Co.,Ltd.
Original Assignee
SHENZHEN KIA SEMICONDUCTOR TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN KIA SEMICONDUCTOR TECHNOLOGY Co Ltd filed Critical SHENZHEN KIA SEMICONDUCTOR TECHNOLOGY Co Ltd
Priority to CN201510643456.4A priority Critical patent/CN105632919B/zh
Publication of CN105632919A publication Critical patent/CN105632919A/zh
Application granted granted Critical
Publication of CN105632919B publication Critical patent/CN105632919B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thyristors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明公开了一种绝缘栅双极型晶体管的制备方法,包括步骤:形成p型半导体衬底;在所述p型衬底上生长埋氧层后,在所述埋氧层上形成n型外延层;在所述n型外延层的一侧注入p型杂质离子,形成具有预定深度的p‑/p+基区;在所述n型外延层的另一侧注入p型杂质离子,形成具有预定深度的p+环;在所述p‑/p+基区注入n型杂质离子,形成预定深度的n+区;在所述p‑/p+基区上形成第一栅极和阴极,并在所述p+环上形成阳极,在所述阴极和阳极之间形成第二栅极。本发明公开的绝缘栅双极型晶体管的制备方法旨在提供一种高抗闩锁性能,且能够快速完成开关的绝缘栅双极型晶体管的制备方法。

Description

绝缘栅双极型晶体管的制备方法
技术领域
本发明涉及半导体元器件加工工艺技术领域,具体涉及一种绝缘栅双极型晶体管的制备方法。
背景技术
绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor:IGBT)由于正向压降小,输入阻抗大,因此是一个非常适合用于智能(smart)电源IC的器件;另外,IGBT从结构上存在由p+阳极(Anode)(A)、n型外延层(或漂移层)、p基区及n+阴极(K)构成的寄生晶闸管。当所述IGBT正常工作时,寄生晶闸管不工作,但当电流达到一定值以上时,寄生晶闸管就会导通,这就是闩锁特性。发生所述闩锁效应时,IGBT会使MOS栅极丧失控制能力,同时,所述闩锁效应会限制IGBT的电流控制能力,并决定安全工作区;
而为使空穴电流流向器件表面,现有技术中的IGBT如图1所示,提出了在抑制空穴注入的n+缓冲层追加栅极的结构:
在导通状态下经过沟道流入漂移区的电子被用于由p+阳极(A)、n型外延层(10)、p+阴极(K)构成的pnp晶体管之基极电流;届时,沟道末端会因电子浓度的升高而使阻抗减少,因此从p+阳极(A)注入的空穴大部分流入沟道,经过p-基区流入阴极(K)。因此,导通状态下的压降等于p+阳极(A)、n+型缓冲层(20)的导通电压以及外延区的压降、p-基区的压降之和。而若经过阴极(K)下方p-基区时由被遗弃的空穴引起的压降为0.7V以上,由阴极(K)、p-基区、外延区构成的寄生npn晶体管就会导通,电子就不经过沟道而直接经过p-基区并注入漂移区。如同上述过程,IGBT的寄生晶闸管会导通,这就是闩锁(latch-up)。而现有的IGBT存在阈值电压控制较难、工艺复杂等缺点。此外,现有的IGBT尽管有导通电阻低、输入阻抗高以及驱动电路单纯等优点,但也有开关速度相对较慢等缺点。
发明内容
针对现有技术中存在的上述问题,本发明公开了一种绝缘栅双极型晶体管的制备方法,旨在提供一种高抗闩锁性能,且能够快速完成开关的绝缘栅双极型晶体管的制备方法。
本发明的技术方案如下:
一种绝缘栅双极型晶体管的制备方法,包括步骤:
S1、形成具有预定导电型杂质掺杂浓度的p型半导体衬底;
S2、在所述p型衬底上生长埋氧层后,在所述埋氧层上形成n型外延层;
S3、在所述n型外延层的一侧注入p型杂质离子,形成具有预定深度的p-/p+基区;在所述n型外延层的另一侧注入p型杂质离子,形成具有预定深度的p+环;在所述p-/p+基区注入n型杂质离子,形成预定深度的n+区;
S4、在所述p-/p+基区上形成第一栅极和阴极,并在所述p+环上形成阳极,在所述阴极和阳极之间形成第二栅极。
作为优选,还包括步骤:
S5、在所述阴极和阳极之间增加形成第三栅极和一个P+环;
作为优选,还包括步骤:
S6、在所述阴极和阳极之间增加形成第四栅极、第五栅极、第六栅极、第七栅极和4个对应的P+环。
本发明制备的绝缘栅双极型晶体管为了抑制闩锁效应,设置了p+环和p沟道栅,从而减少了经过p-基区的空穴电流量,同时把所有空穴电流的方向转向了器件的表面,此外,这还大大改善了反沟道结构的缺点之一,即较小的电流密度特性;不仅如此,由于设置了p+环和p型沟道栅,就不需要遏制空穴注入的n-缓冲层,因此可减少相当于n-缓冲层的光掩膜一张,简化了结构;就关断开关特性而言,与具有限制开关速度的尾电流特性的现有结构不同,残存在p基区的少数载流子即空穴经过所形成的p沟道流向阴极,而不是复合,因此不出现尾电流特性,从而提供了一种高抗闩锁性能,且能够快速完成开关的绝缘栅双极型晶体管。
附图说明
图1为现有技术中的IGBT结构示意图的剖面图;
图2为本发明在一实施例中的产品结构示意图的剖面图;
图3为现有IGBT和本发明制备的IGBT的电流-电压特性图;
图4为现有IGBT和本发明制备的IGBT的关断特性图。
具体实施方式
下面结合附图对本发明的具体实施方式做详细阐述。
一种绝缘栅双极型晶体管的制备方法,包括步骤:
S1、形成具有预定导电型杂质掺杂浓度的p型半导体衬底50;
S2、在所述p型衬底上生长埋氧层60后,在所述埋氧层60上形成n型外延层70;
S3、在所述n型外延层70的一侧注入p型杂质离子,形成具有预定深度的p-/p+基区;在所述n型外延层的另一侧注入p型杂质离子,形成具有预定深度的p+环90;在所述p-/p+基区注入n型杂质离子,形成预定深度的n+区;
S4、在所述p-/p+基区上形成第一栅极和阴极,并在所述p+环上形成阳极,在所述阴极和阳极之间形成第二栅极。
作为优选,还包括步骤:
S5、在所述阴极和阳极之间增加形成第三栅极和一个P+环;
作为优选,还包括步骤:
S6、在所述阴极和阳极之间增加形成第四栅极、第五栅极、第六栅极、第七栅极和4个对应的P+环。
如图2所示,本发明制备的绝缘栅双极型晶体管为了抑制闩锁效应,设置了p+环和p沟道栅,从而减少了经过p-基区的空穴电流量,同时把所有空穴电流的方向转向了器件的表面,此外,这还大大改善了反沟道结构的缺点之一,即较小的电流密度特性;不仅如此,由于设置了p+环和p型沟道栅,就不需要遏制空穴注入的n-缓冲层,因此可减少相当于n-缓冲层的光掩膜一张,简化了结构;就关断开关特性而言,与具有限制开关速度的尾电流特性的现有结构不同,残存在p基区的少数载流子即空穴经过所形成的p沟道流向阴极,而不是复合,因此不出现尾电流特性,从而提供了一种高抗闩锁性能,且能够快速完成开关的绝缘栅双极型晶体管。
如图3所示,通过现有IGBT和本发明制备的IGBT的电流-电压特性图对比可见,在现有的IGBT结构上,阳极电压为1.3V、电流为1.96×10-5A/时出现闩锁效应;而在本发明的结构上,阳极电压最大为26V、电流为1.2×10-4A/时出现闩锁效应,因此,本发明涉及的结构在比现有结构高20倍的阳极电压和10倍高的阳极电流中出现闩锁效应,可见其特性的卓越性。这是因为本发明设定了多栅极区,使在阳极A注入的空穴不是在整个漂移区流动而是沿着器件的表面流动,这改善了闩锁电压和电流。
如图4所示,通过现有IGBT和本发明的IGBT的关断特性图可见,现有的IGBT结构在整个n基区出现复合,但本发明的IGBT结构并未在n基区出现。
综上可见,本发明的绝缘栅双极型晶体管制备方法提供了一种高抗闩锁性能,且能够快速完成开关的绝缘栅双极型晶体管。
以上所述的本发明实施方式,并不构成对本发明保护范围的限定。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明的权利要求保护范围之内。

Claims (4)

1.一种绝缘栅双极型晶体管的制备方法,其特征在于,包括步骤:
S1、形成具有预定导电型杂质掺杂浓度的p型半导体衬底;
S2、在所述p型衬底上生长埋氧层后,在所述埋氧层上形成n型外延层;
S3、在所述n型外延层的一侧注入p型杂质离子,形成具有预定深度的p-/p+基区;在所述n型外延层的另一侧注入p型杂质离子,形成具有预定深度的p+环;在所述p-/p+基区形成预定深度的n+区;
S4、在所述p-/p+基区上形成第一栅极和阴极,并在所述p+环上形成阳极,在所述阴极和阳极之间形成第二栅极。
2.如权利要求1所述的绝缘栅双极型晶体管的制备方法,其特征在于:所述n+区通过离子注入工艺注入n型杂质离子形成。
3.如权利要求1所述的绝缘栅双极型晶体管的制备方法,其特征在于,还包括步骤:
S5、在所述阴极和阳极之间增加形成第三栅极和一个P+环。
4.如权利要求2所述的绝缘栅双极型晶体管的制备方法,其特征在于,还包括步骤:
S6、在所述阴极和阳极之间增加形成第四栅极、第五栅极、第六栅极、第七栅极和4个对应的P+环。
CN201510643456.4A 2015-10-08 2015-10-08 绝缘栅双极型晶体管的制备方法 Active CN105632919B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510643456.4A CN105632919B (zh) 2015-10-08 2015-10-08 绝缘栅双极型晶体管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510643456.4A CN105632919B (zh) 2015-10-08 2015-10-08 绝缘栅双极型晶体管的制备方法

Publications (2)

Publication Number Publication Date
CN105632919A CN105632919A (zh) 2016-06-01
CN105632919B true CN105632919B (zh) 2018-08-07

Family

ID=56047721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510643456.4A Active CN105632919B (zh) 2015-10-08 2015-10-08 绝缘栅双极型晶体管的制备方法

Country Status (1)

Country Link
CN (1) CN105632919B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112289849A (zh) * 2020-11-19 2021-01-29 苏州力生美半导体有限公司 新型绝缘栅双极型晶体管及控制电路

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372391A3 (en) * 1988-12-02 1991-03-27 Hitachi, Ltd. Lateral insulated gate bipolar transistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180158B2 (en) * 2005-06-02 2007-02-20 Freescale Semiconductor, Inc. Semiconductor device and method of manufacture
US8174069B2 (en) * 2008-08-05 2012-05-08 Cambridge Semiconductor Limited Power semiconductor device and a method of forming a power semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372391A3 (en) * 1988-12-02 1991-03-27 Hitachi, Ltd. Lateral insulated gate bipolar transistor
US5126806A (en) * 1988-12-02 1992-06-30 Hitachi, Ltd. Lateral insulated gate bipolar transistor

Also Published As

Publication number Publication date
CN105632919A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
CN105322002B (zh) 反向传导igbt
CN107799582A (zh) 一种沟槽栅电荷储存型绝缘栅双极型晶体管及其制造方法
CN106505101B (zh) 一种大电流绝缘体上硅横向绝缘栅双极型晶体管器件
CN106847891B (zh) 一种通过mosfet控制结终端集成体二极管的rc-igbt器件
CN107623027A (zh) 一种沟槽栅电荷储存型绝缘栅双极型晶体管及其制造方法
CN108074924A (zh) 半导体装置
KR102246570B1 (ko) 전력 반도체 장치
CN106098762A (zh) 一种rc‑igbt器件及其制备方法
CN106067480A (zh) 一种双通道rc‑ligbt器件及其制备方法
CN103035692A (zh) 半导体装置
CN107731899A (zh) 一种具有拑位结构的沟槽栅电荷储存型igbt器件及其制造方法
CN103337498A (zh) 一种bcd半导体器件及其制造方法
Zhang et al. Novel snapback-free reverse-conducting SOI-LIGBT with dual embedded diodes
CN106129110A (zh) 一种双通道rc‑igbt器件及其制备方法
CN102130153A (zh) 绝缘体上硅的n型横向绝缘栅双极晶体管及其制备方法
CN106024876A (zh) 用于消除回滞现象的逆导型横向绝缘栅双极型晶体管器件
CN106057879A (zh) Igbt器件及其制造方法
CN105633142B (zh) 一种抑制关态电流的隧穿场效应晶体管
CN115312594A (zh) 无闩锁侧向igbt装置、制造方法及器件
CN106067481A (zh) 一种双通道rc‑igbt器件及其制备方法
CN107180878A (zh) 具有齐纳二极管的半导体元件及其制造方法
CN105632919B (zh) 绝缘栅双极型晶体管的制备方法
CN107078059A (zh) 改进bcd技术中的横向bjt特性
CN107516669B (zh) 一种igbt器件
CN107785414A (zh) 具有混合导电模式的横向功率器件及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210112

Address after: 518000 room 5c1, floor 5, Tianji building, Tian'an Digital City, No.10, Tairan 5th Road, Tian'an community, Shatou street, Futian District, Shenzhen City, Guangdong Province

Patentee after: Guangdong keyia Semiconductor Technology Co.,Ltd.

Address before: 518000 5c1, block CD, Tianji building, chegongmiao, Futian District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN KIA SEMICONDUCTOR TECHNOLOGY Co.,Ltd.