CN105632771B - 一种Sb2Se3薄膜对电极材料的制备方法 - Google Patents
一种Sb2Se3薄膜对电极材料的制备方法 Download PDFInfo
- Publication number
- CN105632771B CN105632771B CN201610149771.6A CN201610149771A CN105632771B CN 105632771 B CN105632771 B CN 105632771B CN 201610149771 A CN201610149771 A CN 201610149771A CN 105632771 B CN105632771 B CN 105632771B
- Authority
- CN
- China
- Prior art keywords
- film
- particles
- carbon nano
- electrode material
- deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hybrid Cells (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Photovoltaic Devices (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
Abstract
本发明提供一种Sb2Se3薄膜对电极材料的制备方法:将装有Sb2Se3粉体的刚玉舟置于管式炉中,清洗干净的FTO玻璃和沉积有碳纳米粒子的薄膜盖在刚玉舟之上,气氛保护下350~550oC下恒温处理10min~1h,冷却,即可通过热蒸发方法在FTO玻璃和碳纳米粒子薄膜上得到Sb2Se3薄膜。本发明制备工艺简单快捷,且节省原材料,首次设计并提出在碳纳米粒子薄膜上沉积Sb2Se3,可以利用碳纳米粒子薄膜的多孔结构提高沉积效率,并有效释放薄膜应力。采用本方法制备得到的Sb2Se3薄膜具有成分可控、均一性和重复性好的优点。作为染料敏化太阳能电池对电极,Sb2Se3薄膜表现出优异的导电性和电催化性能。
Description
技术领域
本发明涉及一种Sb2Se3薄膜对电极材料的制备方法,属于染料敏化太阳能电池对电极制备领域。
背景技术
染料敏化太阳能电池(DSSC)是自1991年瑞士科学家M.取得突破性进展以来发展起来的一种新型光伏发电器件(参见Nature杂志,1991年,第353卷,第737页)。这种新型的太阳能电池环境友好、制备工艺简单,特别是在低成本方面具有突出优势(参见J.Am.Chem.Soc.杂志,2011年,第133卷,第9304页),成本估算表明只要电池的光电转换效率达到5%就具有应用价值。
作为染料敏化太阳能电池的重要组成部分,对电极主要用来收集外电路的光生电子并实现电解质中三碘化物(I3 -)的还原,所以导电性和电催化活性是影响对电极材料性能的关键因素。目前高性能的染料敏化太阳能电池主要采用镀贵金属Pt的导电玻璃作为对电极,但是高成本极大地限制了染料敏化太阳能电池大规模器件的研发和广泛应用。研发低成本、高效的非铂对电极一直是该领域的研究热点之一。2009年M.组将CoS应用于染料敏化太阳能电池对电极,并获得了与Pt对电极相当的性能,自此,廉价的无Pt对电极材料吸引了研究者们浓厚的研究兴趣。近年来,无机金属化合物,包括金属碳化物、氮化物、氧化物、硫化物和硒化物等对电极材料的研究尤为活跃。其中,金属硒化物如硒化镍(Ni0.85Se)、硒化钴(Co0.85Se)、硒化铁(FeSe2)和硒化铜(Cu2Se)等由于高效、廉价、稳定等优点而备受关注,有望应用于染料敏化太阳能电池的大规模生产。金属锑的硫化物Sb2S3在对电极方面已显示出较好的电催化性能及应用前景(参见J.Phys.Chem.C 杂志,2013年,第117卷,第10285页),但其硒化物Sb2Se3目前仅被应用于薄膜太阳能电池材料领域,染料敏化太阳能电池对电极性能仍没有研究。基于以上背景,我们设计通过热蒸发方法制备Sb2Se3薄膜,研究发现Sb2Se3薄膜具有优异的电催化性能,是一种廉价、高效的新型对电极材料。
发明内容
本发明的目的是提供一种新型高效的染料敏化太阳能电池对电极薄膜材料Sb2Se3及其制备方法,该材料在碘电解质中表现出优异的电催化性能,且制备工艺简单可控,有望取代贵金属Pt获得高性能染料敏化太阳能电池。
本发明的技术方案包括以下步骤:
将装有Sb2Se3粉体的刚玉舟置于管式炉中,清洗干净的FTO玻璃或沉积有碳纳米粒子的薄膜(导电面朝下)盖在刚玉舟之上,气氛保护下在升温速率2~8℃/min、350~550℃下恒温处理10min~1h,等待自然冷却,即可通过热蒸发方法在FTO玻璃和碳纳米粒子薄膜上得到Sb2Se3薄膜。
上述方案中:
Sb2Se3粉体的用量为50-100mg,退火气氛为N2或Ar,管式炉升温速率2~8℃/min,热蒸发温度350~550℃,热蒸发时间10min~1h,衬底为FTO或碳纳米粒子膜。
本发明首次设计并提出在碳纳米粒子薄膜上沉积Sb2Se3,可以利用碳纳米粒子薄膜的多孔结构提高沉积效率,并有效释放薄膜应力。
本发明的优势在于:
1、通过热蒸发Sb2Se3粉体的方法制备Sb2Se3薄膜,该制备工艺简单快捷,且Sb2Se3粉体可重复使用,节省原材料,制备得到的Sb2Se3薄膜具有很好的均一性、透光性和可重复性。
2、研究表明,Sb2Se3薄膜作为一种新型的对电极材料,具有电催化性能高、导电性好的优点。在AM1.5模拟太阳光激发下,以Sb2Se3薄膜作为对电极实现的最高光电转换效率为6.1%,与Pt对电极器件的光电转换效率相当(6.2%)。因此,Sb2Se3薄膜具有优异的对电极性能,可取代Pt作为新型高效的染料敏化太阳能电池对电极材料。
附图说明
图1为水热方法合成的Sb2Se3粉体的XRD图谱与标准PDF卡片对比图。
图2为Sb2Se3粉体的SEM照片。
图3为在FTO基底上制备的Sb2Se3薄膜的SEM照片。
图4为在碳纳米粒子薄膜上制备的Sb2Se3薄膜的SEM照片。
图5为以实例2制备的Sb2Se3薄膜作为对电极测试得到的器件的J-V曲线。
具体实施方式:
实例1将50-100mg水热制备的Sb2Se3粉体置于刚玉舟中,然后置于管式炉中,清洗干净的FTO玻璃(导电面朝下)盖在刚玉舟之上,气氛保护下在升温速率5℃/min、 400~550℃下退火处理30min,自然冷却后在FTO上获得Sb2Se3薄膜。
图1和2为水热方法合成的Sb2Se3粉体的XRD图谱与标准PDF卡片对比图以及SEM 照片,对比结果表明我们热蒸发方法所使用的粉体为纯相Sb2Se3,形貌为棒状。图3为该实例下在FTO基底上制备的Sb2Se3薄膜SEM照片,由图片看出,以FTO为基底时,Sb2Se3负载量较少,未在FTO表面形成明显分布。
实例2将50mg水热制备的Sb2Se3粉体置于刚玉舟中,然后置于管式炉中,将沉积有碳纳米粒子的薄膜盖在刚玉舟之上,气氛保护下在升温速率5℃/min、450℃下退火处理10min~1h,自然冷却后在碳纳米粒子薄膜上获得Sb2Se3薄膜。
图4为该实例下在碳纳米粒子薄膜上制备的Sb2Se3薄膜SEM照片,由该图片可以看出,相比于FTO基底,Sb2Se3可以在碳纳米粒子薄膜表面实现均匀负载。
图5为以该实例下制备的Sb2Se3薄膜作为染料敏化太阳能电池对电极,在AM1.5模拟太阳光照射下测试得到的器件J-V曲线。从图中可以计算出,Sb2Se3薄膜器件光电转换效率为6.1%,与Pt器件(6.2%)相比,证明了Sb2Se3薄膜优异的对电极性能,有望取代 Pt作为新型高效的染料敏化太阳能电池对电极材料。
实例3将50mg水热制备的Sb2Se3粉体置于刚玉舟中,然后置于管式炉中,将沉积有碳纳米粒子的薄膜盖在刚玉舟之上,气氛保护下在升温速率5℃/min、400~550℃下退火处理30min,自然冷却后在碳纳米粒子薄膜上获得Sb2Se3薄膜。
实例4将100mg水热制备的Sb2Se3粉体置于刚玉舟中,然后置于管式炉中,将沉积有碳纳米粒子的薄膜盖在刚玉舟之上,气氛保护下在升温速率8℃/min、500℃下退火处理30min,自然冷却后在碳纳米粒子薄膜上获得Sb2Se3薄膜。
Claims (4)
1.一种Sb2Se3薄膜对电极材料的制备方法,其特征在于,采用热蒸发方法,在沉积有碳纳米粒子的薄膜上获得Sb2Se3薄膜,其实现步骤为:
将碳纳米粒子和羧甲基纤维羧钠分散至水中得到碳纳米粒子溶胶,经过60~100oC真空干燥,得到沉积有碳纳米粒子的薄膜;
将装有Sb2Se3粉体的刚玉舟置于管式炉中,将沉积有碳纳米粒子的薄膜盖在刚玉舟之上,放入管式炉中退火处理后,等待自然冷却,即在沉积有碳纳米粒子的薄膜上得到Sb2Se3薄膜。
2.权利要求1所述的Sb2Se3薄膜对电极材料的制备方法,其特征在于,沉积有碳纳米粒子的薄膜的导电面朝下。
3.权利要求1所述的Sb2Se3薄膜对电极材料的制备方法,其特征在于,退火处理是在N2或Ar气氛下,以2~8oC/min的升温速率,350~550oC的热蒸发温度,热蒸发10min~1h。
4.权利要求1-3任一项得到的Sb2Se3薄膜对电极材料在染料敏化太阳能电池对电极材料上的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610149771.6A CN105632771B (zh) | 2016-03-16 | 2016-03-16 | 一种Sb2Se3薄膜对电极材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610149771.6A CN105632771B (zh) | 2016-03-16 | 2016-03-16 | 一种Sb2Se3薄膜对电极材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105632771A CN105632771A (zh) | 2016-06-01 |
CN105632771B true CN105632771B (zh) | 2018-03-06 |
Family
ID=56047585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610149771.6A Active CN105632771B (zh) | 2016-03-16 | 2016-03-16 | 一种Sb2Se3薄膜对电极材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105632771B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110042506A (zh) * | 2019-04-30 | 2019-07-23 | 湘潭大学 | 一种柔性Sb2Se3/C纳米纤维的静电纺丝制备方法 |
CN112259620A (zh) * | 2020-10-26 | 2021-01-22 | 山东警察学院 | 一种Sb2Se3薄膜太阳能电池及其制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120312375A1 (en) * | 2010-02-18 | 2012-12-13 | Korea Research Institute Of Chemical Technology | All-Solid-State Heterojunction Solar Cell |
CN102332358B (zh) * | 2011-10-18 | 2012-11-21 | 合肥工业大学 | 一种海胆状Zn/ZnO微纳结构电极及其制备方法 |
CN104659123B (zh) * | 2013-11-25 | 2018-08-21 | 华中科技大学 | 化合物薄膜太阳能电池及其制备方法 |
CN104638036B (zh) * | 2014-05-28 | 2017-11-10 | 武汉光电工业技术研究院有限公司 | 高光响应近红外光电探测器 |
CN105023757B (zh) * | 2015-07-10 | 2018-04-20 | 三峡大学 | 一种锡掺杂Sb2S3薄膜材料及其制备方法 |
-
2016
- 2016-03-16 CN CN201610149771.6A patent/CN105632771B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN105632771A (zh) | 2016-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ahmad et al. | 2-D Mxene flakes as potential replacement for both TCO and Pt layers for Dye-Sensitized Solar cell | |
CN103426648B (zh) | 一种MOS2/TiO2纳米复合材料及其制备方法 | |
Zhou et al. | Copper selenide (Cu 3 Se 2 and Cu 2− x Se) thin films: electrochemical deposition and electrocatalytic application in quantum dot-sensitized solar cells | |
CN105023757B (zh) | 一种锡掺杂Sb2S3薄膜材料及其制备方法 | |
Peng et al. | Facial synthesis of SnO2 nanoparticle film for efficient fiber-shaped dye-sensitized solar cells | |
Srinivasu et al. | Novel approach for the synthesis of nanocrystalline anatase titania and their photovoltaic application | |
CN105489384B (zh) | 一种C/Sb2S3复合薄膜对电极材料的制备方法 | |
Jin et al. | Improve photo-electron conversion efficiency of ZnO/CdS coaxial nanorods by p-type CdTe coating | |
Shilpa et al. | Recent advances in the development of high efficiency quantum dot sensitized solar cells (QDSSCs): A review | |
Liu et al. | Fabrication of Zn 2 SnO 4/SnO 2 hollow spheres and their application in dye-sensitized solar cells | |
CN103746077A (zh) | 一种有机无机复合的太阳能电池及其制备方法 | |
Liu et al. | In-situ growth of Cu2ZnSnS4 nanospheres thin film on transparent conducting glass and its application in dye-sensitized solar cells | |
CN101150151A (zh) | 一种太阳能电池用铜铟硒薄膜的制备方法 | |
Zheng et al. | The effect of CuS counter electrode microtopography on the properties of quantum dot sensitized solar cells | |
Guo et al. | Electrodeposited CuInSe2 counter electrodes for efficient and stable quantum dot-sensitized solar cells | |
Vijayakumar et al. | Facile electrochemical synthesis of manganese cobalt sulfide counter electrode for quantum dot-sensitized solar cells | |
Atabaev et al. | Fabrication of TiO2/CuO photoelectrode with enhanced solar water splitting activity | |
Li et al. | Improved performance of TiO2 electrodes coated with NiO by magnetron sputtering for dye-sensitized solar cells | |
Shen et al. | Fabrication and evaluation of low-cost Cu 2 ZnSn (S, Se) 4 counter electrodes for dye-sensitized solar cells | |
CN105632771B (zh) | 一种Sb2Se3薄膜对电极材料的制备方法 | |
Wang et al. | Optimisation of Sb2S3 thin-film solar cells via Sb2Se3 post-treatment | |
Yang et al. | A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells | |
CN107464881A (zh) | 一种面向光解水制氢的集成器件及其制作方法 | |
Chen et al. | ZnO hemisphere pits nanowire/CdS photoelectrode for high-efficiency photoelectrochemical water splitting | |
Senthil et al. | New materials for thin film solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |