CN108133827B - 一种二硫化钼和硫掺杂碳球复合电极的制备方法 - Google Patents

一种二硫化钼和硫掺杂碳球复合电极的制备方法 Download PDF

Info

Publication number
CN108133827B
CN108133827B CN201711341034.7A CN201711341034A CN108133827B CN 108133827 B CN108133827 B CN 108133827B CN 201711341034 A CN201711341034 A CN 201711341034A CN 108133827 B CN108133827 B CN 108133827B
Authority
CN
China
Prior art keywords
sulfur
molybdenum disulfide
doped carbon
counter electrode
graphite paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711341034.7A
Other languages
English (en)
Other versions
CN108133827A (zh
Inventor
黄妞
丁玉岳
孙小华
孙盼盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201711341034.7A priority Critical patent/CN108133827B/zh
Publication of CN108133827A publication Critical patent/CN108133827A/zh
Application granted granted Critical
Publication of CN108133827B publication Critical patent/CN108133827B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种染料敏化太阳能电池石墨纸基底二硫化钼和硫掺杂碳球复合材料对电极的制备方法。其制备方法是:将适量碳球加入到乙醇中超声处理形成均匀的碳分散液。然后将适量五氯化钼加入到碳分散液中再滴涂在用氢氧化钠处理过的石墨纸上,干燥后放置在真空管式炉中,硫粉放置在靠近进气口的一端,然后在氩气下800℃保温,降温后,得到在石墨纸基底上生长的二硫化钼和硫掺杂碳球复合材料。这种复合材料中的二硫化钼,晶格中存在大量的缺陷,这使得它具有更多的催化活性位点,从而提高了它作为对电极的催化活性。二硫化钼/硫掺杂碳球复合材料对电极具有极好的光电性能,明显优于单纯的二硫化钼对电极。

Description

一种二硫化钼和硫掺杂碳球复合电极的制备方法
技术领域
本发明涉及一种染料敏化太阳能电池,尤其涉及一种染料敏化太阳能电池对电极及其制备方法。
背景技术
能源作为人类社会发展的三大支柱之一,一直以来都吸引着人类的关注。随着现代社会的快速发展,人类对于能源的需求与日俱增。目前,煤炭、石油和天然气等传统的化石能源依然是世界上使用得最广泛的能源。然而,化石能源储量有限,且不可再生,在人类快速的消耗之下,化石能源已经面临着枯竭的危险。另外,化石能源在燃烧时会释放出大量的温室气体CO2和其他有害烟尘,给人类的生态环境带来了巨大威胁。在21世纪,能源危机是人类社会必须面对的问题。因此,大力开发、利用新型能源,以替代传统的化石能源,是一个迫在眉睫的课题。
太阳能作为一种可再生能源,具有储量丰富、不受地域限制、清洁无污染的特点。近年来,人们越来越重视对太阳能的开发和利用,相关的技术也越来越成熟。光电转换是利用太阳能的重要方式之一,其主要表现形式是太阳能电池。经过不断的发展,太阳能电池的种类越来越多,根据材料的不同,太阳能电池可分为硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池和有机太阳能电池。目前,硅太阳能电池是发展最成熟的,在实际应用中居主导地位。但是,硅太阳能电池的成本高昂,严重制约了它的大规模应用。
作为第三代太阳能电池,染料敏化太阳能电池由于其制备工艺简单,光电转换效率高和制作成本低等优点而一度成为了太阳能电池的研究热点。染料敏化太阳能电池主要由光阳极、电解质和对电极组成。对电极是染料敏化太阳能电池的重要组成部分,具有从外电路收集电子和催化I3 -还原的作用。目前,性能最好的对电极材料是Pt,它具有优秀的催化活性、良好的导电性,以及出色的稳定性。但是Pt是一种稀有贵金属,含量稀少,价格昂贵,因此,寻找合适的Pt替代材料,具有现实意义,也是对电极研究的热点问题。目前,很多材料都被引入到对电极的研究中,并且表现出了优秀的性能。无论是Pt复合材料、碳材料,还是导电聚合物材料、过渡金属硫化物材料,都具有作为对电极材料的良好潜质。MoS2作为一种典型的过渡金属硫化物,具有一种类石墨的层状结构。它的每一层都是由两个S原子层和一个夹在S原子层之间的Mo原子层构成,层与层之间通过范德华力结合起来。MoS2的独特结构,以及它良好的导电性和电催化活性,吸引了人们关注的目光。MoS2及其复合材料,一直被广泛应用于对电极研究领域,并取得了十分出色的光电性能。因此,MoS2及其复合材料,被认为是Pt对电极最有潜力的替代品之一。
本发明提供了一种石墨纸基底上制备二硫化钼和硫掺杂碳球复合材料对电极的方法。所制备的二硫化钼和硫掺杂碳球复合材料对电极具有优异的性能,其导电性、催化活性以及光电转换效率均明显优于单纯的MoS2对电极。
发明内容
本发明的目的是为了解决现有染料敏化太阳能电池Pt对电极材料价格昂贵、不适合大规模应用的问题,提供了一种染料敏化太阳能电池二硫化钼和硫掺杂碳球复合材料对电极的制备方法。
本发明是通过以下技术方案实现的:
步骤一:将石墨纸浸泡在NaOH溶液中,加热到80-100℃,保温2-5h后冷却至室温,用去离子水冲洗,真空干燥;
步骤二:取碳粉加入无水乙醇中,超声分散,加入MoCl5,搅拌分散,得到含MoCl5和碳球的前驱液;
步骤三:取MoCl5和碳球的前驱液,滴涂在步骤一所述的石墨纸上,迅速干燥;
步骤四:将干燥后的样品放在管式炉中,硫粉放在管式炉中靠近进气孔的一端,在Ar气氛的保护下,700-900℃,保温后自然降温至室温,得到二硫化钼和硫掺杂碳球复合电极。
所述的步骤三中前驱液中MoCl5的浓度为150-450mM,碳球的浓度为2-10mg/mL。
所述的硫粉是充分过量的,是MoCl5摩尔量的10-100倍,所述的煅烧温度为以8-15℃/min升温至800℃,煅烧10~120分钟。
所述的步骤三中将上述前躯液滴到石墨纸上,50-70℃于干燥空气中自然干燥或于热台上干燥5-15min,得到前驱膜。
本发明公开了一种染料敏化太阳能电池石墨纸基底二硫化钼/硫掺杂碳球(二硫化钼和硫掺杂碳球)复合材料对电极的制备方法是将碳球加入到乙醇中,用超声波细胞粉碎机超声处理,使碳球充分分散在乙醇中,形成均匀的碳分散液。然后将适量五氯化钼加入到碳分散液中,搅拌。将上述前驱液,滴涂在用氢氧化钠处理过的石墨纸上,然后将石墨纸放在热台上,60℃干燥10min,使乙醇充分挥发,此时前驱体附着在石墨纸上。将长有前驱体的石墨纸放置在真空管式炉中,另取升华硫粉作为硫源,放置在靠近进气口的一端,然后在氩气(Ar)的保护下,700-900℃,并保温一定时间。自然降温到室温后,得到在石墨纸基底上生长的二硫化钼和硫掺杂碳球复合材料。这种二硫化钼/硫掺杂碳球的复合材料,和不加碳球,只用五氯化钼和乙醇,使用同样工艺在石墨纸上原位生长的纯的二硫化钼相比,微观形貌上有彻底的改变:纯的二硫化钼的微观形貌是大小不等的球状纳米颗粒,而二硫化钼/硫掺杂碳球复合材料则具有许多直立生长的片状二硫化钼。此外,这种复合材料中的二硫化钼,晶格中存在大量的缺陷,这使得它具有更多的催化活性位点,从而提高了它作为对电极的催化活性。碳的引入,也使得材料的导电性得到了提高,降低了对电极的电阻,从而提高了光电性能。在真空管式炉的烧结过程中,多余的硫粉会和碳球结合,形成硫掺杂的碳球。硫掺杂的碳球和二硫化钼存在桥连作用,使它们之间的结合更加紧密,从而提高了材料的稳定性。二硫化钼/硫掺杂碳球复合材料对电极具有极好的光电性能,明显优于单纯的二硫化钼对电极。
附图说明
图1是按实施例1制备的二硫化钼和硫掺杂碳球复合材料的XRD,其中标记为MoS2的样品是不加碳粉,且其他工艺不变制备得到的纯MoS2
图2是按实施例2制备的二硫化钼和硫掺杂碳球复合材料的XRD,其中标记为MoS2的样品是不加碳粉,且其他工艺不变制备得到的纯MoS2
图3是按实施例1制备的二硫化钼和硫掺杂碳球复合材料对电极的EIS曲线。
图4按实施例1制备的二硫化钼和硫掺杂碳球复合材料对电极的J-V曲线。
图5是按实施例3制备的不同保温时间的二硫化钼和硫掺杂碳球复合材料的SEM图像,其中(a)、(b)、(c)分别是保温10min、30min、60min制备的样品的SEM,(d)是以同样工艺但是不加碳粉保温时间为10min得到的纯MoS2的SEM。
图6是按实施例4制备的硫掺杂碳球材料的XPS。是为了在排除MoS2中S2-的影响的情况下研究样品中S与C的结合。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明。
实施例1前驱液用量为100μL,800℃保温10min制备二硫化钼和硫掺杂碳球复合材料对电极
将50mg碳粉充分分散在10mL乙醇中,加入适量MoCl5使得MoCl5的浓度为330mmol/L,并搅拌均匀。然后取上述前驱液100μL,均匀地滴涂在3×5cm的石墨纸上,然后在热台上60℃干燥10min。将干燥后的样品放在管式炉中,并取1g硫粉放置在管式炉靠近进气孔的一端,在Ar气氛下以10℃/min的升温速度加热到800℃,保温10min,然后自然降温至室温。
所获得样品的XRD呈现在图1中,位于14.38°的衍射峰对应MoS2的(002)晶面,表明在石墨纸上成功制备了MoS2。SEM图像呈现在图5的(a)中,可以看到,二硫化钼和硫掺杂碳球复合材料的表面有很多直立的片状MoS2,其微观形貌明显不同于图5的(d)中呈现的纯MoS2。图3是二硫化钼和硫掺杂碳球复合材料对电极的EIS曲线,相关的参数整理在表一中。可以看到,二硫化钼和硫掺杂碳球复合材料对电极具有比Pt和纯MoS2更小的Rs和Rct,表明二硫化钼和硫掺杂碳球复合材料对电极具有更好的导电性和催化活性。图4是二硫化钼和硫掺杂碳球复合材料对电极J-V曲线,相关的参数这里在表二中。可以看出,和Pt和纯MoS2相比,用二硫化钼和硫掺杂碳球复合材料作为对电极的DSSC具有更大的短路电流密度(Jsc)和开路电压(Voc),其光电转换效率(η)达到了7.72%,高于Pt的6.74%和纯MoS2的6.73%。
表一:二硫化钼和硫掺杂碳球、MoS2及Pt对电极的EIS参数
Figure GDA0002209421830000041
表二:用二硫化钼和硫掺杂碳球、MoS2及Pt作为对电极的DSSCs的J-V参数
J-V性能测试:
将从营口振越实验器材销售中心购买的TiO2光阳极用N719染料敏化,并在二硫化钼和硫掺杂碳球复合材料对电极上滴加氧化还原电解质,氧化还原电解质的组成为:0.1M1-丙基-3-甲基咪唑碘,0.05M LiI,0.1M GNCS,0.03M I2,0.5M 4-叔丁基吡啶,溶剂为碳酸丙烯脂与乙腈的混合溶液(体积比为1:1)。将滴加了氧化还原电解质的对电极与敏化后的光阳极贴合在一起,在辐照强度为100W/cm2的模拟太阳光下进行J-V性能测试。
实施例2前驱液用量为200μL,800℃保温10min制备二硫化钼和硫掺杂碳球复合材料对电极
将50mg碳粉充分分散在10mL乙醇中,加入适量MoCl5,使得MoCl5的浓度为330mmol/L,并搅拌均匀。然后取上述前驱液200μL,均匀地滴涂在3×5cm的石墨纸上,然后在热台上60℃干燥10min。将干燥后的样品放在管式炉中,并取1g硫粉放置在管式炉靠近进气孔的一端,在Ar气氛下以10℃/min的升温速度加热到800℃,保温10min,然后自然降温至室温。图2是所获样品的XRD图谱。
实施例3前驱液用量为100μL,800℃保温10、30、60min制备二硫化钼和硫掺杂碳球复合材料对电极
将50mg碳粉充分分散在10mL乙醇中,加入适量MoCl5使得MoCl5的浓度为330mmol/L,并搅拌均匀。然后分别取上述前驱液100μL,均匀地滴涂在三组3×5cm的石墨纸上,然后在热台上60℃干燥10min。将干燥后的样品放在管式炉中,并取1g硫粉放置在管式炉靠近进气孔的一端,在Ar气氛下以10℃/min的升温速度加热到800℃,分别保温10、30、60min,然后自然降温至室温,得到三组不同保温时间的样品。图5是所获得样品的SEM图像,从图上可以看出,保温10、30、60min的三组样品,其微观形貌都是由许多直立的片状MoS2构成,和纯MoS2纳米球状的微观形貌有很大差别。
实施例4制备硫掺杂碳球材料
为了证明二硫化钼和硫掺杂碳球复合材料中S和C之间结合作用,以不加Mo源但其他工艺保持不变的方式制备了硫掺杂碳球材料,并测试了该样品的XPS。硫掺杂碳球材料的制备方案如下:将50mg碳粉充分分散在10mL乙醇中,并取100μL均匀地滴涂在3×5cm的石墨纸上。然后在热台上60℃干燥10min。将干燥后的样品放在管式炉中,并取1g硫粉放置在管式炉靠近进气孔的一端,在Ar气氛下以10℃/min的升温速度加热到800℃,保温10min,然后自然降温至室温。图6是所得样品的XPS谱图,(a)图中的C-S-C键,(b)图中的C-S键,表明了S与C之间结合作用。

Claims (2)

1.一种二硫化钼和硫掺杂碳球复合电极的制备方法,其特征在于,制备方法如下:
步骤一:将石墨纸浸泡在NaOH溶液中,加热到80-100℃,保温2-5 h后冷却至室温,用去离子水冲洗,真空干燥;
步骤二:取碳粉加入无水乙醇中,超声分散,加入MoCl5,搅拌分散,得到含MoCl5和碳球的前驱液;
步骤三:取MoCl5和碳球的前驱液,滴涂在步骤一所述的石墨纸上,50-70℃于干燥空气中自然干燥或于热台上干燥5-15min,得到前驱膜,所述的前驱液中MoCl5的摩尔浓度为150-450 mM,碳球的浓度为2-10 mg/mL;
步骤四:将干燥后的样品放在管式炉中,硫粉放在管式炉中靠近进气孔的一端,硫粉是充分过量的,且是MoCl5摩尔量的10-100倍,在Ar气氛的保护下,700-900℃,保温后自然降温至室温,得到二硫化钼和硫掺杂碳球复合电极。
2.根据权利要求1中所述的二硫化钼和硫掺杂碳球复合电极的制备方法,其特征在于,所述步骤四中保温温度为以8-15℃/min升温至800℃,煅烧10~120分钟。
CN201711341034.7A 2017-12-14 2017-12-14 一种二硫化钼和硫掺杂碳球复合电极的制备方法 Active CN108133827B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711341034.7A CN108133827B (zh) 2017-12-14 2017-12-14 一种二硫化钼和硫掺杂碳球复合电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711341034.7A CN108133827B (zh) 2017-12-14 2017-12-14 一种二硫化钼和硫掺杂碳球复合电极的制备方法

Publications (2)

Publication Number Publication Date
CN108133827A CN108133827A (zh) 2018-06-08
CN108133827B true CN108133827B (zh) 2020-02-14

Family

ID=62390254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711341034.7A Active CN108133827B (zh) 2017-12-14 2017-12-14 一种二硫化钼和硫掺杂碳球复合电极的制备方法

Country Status (1)

Country Link
CN (1) CN108133827B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110015722B (zh) * 2019-04-29 2021-10-19 内蒙古大学 二硫化钼@石墨纸整体式电容型脱盐电极的制备方法
CN110797445B (zh) * 2019-09-30 2020-10-27 长安大学 一种双层石墨烯膜led电极材料及其制备方法
CN111554931B (zh) * 2020-05-11 2021-09-14 中科廊坊过程工程研究院 一种复合正极材料及其制备方法和在锌离子电池中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840158A (zh) * 2014-03-21 2014-06-04 新疆大学 一种石墨烯/二硫化钼复合材料的制备方法
CN105489387A (zh) * 2016-01-13 2016-04-13 宿州学院 一种掺氮碳微球负载MoS2复合物、制备方法及应用
CN107161978A (zh) * 2017-06-14 2017-09-15 天津大学 一种含硫空心碳微球的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069035A (zh) * 2017-03-31 2017-08-18 合肥国轩电池材料有限公司 一种二硫化钼/碳微球锂离子电池负极材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840158A (zh) * 2014-03-21 2014-06-04 新疆大学 一种石墨烯/二硫化钼复合材料的制备方法
CN105489387A (zh) * 2016-01-13 2016-04-13 宿州学院 一种掺氮碳微球负载MoS2复合物、制备方法及应用
CN107161978A (zh) * 2017-06-14 2017-09-15 天津大学 一种含硫空心碳微球的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Solution-processed relatively pure MoS2 nanoparticles in-situ grown on graphite paper as an efficient FTO-free counter electrode for dye-sensitized solar cells";Niu Huang等;《Electrochimica Acta》;20170318;第235卷;第183页实验部分 *

Also Published As

Publication number Publication date
CN108133827A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
Zheng et al. Flowerlike molybdenum sulfide/multi-walled carbon nanotube hybrid as Pt-free counter electrode used in dye-sensitized solar cells
Gopi et al. ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells
CN103903861B (zh) 金属硫化物与石墨烯复合材料对电极及其制备方法和应用
Youn et al. TiN nanoparticles on CNT–Graphene hybrid support as noble‐metal‐free counter electrode for quantum‐dot‐sensitized solar cells
Ahmad et al. 2-D Mxene flakes as potential replacement for both TCO and Pt layers for Dye-Sensitized Solar cell
Jiang et al. Cobalt-nickel based ternary selenides as high-efficiency counter electrode materials for dye-sensitized solar cells
Wang et al. Facile synthesis of NiCo2O4/carbon black composite as counter electrode for dye-sensitized solar cells
Cha et al. Fallen leaves derived honeycomb-like porous carbon as a metal-free and low-cost counter electrode for dye-sensitized solar cells with excellent tri-iodide reduction
Li et al. Synthesis of highly effective MnO2 coated carbon nanofibers composites as low cost counter electrode for efficient dye-sensitized solar cells
Yao et al. In situ fabrication of Co0. 85Se and Ni0. 85Se hierarchical thin films as high-performance counter electrode for dye-sensitized solar cells
Chen et al. Highly efficient dye-sensitized solar cell with a novel nanohybrid film of Cu2ZnSnS4-MWCNTs as counter electrode
Rao et al. A hydrothermal reaction combined with a post anion-exchange reaction of hierarchically nanostructured NiCo 2 S 4 for high-performance QDSSCs and supercapacitors
Kim et al. Nickel doped cobalt sulfide as a high performance counter electrode for dye-sensitized solar cells
CN108133827B (zh) 一种二硫化钼和硫掺杂碳球复合电极的制备方法
Yao et al. One-step hydrothermal synthesis of ZnS-CoS microcomposite as low cost counter electrode for dye-sensitized solar cells
Gopi et al. Low-temperature easy-processed carbon nanotube contact for high-performance metal-and hole-transporting layer-free perovskite solar cells
Yue et al. PEDOT: PSS and glucose assisted preparation of molybdenum disulfide/single-wall carbon nanotubes counter electrode and served in dye-sensitized solar cells
Wang et al. The sesame ball-like CoS/MoS2 nanospheres as efficient counter electrode catalysts for dye-sensitized solar cells
Zhang et al. Synthesis of NiSe 2/reduced graphene oxide crystalline materials and their efficient electrocatalytic activity in dye-sensitized solar cells
Su et al. Synthesis of highly active cobalt molybdenum sulfide nanosheets by a one-step hydrothermal method for use in dye-sensitized solar cells
Lee et al. Electrochemical growth of NiS nanoparticle thin film as counter electrode for quantum dot-sensitized solar cells
Zhen et al. MoS2-graphene hybrids as efficient counter electrodes in CdS quantum-dot sensitized solar cells
Liu et al. Efficient dye-sensitized solar cells incorporating hybrid counter electrode of CuMnSnS4 microsperes/carbon nanotubes
Che et al. Hydrothermal electrochemical deposition synthesis NiSe2 as efficient counter electrode materials for dye-sensitized solar cells
Wang et al. Colloid synthesis of CuFeSe2 nanocubes as efficient electrocatalysts for dye-sensitized solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant