CN105622962B - 一种复合环糊精水凝胶的制备方法 - Google Patents
一种复合环糊精水凝胶的制备方法 Download PDFInfo
- Publication number
- CN105622962B CN105622962B CN201610151595.XA CN201610151595A CN105622962B CN 105622962 B CN105622962 B CN 105622962B CN 201610151595 A CN201610151595 A CN 201610151595A CN 105622962 B CN105622962 B CN 105622962B
- Authority
- CN
- China
- Prior art keywords
- product
- water
- cyclodextrin
- beta
- dissolved
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0009—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
- C08B37/0012—Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G81/00—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2371/00—Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
- C08J2371/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2405/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
- C08J2405/16—Cyclodextrin; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2487/00—Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Materials For Medical Uses (AREA)
Abstract
一种复合环糊精水凝胶的制备方法,包括以下步骤:(1)以次亚磷酸钠为催化剂,使β‑环糊精与柠檬酸发生接枝反应;(2)将β‑环糊精与柠檬酸接枝的产物再以次亚磷酸钠为催化剂接枝到纳米微晶纤维素上;(3)通过超声处理使得三嵌段共聚物pluronic的ppo段链进入到步骤(2)产物的空腔中;(4)加入α‑环糊精,静置成胶。本发明制备的水凝胶具有独特的结构和良好的生物相容性,凝胶时间短,凝胶强度相较一般凝胶强,能够室温成胶;在功能材料、生物载药方面具有广泛的应用前景。
Description
技术领域
本发明涉及凝胶材料技术领域,尤其是涉及一种环糊精改性纳米纤维素和嵌段共聚物复合水凝胶的制备方法。
背景技术
聚合物水凝胶由于具有可控的物理化学结构,其自身含有较高的水分、生物相容性、可降解性得到科学家的广泛关注。常用于药物负载、组织工程、环境保护等方面。
目前环糊精的主-客体复合水凝胶由于环糊精具有独特的空腔结构,能够提高药物的负载能力的同时也可以缓释药物所以尤其在药物负载方面受到越来越多的关注。但这种水凝胶往往由于自身强度较弱而限制应用。对于提高环糊精主-客体复合水凝胶的机械强度方面尚未报道用环糊精改性纳米微晶纤维素加入到凝胶体系来提高凝胶强度。
纳米微晶纤维素本身是一种良好的增强材料,但因属于纳米材料不可避免会发生自聚现象。这一特性限制了其具体的应用。
发明内容
针对现有技术存在的上述问题,本申请人提供了一种复合环糊精水凝胶的制备方法。本发明制备的水凝胶具有独特的结构和良好的生物相容性,凝胶时间短,凝胶强度相较一般凝胶强,能够室温成胶;在功能材料、生物载药方面具有广泛的应用前景。
本发明的技术方案如下:
一种复合环糊精水凝胶的制备方法,包括以下步骤:
(1)以次亚磷酸钠为催化剂,使β-环糊精与柠檬酸发生接枝反应;
(2)将β-环糊精与柠檬酸接枝的产物再以次亚磷酸钠为催化剂接枝到纳米微晶纤维素上;
(3)通过超声处理使得三嵌段共聚物pluronic的ppo段链进入到步骤(2)产物的空腔中;
(4)加入α-环糊精,静置成胶。
具体制备步骤为:
(1)称取1~20gβ-环糊精,1~10g柠檬酸,1~10g次亚磷酸钠溶于5~10g水中,在温度为100~120℃下反应0.5~2h,得到的产物用乙醇抽提5~7h,再加入水溶解,再加入丙酮沉淀,60℃干燥;
(2)配置浓度为60%~70%的硫酸,将脱脂棉浸润20~40min,在40~50℃下反应,加水终止反应,离心直至上清液呈乳白色,将产物转移到透析袋中透析5~7天,冻干;水解脱脂棉制备得到的纤维素属于纳米级别长度在100~300nm,直径在10~15nm;
(3)称取步骤(1)干燥后的产物溶解在10ml的水中,加入0.05~0.2g次亚磷酸钠,调节pH为1~5,加入步骤(2)得到的0~1.5g纳米微晶纤维素,140~180℃条件下反应10~20min,50~70℃的去离子水洗涤后得到的产物在60℃条件下干燥;
(4)将0.01~0.1g步骤(3)得到的产品溶解在水中,加入0.6~0.7g三嵌段共聚物pluronicF127,在避光的条件下搅拌24h~72h,再经20~30min超声使得三嵌段共聚物中ppo段链进入到β-环糊精的疏水空腔中;
(5)将0.4~0.6g的α-环糊精溶解在的水中,再加入嵌段共聚物和β-环糊精的混合溶液中,20~30℃超声3~5min,室温下静止成胶。
本发明有益的技术效果在于:
目前对于环糊精与peo-ppo-peo复合形成的环糊精水凝胶大多是α-环糊精与peo-ppo-peo复合,未曾看到β-环糊精、α-环糊精、与peo-ppo-peo复合形成水凝胶,这种水凝胶的吸附范围更广,吸附量更高。而且具有对环境的变化能够做出响应。
目前环糊精水凝胶机械强度不够使其在应用方面受到限制(比如药物突释、在组织工程领域、吸附材料等),而将纳米微晶纤维素引入到凝胶体系中是专利中的又一创新点,用β-环糊精改性纳米微晶纤维素能够防止纳米微晶纤维素自聚,在凝胶体系中能够分散均匀。
环糊精与纳米纤维素接枝再与嵌段共聚物形成的聚合物水凝胶即可提高凝胶的强度,又解决了纳米微晶纤维素容易发生自聚的问题,从而拓宽了它们的应用范围。
附图说明
图1为本发明复合环糊精水凝胶的结构示意图;
图2为实施例1中步骤(1)及步骤(3)样品的红外光谱图。
图3为实施例1中步骤(2)制备得到纳米微晶纤维素的透射电镜图;
图4为实施例1中步骤(5)制备得到复合水凝胶的静态流变图;
图5为实施例1中步骤(5)制备得到复合水凝胶的动态流变图。
具体实施方式
下面结合附图和实施例,对本发明进行具体描述。但本发明的实施方式不限于此。
实施例1
(1)分别称取11.35gβ-环糊精,4.2g柠檬酸,1.06g次亚磷酸钠溶于6.81g水中,放置在100℃的烘箱中1.5h后取出。用乙醇抽提6h,加入少量的水溶解,再加入丙酮使之沉淀。过滤,重复3次,得到的产物放入60℃的烘箱中干燥,产物用傅里叶红外光谱仪进行表征,扫描次数32次;分辨率4cm-1;扫描范围为400-4000cm-1。
(2)称取12.5g脱脂棉加入到250mL65%的硫酸溶液中室温浸润30min,在45℃的水浴锅中搅拌1h,加水终止反应,10000rpm20min离心,直至上清液呈现乳白色,将产物转移到透析袋中透析5天,冻干,产物用透射电镜进行表征。
(3)将步骤(1)所得的产物称取3g溶解在10ml水中,加入0.1g次亚磷酸钠,调节pH为3.5,加入1g纳米微晶纤维素,搅拌30min,放入油浴锅中160℃15min,60℃水洗,5000rpm,10min3次,得到的产物放入60℃的烘箱中干燥,产物用傅里叶红外光谱仪进行表征,扫描次数32次;分辨率4cm-1;扫描范围为400-4000cm-1。
(4)将步骤(3)所得的产物称取0.01g溶解在3.5ml水中再加入0.65g pluronicF127,室温避光搅拌24h,超声30min。
(5)将0.485gα-环糊精溶解1.5ml水中,再与步骤(4)的混合溶液混合,25℃超声5min室温下静置成胶,并用旋转流变仪对其粘弹性进行表征。频率扫描为:平板20mm,温度25℃,间隙1mm,应变量为0.05%,频率扫描范围为0.01-20Hz。静态流变为:平板20mm,温度25℃,间隙1mm,剪切速率为0.01-10s-1。
图1为本发明复合环糊精水凝胶的结构示意图,从图中可以看到,直线代表纳米微晶纤维素,较大的梯形代表β-环糊精,小的梯形代表α-环糊精,曲线代表三嵌段共聚物pluronic F127。β-环糊精是通过与柠檬酸发生酯化反应接枝到纳米微晶纤维素上面。通过环糊精的分子自组装β-环糊精与三嵌段共聚物pluronic F127中的ppo段链包结,α-环糊精则与peo段链发生包结。
步骤(1)和(3)的样品的红外光谱检测结果如图2所示,CA-β-CD在1709cm-1处出现酯羰基的吸收峰,β-CD-CNC在1715cm-1处出现酯羰基的吸收峰,说明β-CD与CNC是通过酯键连接的。
步骤(2)制备得到纳米微晶纤维素的透射电镜图如图3所示,由图3可以发现制备的纳米纤维素长度不超过600nm直径不超过100nm,属于纳米级别。
步骤(5)制备得到复合水凝胶的静态流变图如图4所示,由图4可知该凝胶具有剪切变稀的特性。
步骤(5)制备得到复合水凝胶的动态流变图如图5所示,从图5可以看出加入1%的改性纳米微晶纤维素水凝胶的强度提高了5倍以上。
实施例2
(1)分别称取11.35gβ-环糊精,4.2g柠檬酸,1.06g次亚磷酸钠溶于6.81g水中,放置在100℃的烘箱中1.5h后取出。用乙醇抽提6h,加入少量的水溶解,再加入丙酮使之沉淀。放入60℃的烘箱中干燥,产物用傅里叶红外光谱仪进行表征,扫描次数32次;分辨率4cm-1;扫描范围为400-4000cm-1。
(2)称取12.5g脱脂棉加入到250mL65%的硫酸溶液中室温浸润30min,在45℃的水浴锅中搅拌1h,加水终止反应,10000rpm20min离心,直至上清液呈现乳白色,将产物转移到透析袋中透析5天,冻干,产物用透射电镜进行表征。
(3)将步骤(1)所得的产物称取3g溶解在10ml水中,加入0.1g次亚磷酸钠,调节pH为3.5,加入1g纳米微晶纤维素,搅拌30min,放入油浴锅中160℃15min,60℃水洗,放入60℃的烘箱中干燥,产物用傅里叶红外光谱仪进行表征,扫描次数32次;分辨率4cm-1;扫描范围为400-4000cm-1。
(4)将步骤(3)所得的产物称取0.05g溶解在3.5ml水中再加入0.65g pluronicF127,室温避光搅拌24h,超声30min。
(5)将0.485gα-环糊精溶解1.5ml水中,再与步骤(4)的混合溶液混合,25℃超声5min室温下静置成胶,并用旋转流变仪对其粘弹性进行表征。频率扫描为:平板20mm,温度25℃,间隙1mm,应变量为0.05%,频率扫描范围为0.01-20Hz。静态流变为:平板20mm,温度25℃,间隙1mm,剪切速率为0.01-10s-1。
实施例3
(1)分别称取11.35gβ-环糊精,4.2g柠檬酸,1.06g次亚磷酸钠溶于6.81g水中,放置在100℃的烘箱中1.5h后取出。用乙醇抽提6h,加入少量的水溶解,再加入丙酮使之沉淀。过滤,重复3次,得到的产物放入60℃的烘箱中干燥,产物用傅里叶红外光谱仪进行表征,扫描次数32次;分辨率4cm-1;扫描范围为400-4000cm-1。
(2)称取12.5g脱脂棉加入到250mL65%的硫酸溶液中室温浸润30min,在45℃的水浴锅中搅拌1h,加水终止反应,10000rpm20min离心,直至上清液呈现乳白色,将产物转移到透析袋中透析5天,冻干,产物用透射电镜进行表征。
(3)将步骤(1)所得的产物称取3g溶解在10ml水中,加入0.1g次亚磷酸钠,调节pH为3.5,加入1g纳米微晶纤维素,搅拌30min,放入油浴锅中160℃15min,60℃水洗,5000rpm,10min3次,得到的产物放入60℃的烘箱中干燥,产物用傅里叶红外光谱仪进行表征,扫描次数32次;分辨率4cm-1;扫描范围为400-4000cm-1。
(4)将步骤(3)所得的产物称取0.1g溶解在3.5ml水中再加入0.65g pluronicF127,室温避光搅拌24h,超声30min。
(5)将0.485gα-环糊精溶解1.5ml水中,再与步骤(4)的混合溶液混合,25℃超声5min室温下静置成胶,并用旋转流变仪对其粘弹性进行表征。频率扫描为:平板20mm,温度25℃,间隙1mm,应变量为0.05%,频率扫描范围为0.01-20Hz。静态流变为:平板20mm,温度25℃,间隙1mm,剪切速率为0.01-10s-1。
Claims (1)
1.一种复合环糊精水凝胶的制备方法,其特征在于包括以下步骤:
(1)以次亚磷酸钠为催化剂,使β-环糊精与柠檬酸发生接枝反应;
(2)将β-环糊精与柠檬酸接枝的产物再以次亚磷酸钠为催化剂接枝到纳米微晶纤维素上;
(3)通过超声处理使得三嵌段共聚物pluronic的ppo段链进入到步骤(2)产物的空腔中;
(4)加入α-环糊精,静置成胶;
具体制备步骤为:
(1)称取1~20gβ-环糊精,1~10g柠檬酸,1~10g次亚磷酸钠溶于5~10g水中,在温度为100~120℃下反应0.5~2h,得到的产物用乙醇抽提5~7h,再加入水溶解,再加入丙酮沉淀,60℃干燥;
(2)配置浓度为60%~70%的硫酸,将脱脂棉浸润20~40min,在40~50℃下反应,加水终止反应,离心直至上清液呈乳白色,将产物转移到透析袋中透析5~7天,冻干;水解脱脂棉制备得到的纤维素长度在100~300nm,直径在10~15nm;
(3)称取步骤(1)干燥后的产物溶解在10mL的水中,加入0.05~0.2g次亚磷酸钠,调节pH为1~5,加入步骤(2)得到的0~1.5g纳米微晶纤维素,140~180℃条件下反应10~20min,50~70℃的去离子水洗涤后得到的产物在60℃条件下干燥;
(4)将0.01~0.1g步骤(3)得到的产品溶解在水中,加入0.6~0.7g三嵌段共聚物pluronicF127,在避光的条件下搅拌24h~72h,再经20~30min超声使得三嵌段共聚物中ppo段链进入到β-环糊精的疏水空腔中;
(5)将0.4~0.6g的α-环糊精溶解在的水中,再加入步骤(4)得到的混合溶液中,20~30℃超声3~5min,室温下静止成胶。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610151595.XA CN105622962B (zh) | 2016-03-16 | 2016-03-16 | 一种复合环糊精水凝胶的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610151595.XA CN105622962B (zh) | 2016-03-16 | 2016-03-16 | 一种复合环糊精水凝胶的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105622962A CN105622962A (zh) | 2016-06-01 |
CN105622962B true CN105622962B (zh) | 2017-11-17 |
Family
ID=56038337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610151595.XA Active CN105622962B (zh) | 2016-03-16 | 2016-03-16 | 一种复合环糊精水凝胶的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105622962B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106220858B (zh) * | 2016-08-13 | 2019-04-09 | 华南理工大学 | 一种滑动轮凝胶与利用巯基-烯点击反应一步法制备滑动轮凝胶的方法 |
CN108690584B (zh) * | 2018-05-18 | 2021-01-29 | 中国石油天然气集团有限公司 | 一种复合型调驱剂 |
CN110292147B (zh) * | 2019-07-24 | 2023-07-11 | 江西海斯易食品有限公司 | 营养益智有机米粉及米糊 |
CN110776879A (zh) * | 2019-11-04 | 2020-02-11 | 新疆大德广源石油技术服务有限公司 | 强抑制聚束环保钻完井液 |
CN112111024B (zh) * | 2020-09-17 | 2021-09-28 | 江南大学 | 一种绿色的酸改性环糊精及其制备方法 |
CN112321194A (zh) * | 2020-11-06 | 2021-02-05 | 星皓(广州)环保设计研究有限公司 | 一种用于混凝土的耐高温添加剂的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101608029A (zh) * | 2009-07-09 | 2009-12-23 | 上海纳米技术及应用国家工程研究中心有限公司 | 聚多糖纳米粒复合超分子水凝胶及制备方法 |
CN102352557A (zh) * | 2011-08-18 | 2012-02-15 | 中国烟草总公司郑州烟草研究院 | 环糊精接枝固载醋酸纤维素的方法及其应用 |
CN102406945A (zh) * | 2011-10-24 | 2012-04-11 | 上海纳米技术及应用国家工程研究中心有限公司 | 氟碳化合物与环糊精包合物及其制备方法 |
CN103422339A (zh) * | 2013-08-23 | 2013-12-04 | 华南理工大学 | 一种抗菌功能性纤维素纤维的制备方法 |
-
2016
- 2016-03-16 CN CN201610151595.XA patent/CN105622962B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101608029A (zh) * | 2009-07-09 | 2009-12-23 | 上海纳米技术及应用国家工程研究中心有限公司 | 聚多糖纳米粒复合超分子水凝胶及制备方法 |
CN102352557A (zh) * | 2011-08-18 | 2012-02-15 | 中国烟草总公司郑州烟草研究院 | 环糊精接枝固载醋酸纤维素的方法及其应用 |
CN102406945A (zh) * | 2011-10-24 | 2012-04-11 | 上海纳米技术及应用国家工程研究中心有限公司 | 氟碳化合物与环糊精包合物及其制备方法 |
CN103422339A (zh) * | 2013-08-23 | 2013-12-04 | 华南理工大学 | 一种抗菌功能性纤维素纤维的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105622962A (zh) | 2016-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105622962B (zh) | 一种复合环糊精水凝胶的制备方法 | |
Kassab et al. | Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals | |
Noremylia et al. | Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review | |
Ioelovich | Optimal conditions for isolation of nanocrystalline cellulose particles | |
Mallakpour | Ultrasonic-assisted fabrication of starch/MWCNT-glucose nanocomposites for drug delivery | |
LeCorre et al. | Enzymatic pretreatment for preparing starch nanocrystals | |
Du et al. | Development of antimicrobial packaging materials by incorporation of gallic acid into Ca2+ crosslinking konjac glucomannan/gellan gum films | |
Habibi | Key advances in the chemical modification of nanocelluloses | |
Lertwattanaseri et al. | Microwave technique for efficient deacetylation of chitin nanowhiskers to a chitosan nanoscaffold | |
JP2020523465A (ja) | 疎水化ナノセルロース中間体及び疎水化ナノセルロースの製造 | |
Pereira et al. | Effect of chitin nanowhiskers on mechanical and swelling properties of Gum Arabic hydrogels nanocomposites | |
Saini et al. | 1Government Model Science College, Jabalpur, India; 2Saint Louis University, Saint Louis, MO, United States | |
CN105344334A (zh) | 一种聚乙烯醇/二氧化硅复合微球的制备方法 | |
Zuber et al. | Chitin and chitosan based blends, composites and nanocomposites | |
Trombino et al. | Green chemistry principles for nano-and micro-sized hydrogel synthesis | |
US11299584B2 (en) | Preparation method for polylactic acid grafted chitosan nanowhiskers | |
CN113292762B (zh) | 一种双醛纳米纤维素三维柔性材料及其制备方法与应用 | |
CN112898601B (zh) | 一种具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶及其制备方法 | |
Yu et al. | Development of nanocellulose hydrogels for application in the food and biomedical industries: A review | |
CN103937182A (zh) | 一种生物降解聚酯/纤维素纳米复合材料及其制备方法 | |
CN113248742B (zh) | 一种pH和光双重响应天然多糖水凝胶及其制备方法 | |
CN102417547A (zh) | 粉状去乙酰基魔芋葡甘露聚糖及其生产方法 | |
Olsson et al. | Cellulose nanofillers for food packaging | |
Guo et al. | One-pot synthesis of 2-bromopropionyl esterified cellulose nanofibrils as hydrophobic coating and film | |
CN112745518B (zh) | 一种壳聚糖纳米片的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |