CN105622323A - 一种蒸汽裂解方法 - Google Patents

一种蒸汽裂解方法 Download PDF

Info

Publication number
CN105622323A
CN105622323A CN201410586847.2A CN201410586847A CN105622323A CN 105622323 A CN105622323 A CN 105622323A CN 201410586847 A CN201410586847 A CN 201410586847A CN 105622323 A CN105622323 A CN 105622323A
Authority
CN
China
Prior art keywords
cracking
section
preheating
furnace
convection section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410586847.2A
Other languages
English (en)
Inventor
张利军
王国清
巴海鹏
杜志国
周丛
张永刚
张兆斌
周先锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Original Assignee
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Beijing Research Institute of Chemical Industry, China Petroleum and Chemical Corp filed Critical Sinopec Beijing Research Institute of Chemical Industry
Priority to CN201410586847.2A priority Critical patent/CN105622323A/zh
Publication of CN105622323A publication Critical patent/CN105622323A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明公开了一种蒸汽裂解方法,该方法包括:将不饱和烃在汽化装置进行汽化,然后将汽化后的气相不饱和烃与稀释蒸汽混合,并将得到的裂解原料混合物引入裂解炉的对流段预热,然后再将预热后的裂解原料混合物从裂解炉的辐射段的中间部位引入并进行裂解反应,其中,所述预热管排与连接箱的直径比为1:5-12,优选为1:8-10,所述裂解炉的辐射段的中间部位是在裂解炉的高度的1/4至4/5处。采用本发明提供的蒸汽裂解方法,提高了裂解原料在裂解炉管内的升温速度,进而提高裂解反应的选择性,从而显著提高了乙烯、丙烯和丁二烯的收率。

Description

一种蒸汽裂解方法
技术领域
本发明涉及一种蒸汽裂解方法。
背景技术
乙烯、丙烯和丁二烯等低碳烯烃是石油化学工业的重要基础原料。目前生产低碳烯烃的方法以管式炉石油烃蒸汽裂解工艺为主,据统计,世界上大约99%的乙烯、50%以上的丙烯和90%以上的丁二烯通过该工艺生产。
用于生产乙烯、丙烯和丁二烯等低碳烯烃产品的原料主要有两个来源,一是天然气副产的轻烃,如乙烷、丙烷、丁烷和天然汽油等;二是炼油装置加工的产品,如炼厂气、石脑油、柴油以及二次加工产品,如焦化加氢石脑油、加氢尾油等。这些原料有一个共同的特点就是,原料中绝大部分都是饱和烃类,不饱和烃类的含量受到严格限制,一般在2%以下。随着低碳烯烃产品的需求越来越大,裂解原料开始日趋紧张,扩大原料的来源成为关注的焦点。在石油化工装置中,碳四、碳五产品较多,在分离出有用的产品后,剩余的部分大部分是烯烃,按照传统的工艺,无法进入裂解炉进行裂解,因此大部分都混入液化石油气进行销售。
碳四和碳五的烯烃经过实验室的小试裂解装置进行试验后发现,其低碳烯烃产品收率几乎和石脑油相当,而且其产物中丙烯和丁二烯所占比重较大,因此如果能够将碳四碳五的烯烃这样的不饱和烃作为裂解原料,不仅扩大了裂解原料的来源,也可以方便地调整裂解产物中乙烯和丙烯、丁二烯之间的比例。
众所周知,裂解一般是指石油烃在高温条件下,发生碳链断裂或脱氢反应生成烯烃及其他产物的过程。裂解目的是以生产乙烯、丙烯为主,同时还副产丁烯、丁二烯等烯烃和裂解汽油、柴油、燃料油等产品,这些反应及分离过程一般是在乙烯装置中进行的。传统上,以管式裂解炉蒸汽裂解工艺及其下游的深冷分离工艺为核心技术所建立的生产装置称为乙烯装置。该装置的核心设备是管式裂解炉,它是由对流段和辐射段组成。裂解原料和稀释水蒸气首先分别在对流段炉管内加热,二者混合并气化后加热至起始裂解温度(即“横跨温度”),然后进入辐射段炉管裂解。在工业裂解炉辐射段内,通常排布了若干组构型相同的炉管。管内通以裂解原料,管外用液体燃料或气体燃料燃烧所放出的热量来加热管壁,而通过管壁的传热,将热量传递给管内的反应物料。
一般而言,裂解炉的对流段的作用主要有两个,一是将裂解原料预热、汽化并过热至初始裂解温度(横跨温度),二是回收烟气中的余热,以提高炉子的热效率。因此,正常情况下对流段根据不同的工艺要求有不同的换热段排布方式,大致包含以下几个换热段:原料预热段、锅炉给水预热段、稀释蒸汽过热段、超高压蒸汽过热段和混合物料过热段。随着技术的发展,裂解炉的对流段技术也不断发展,一是裂解炉对流段的段数越来越多,比如原料预热段会根据烟气余热的能为不同分为上原料预热段、中原料预热段和下原料预热段等;二是稀释蒸汽的注入方式多样化,根据原料的不同采用不同的注汽方式,如一次注汽和二次注汽。采用不同的注汽方式是为了防止原料在对流段的结焦,对于石脑油、柴油以及加氢尾油等液体原料,其在对流段加热过程中存在一个汽化的过程,如果原料中存在烯烃,则在汽化初期,气相中的烯烃含量较高,容易引起结焦,在汽化末期,液相中的烃类组分较重,同样容易引起结焦。因此通常在汽化过程中采取注入过热稀释蒸汽的方法快速使得液体原料汽化,避免更多的结焦发生。而裂解炉的对流段一旦出现严重结焦,不仅会严重影响对流段的传热过程,而且会引起对流段压降骤增,从而降低裂解炉的产量,达到某一极限时必须将裂解炉停炉进行机械清焦。因此必须寻求一种方法,能够适应裂解原料为不饱和烃时对流段的结焦控制在合理范围之内,也就是说,当裂解原料为不饱和烃时,裂解炉对流段的结焦不会导致裂解炉在短时间内停车进行机械清焦。
裂解炉中裂解原料的结焦过程非常复杂,通常裂解炉的结焦可以从原料,也可以从产品中形成。一般认为烃类裂解结焦有两个途径:一是通过乙炔途径结焦,即裂解过程中得到的不饱和中间体部分在炉管内进一步脱氢,从而形成焦炭附着在炉管表面,这个途径的反应主要在900℃~1100℃的高温下进行;一是通过芳烃途径结焦,即裂解过程中的乙烯、丙烯与高碳二烯烃环化后生成苯环或原料中的芳烃,发生脱氢缩合反应形成多环芳烃,最后形成类似焦炭的物质,这个途径的反应主要在500℃~900℃的较低温度下进行。一般认为主要有三种结焦机理:催化结焦、自由基结焦和焦油结焦。
金属催化结焦:此机理涉及到金属催化反应,其中金属碳化物可能是中间体,炉管材料中的铁和镍是催化剂,催化生成的纤维状焦炭经常含有1-2%的金属,这些金属颗粒主要位于纤维状焦炭顶端。纤维状焦炭在光洁不锈钢表面形成速度很高(主要在400℃~至少1050℃的温度范围内),当金属表面被焦炭层覆盖后,结焦速率快速下降到一个稳定值,但由于焦炭顶端仍含有微量金属,微弱的催化结焦作用仍然存在。
自由基非催化结焦:此机理是公认的最重要的对所有原料都适用的结焦机理。在炉管内的气/焦炭界面上,焦表面的聚芳烃层并未完全脱氢,焦炭表面与气相中的自由基反应脱去氢,自由基中的碳原子与焦表面碳原子结合生成焦碳。甲基和乙炔基是最活跃的自由基。气相中所有未饱和分子都是潜在的焦前兆体。不饱和分子中的长脂肪烃链很容易分解,分解后剩余的部分在经过几步反应之后形成环结构,而在这过程中脱氢反应进行的非常快。通过这种途径,焦炭表面的芳环结构持续增长,焦炭表面上自由基的晶格点得到更新。此种结焦机理贯穿整个运转周期。
焦油结焦:气相中多环芳烃一些是通过自由基反应形成的,一些是芳烃通过多元聚合反应形成的,而芳烃可能是最重要的中间体,这些多环芳烃大分子在气相中增长形成焦油液滴。在高温炉管中的焦油液滴可能是液体或者甚至是固体,部分焦油液滴冲击管壁表面时,一些可能反弹进入气相中,更多的则是粘附在管内壁表面的焦油液滴与焦炭层融合,刚融合后的焦油液滴外表面并未完全脱氢,它能同气相中自由基反应脱氢形成焦炭,或者在高温下脱氢形成焦炭。
在裂解炉管中,裂解过程结焦的影响因素有很多,一般包括温度、停留时间、烃分压等。
温度的影响:裂解深度,结焦母体的浓度及结焦反应的活性均随温度升高而增加,因此是影响结焦的主要因素之一。
停留时间的影响:停留时间也是影响结焦的主要因素之一。裂解原料在裂解管内滞留的时间就越长,二次反应发生的概率就约大,结焦前兆体生成焦炭的几率和结焦速度也就随着增加,因此在管内结的焦量也越多。
烃分压的影响:降低烃分压对减少炉管结焦十分有利。在烃类原料裂解时,都要加入一定的水蒸汽作为稀释剂。采用水蒸汽作为稀释剂有许多优点:一是降低烃分压可提高生成乙烯和降低芳烃生成的选择性;另一个是降低烃分压也可降低裂解气中结焦前兆体的浓度而降低炉管结焦速度;三是可抑制管壁结焦。此外,水蒸气还对裂解金属管内表面中的铁和镍等金属具有钝化作用,降低了催化结焦速率。因此降低烃分压,提高稀释蒸汽比,可以减小结焦速率。
对于多种不同的裂解原料进入裂解炉的对流段,现有技术中提出了一些实施方案。例如,CN1077978A针对重质油品在对流段炉管内的结焦问题,提出了一种对流段采用两次注汽的石油烃蒸汽裂解制乙烯的方法,该方法采用三点分注法注入一次蒸汽和一点注入二次蒸汽的进料方式,使得裂解炉既能适应轻质原料,也能适应重质原料,而且在原料切换时不需要更换管线。该专利申请的方法仅是蒸汽注入方式的改变,不影响整个裂解工艺最终的裂解收率和产品的质量。
CN1501898A提出了一种在用于重质进料裂解的裂解炉中裂解轻质进料的方法,该方法是将一部分轻质进料在裂解炉对流段的进料入口送入,而将另外的轻质进料与稀释气体一起送入对流段。该专利申请的方法解决了当裂解原料由重质原料更换为轻质原料时,轻质原料如何进入裂解炉的问题,为了使得轻质原料通过原料预热段时不至于有过大的压降,将原料分为两个部分,一部分从原料入口进入,一部分与稀释蒸汽一起进入。
US2009/0178956提出了一种用于减少液体裂解原料在对流段结焦的方法,该方法是将液体原料在单独预热时通过注入气相等方式降低其分压,从而提高液体原料在与稀释蒸汽混合后的气化率,从而延缓液体原料结焦前兆体的形成,降低甚至消除液体原料在对流段的结焦。
目前的蒸汽裂解方法都集中于如何使得裂解炉适应更多的不同性质的原料,如从轻质原料到重质原料等,或者如何使裂解炉在使用重质原料时如何减缓结焦或者消除结焦的发生。然而,现有技术中并不涉及将烯烃作为部分裂解原料注入裂解炉中进行蒸汽裂解的方法,更不涉及如何解决烯烃作为部分裂解原料注入裂解炉中会发生结焦的问题。
烯烃作为裂解原料不但会在裂解炉中发生结焦问题,在裂解反应中也与饱和烃类有极大不同。碳四和碳五的烯烃经过实验室的小试裂解装置进行试验后发现,其低碳烯烃产品收率几乎和石脑油相当,而且其产物中丙烯和丁二烯所占比重较大,因此如果能够将碳四碳五的烯烃这样的不饱和烃作为裂解原料,不仅扩大了裂解原料的来源,也可以方便地调整裂解产物中乙烯和丙烯、丁二烯之间的比例。
众所周知,裂解一般是指石油烃在高温条件下,发生碳链断裂或脱氢反应生成烯烃及其他产物的过程。裂解目的是以生产乙烯、丙烯为主,同时还副产丁烯、丁二烯等烯烃和裂解汽油、柴油、燃料油等产品。
这些反应及分离过程一般是在乙烯装置中进行的。传统上,以管式裂解炉蒸汽裂解工艺及其下游的深冷分离工艺为核心技术所建立的生产装置称为乙烯装置。该装置的核心设备是管式裂解炉,它是由对流段和辐射段组成。裂解原料和稀释水蒸气首先分别在对流段炉管内加热,二者混合并气化后加热至起始裂解温度(即“横跨温度”),然后进入辐射段炉管裂解。在工业裂解炉辐射段内,通常排布了若干组构型相同的炉管。管内通以裂解原料,管外用液体燃料或气体燃料燃烧所放出的热量来加热管壁,而通过管壁的传热,将热量传递给管内的反应物料。
通常而言,裂解原料都是饱和的石油烃,关于饱和石油烃的裂解的专利很多。例如CN90108007.1发明了一种乙烯裂解炉,该裂解炉能够裂解从轻质的拔头油至重质的常压二、三线柴油及加氢尾油,其辐射段炉管采用1-1-1三程分枝变径管,其裂解原料从炉底或者炉顶进入,裂解产物从炉顶或者炉底流出。
CN200710118074.5发明了一种乙烯裂解炉,其所属的辐射段设有辐射室,其内有用于烃及石油馏分进行热裂解的辐射炉管,辐射炉管在辐射室内呈两排排列,每一排形成一个管排平面。该裂解炉辐射炉管的进口管和出口管都在辐射室的顶部,且其为了节约占地面积采用两排排列。
CN200810224277.7发明了一种乙烯裂解炉,包括高压汽包、对流段、辐射段、垂直布置在辐射段的多组辐射炉管等,其所述的第一程管和第二程管为不分枝炉管,且各炉管中心线在同一个平面上,第一程管与第二程管平行,其炉管亦是从裂解炉顶部进出。
CN200910181015.1同样描述了一种裂解炉,其第一程炉管采用双排布置,第二程炉管采用单排布置,目的是为了减少占地面积。
通过上述专利可以看出,目前的乙烯裂解炉都是以饱和烃为原料的,其裂解炉辐射段炉管的设置也都是从裂解炉顶部或者底部进入裂解炉辐射段炉膛。而对于以不饱和烃为原料的裂解过程则研究的很少,通过我们对不饱和烃中的烯烃研究发现,处理遵循饱和石油烃类裂解的基本规律(比如需要高温、短停留时间、低听分压等)之外,不饱和烃的裂解过程尤其具有独特的规律。
我们通过碳四烯烃的试验可以说明,我们在试验中采用物料的横跨温度和裂解出口温度都一致,唯一不同的是物料在炉管中的升温速度,从试验结果看,分别是在各种不同升温速度情况下的乙烯、丙烯和丁二烯的产率,可以看出,对于烯烃作为裂解原料而言,更快的升温速度有助于提高目的裂解产物的产率,即提高了裂解的选择性。
因此,根据上述结果,我们希望能够找到一种合适的方式,在工业烯烃裂解炉上实现超过现有技术的快速升温的目的。
目前,通常实现快速升温的目的有以下几种方式,一是提高裂解炉的烟气温度,这样可以增加传热温差,从而增加裂解炉管的热通量,进而实现快速升温的目的;二是通过分支变径管,即在裂解炉管的入口部分,采用分支炉管,比如采用两根甚至四根入口管,同时缩小管径,增加传热面积,这样裂解原料通过炉管时,在入口部分会快速升温开始发生反应;三是提高裂解原料的横跨温度,从而可以保证裂解原料能够在短时间内达到特定的温度。
通过现有的这几种方式,裂解原料的升温速度已经达到了很高的水平,要继续提高升温速度,必须选择新的方法,还有待于进一步研究和发现。
发明内容
本发明的目的是为了克服将不饱和烃作为裂解原料注入裂解炉中在对流段会发生结焦的问题,提供一种新的蒸汽裂解方法。
本发明提供了一种蒸汽裂解方法,该方法在汽化装置和裂解炉中实施,所述裂解炉包括对流段和辐射段,所述对流段包括预热管排以及处于裂解炉对流段之外的预热管排之间的连接箱,所述方法包括:将不饱和烃在汽化装置进行汽化,然后将汽化后的气相不饱和烃与稀释蒸汽混合,并将得到的裂解原料混合物引入裂解炉的对流段预热,然后再将预热后的裂解原料混合物从裂解炉的辐射段的中间部位引入并进行裂解反应,其中,所述预热管排与所述处于裂解炉对流段之外的预热管排之间的连接箱的直径比为1:5-12,优选为1:8-10,所述裂解炉的辐射段的中间部位是在裂解炉的高度的1/4至4/5处。
在本发明提供的所述蒸汽裂解方法中,将不饱和烃作为裂解原料,本发明采用裂解原料在对流段的预热管排之间的连接箱中增加停留时间以强化结焦,从而减少裂解原料在对流段管排中的结焦,主要是由于烯烃在裂解炉对流段的预热过程处于低温(约100-650℃)下,其结焦主要是重组合的焦油结焦,而这种结焦类型与停留时间关系较大,因此,采用这种方式能够避免裂解炉对流段预热管排的结焦,从而降低由于对流段结焦导致裂解炉停炉的可能性,以确保裂解炉平稳运行;另外,由于预热管排之间的连接箱处于裂解炉对流段之外,因此其温度要低于预热管排,焦油更容易冷凝下来富集在连接箱的表面,这也为焦油在此处的结焦速率增加提供了良好的条件。而对于预热管排之间的连接箱中的结焦,可以采用烧焦或者机械清焦的方式除焦后连续生产。
在本发明提供的所述蒸汽裂解方法中,将不饱和烃作为裂解原料,本发明采用裂解原料在对流段预热到一定温度后裂解原料直接从裂解炉的辐射段的中间部分进入裂解炉并进行裂解反应,从而提高了裂解原料在裂解炉管内的升温速度,进而提高裂解反应的选择性,从而显著提高了乙烯、丙烯和丁二烯的收率。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明中不饱和烃在裂解炉的对流段中的预热示意图以及物料流向示意图;
图2是现有技术中的裂解炉的对流段中的管排链接;
图3是本发明中的裂解炉的对流段中的管排链接。
附图标记说明
1汽化后的气相不饱和烃3稀释蒸汽6汽包
9辐射段12锅炉给水预热段14超高压蒸汽过热段
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下”通常是指参考附图所示的上、下;“内、外”是指相对于各部件本身的轮廓的内、外。
图1为本发明中的不饱和烃在裂解炉对流段预热示意图以及物料流向示意图。所述对流段包括汽化后的气相不饱和烃1和稀释蒸汽3的混合气体、上原料预热段、锅炉给水预热段、下原料预热段,上超高压蒸汽过热段、下超高压蒸汽过热段、上混合加热段、中混合加热段和下混合加热段以及处于裂解炉对流段之外的预热管排之间的连接箱。裂解原料经过对流段进入辐射段9,在辐射段9内,通过燃烧液体燃料或气体燃料所放出的热量,将由所述裂解原料经过对流段预热后得到的物料进一步加热以发生裂解反应。裂解产物注入急冷换热器中进行冷却,分离成裂解气和蒸汽。蒸汽进入汽包6中进行气液分离,分离出的高压蒸汽可以进入对流段进行加热,以获得超高压蒸汽,分离出的水可用作急冷换热器的冷却水;裂解气经过裂解气总管进入后续分离装置中分离出想要的目标产物。辐射段9内燃烧产生的高温烟气经过烟气横跨段进入对流段。所述急冷装置优选为急冷换热器,也即间接急冷装置。
为了充分利用来自辐射段9的高温烟气的热量,所述裂解炉的对流段通常设置有用于回收热量的多个段。通常,所述对流段可以设置有原料预热段、锅炉给水预热段12、稀释蒸汽过热段、超高压蒸汽过热段14和混合加热段中的一个或多个。所述原料预热段通常用于对裂解原料进行预热。所述锅炉给水预热段12通常用于对供给至汽包6中的锅炉给水进行预热。所述稀释蒸汽过热段通常用于对稀释蒸汽(如水蒸气)进行预热。所述超高压蒸汽过热段14通常用于将来自汽包6的高压蒸汽进行加热以获得超高压蒸汽。所述混合加热段通常用于将裂解原料加热至横跨温度。对于上面提及的这些段,可以根据实际需要进行设置,例如,当所述裂解原料需要先进行预热再与其他物流(如稀释蒸汽)混合时,则需要设置所述原料预热段,相反,则不需要设置所述原料预热段。
而且,根据实际生产需要,所述对流段可以设置有一个或多个原料预热段。在一种实施方式中,当所述裂解原料通过多股物流注入,而且每股物流都需要事先经过预热再进行相互混合时,在所述对流段内设置多个原料预热段,每个原料预热段分别对一股物流进行预热。在另一种实施方式中,当所述裂解原料需要预热至较高的温度,而经过一个原料预热段不能预热至目标温度时,需要在所述对流段内设置多个原料预热段,以对所述裂解原料进行多次预热。
根据实际生产需要,为了获得特定温度和压力的超高压蒸汽,可以在所述对流段内设置一个或多个超高压蒸汽过热段14。
根据实际生产需要,为了将裂解原料加热至横跨温度以减轻辐射段的负荷,可以在所述对流段内设置一个或多个混合加热段。
在所述裂解炉中,当所述对流段内设置有两个以上的选自原料预热段、锅炉给水预热段12、稀释蒸汽过热段、超高压蒸汽过热段14和混合加热段中的段时,各个段之间的位置可以根据实际需要而确定,当某一段内的待加热介质需要进行较高强度的加热,也即加热至较高的温度时,则可以将该段设置在靠近所述烟气横跨段的位置,因为靠近所述烟气横跨段的位置烟气的温度相对较高;当某一段内的待加热介质需要进行较低强度的加热,也即加热至较低的温度时,则可以将该段设置在远离所述烟气横跨段的位置,因为离所述烟气横跨段越远烟气的温度越低。例如,在一种实施方式中,如图1所示,在所述对流段中,沿着高温烟气的流动方向,依次设置有原料预热段、锅炉给水预热段、超高压蒸汽过热段和混合加热段。
在本发明中,所述对流段中进行的各个预热过程分别在所述对流段的不同段内进行。具体地,所述汽化后的气相不饱和烃1与稀释蒸汽3的混合气体的预热过程在所述对流段的原料预热段中进行。
根据本发明的一种所述蒸汽裂解方法,该方法在汽化装置和裂解炉中实施,所述裂解炉包括对流段和辐射段,所述对流段包括预热管排以及处于裂解炉对流段之外的预热管排之间的连接箱,所述方法包括:将不饱和烃在汽化装置进行汽化,然后将汽化后的气相不饱和烃与稀释蒸汽混合,并将得到的裂解原料混合物引入裂解炉的对流段预热,然后再将预热后的裂解原料混合物从裂解炉的辐射段的顶部引入并进行裂解反应,其中,所述预热管排与所述处于裂解炉对流段之外的预热管排之间的连接箱的直径比为1:5-12,优选为1:8-10,所述裂解炉的辐射段的中间部位是在裂解炉的高度的1/4至4/5处。
在本发明的上述所述方法中,本发明的裂解炉对流段的预热管排采用小直径的炉管,以降低不饱和烃在该预热管排中的停留时间,从而降低结焦速率,而在处于裂解炉对流段之外的预热管排之间采用超大直径的连接箱,增加不饱和烃的停留时间,从而强化结焦。其中,处于裂解炉对流段之外的预热管排之间的连接箱的直径要大于裂解炉对流段的预热管排的直径。
在本发明的上述方法中,汽化后的气相不饱和烃1与稀释蒸汽3混合在一起引入到所述对流段的过程称为预热过程。
在本发明的上述所述方法中,所述裂解原料混合物在所述对流段内预热后的温度可以为540-660℃;优选地,所述裂解原料混合物在所述对流段内预热后的温度可以为590-640℃。
在本发明的上述所述方法中,所述处于裂解炉对流段之外的预热管排之间的连接箱总是成对出现,例如可以为一组(2个)、两组(4个)、三组(6个)等等,且成对出现的预热管排之间的连接箱之间存有切换阀,以保证在其中一个清焦的同时,另一个可以保持连续生产。
在本发明的上述所述方法中,裂解炉对流段的预热管排的体积与处于裂解炉对流段之外的预热管排之间的连接箱的体积比可以为1:2-12,优选地,裂解炉对流段的预热管排的体积与处于裂解炉对流段之外的预热管排之间的连接箱的体积比可以为1:3-6。
在本发明的上述所述方法中,用于汽化不饱和烃的汽化装置可以为各种常规的汽化装置。所述不饱和烃在汽化装置进行汽化的温度可以为175-185℃。
在本发明的上述所述方法中,所述不饱和烃可以可以相同或不同,而且各自可以为各种常规的不饱和烃,例如可以为C4、C5和C6的烯烃。
在本发明的上述所述方法中,所述不饱和烃和所述稀释蒸汽的用量的重量比可以为1:0.2-5;优选地,所述不饱和烃和所述稀释蒸汽的用量的重量比为1:0.3-0.8。
在本发明的上述所述方法中,所述裂解反应的条件可以包括:所述辐射段的出口温度为780-850℃,优选为790-840℃;反应时间为0.1-0.5秒,优选为0.2-0.3秒。
在一种优选的实施方式中,如图1所示,在所述对流段中,将汽化后的气相不饱和烃1与稀释蒸汽3的混合气体经过原料预热段进行预热,之后将经过所述原料预热段预热的气相不饱和烃与稀释蒸汽的混合气体经过混合预热段得到裂解原料混合物;接着再将预热后的裂解原料混合物从裂解炉的辐射段9的中间部位引入并进行裂解反应。其中,在本发明的一种优选的实施方式中,裂解炉对流段的管排以及处于裂解炉对流段之外的预热管排之间的连接箱如图3所示,从图中可见,对流段的预热管排之间的连接箱的直径从外观上明显大于对流段的预热管排的直径,与传统的裂解炉对流段的的管排如图2所示有着显著区别。
根据本发明的所述方法不仅能够以不饱和烃为裂解原料,而且还能够减少不饱和烃作为裂解原料在裂解炉对流段的结焦,从而保证裂解炉的平稳运行。
以下通过实施例对本发明作进一步说明。
实施例1
本实施例用于说明本发明提供的所述蒸汽裂解方法。
采用图1所示的裂解炉对流段预热且进行裂解反应。具体过程包括:
将C4、C5和C6的烯烃(组成如表1所示)在汽化装置中进行汽化;
将汽化后的气相不饱和烃1与稀释蒸汽3的混合气体在裂解炉的对流段中经过原料预热段进行预热,且所述不饱和烃1和所述稀释蒸汽3的用量的重量比为1:0.4;之后将经过所述原料预热段预热的气相不饱和烃与稀释蒸汽的混合气体经过混合预热段预热,得到裂解原料混合物;其中,裂解炉对流段的管排如图3所示,所述预热管排与所述处于裂解炉对流段之外的预热管排之间的连接箱的直径比为1:9,且所述预热管排的体积与所述处于裂解炉对流段之外的预热管排之间的连接箱的体积比为1:3;
接着再将预热后的所述裂解原料混合物从裂解炉的辐射段9的中间部位引入并进行裂解反应,裂解炉的辐射段的中间部位是在裂解炉的高度的1/2处。
裂解炉的其他工艺参数如表2所示,通过对裂解气进行分离和分析得知,裂解气的组成如表3所示。
表1
组成 含量(重量%)
丙烷 0.03
正丁烷 22.34
异丁烷 8.92
正丁烯 4.24
顺丁烯 27.43
反丁烯 32.07
丁二烯 2.04
异丁烯 2.91
碳五及以上 0.02
合计 100.00
表2
表3
收率 含量(重量%)
氢气 2.36
一氧化碳 0.03
二氧化碳 0.04
甲烷 13.41
乙炔 0.41
乙烯 15.09
乙烷 1.93
丙二烯 0.24
丙炔 0.34
丙烯 19.90
丙烷 0.25
丁二烯 16.17
丁烯 21.43
丁烷 3.19
碳五组分 2.62
其他 2.60
合计 100.00
对比例1
根据实施例1的方法进行蒸汽裂解,所不同的是,裂解炉对流段的管排如图2所示,即在该传统的裂解炉对流段的管排之间没有设置比管排直径大的连接箱,且裂解原料混合物从裂解炉的辐射段的顶部引入辐射段9中并进行裂解反应,即裂解原料混合物进入裂解炉辐射段的位置不同。
其中,裂解炉的其他工艺参数如表4所示,通过对裂解气进行分离和分析得知,裂解气的组成如表5所示。
表4
表5
收率 含量(重量%)
氢气 2.22
一氧化碳 0.03
二氧化碳 0.04
甲烷 13.62
乙炔 0.34
乙烯 13.43
乙烷 1.31
丙二烯 0.24
丙炔 0.34
丙烯 18.58
丙烷 0.18
丁二烯 13.68
丁烯 24.88
丁烷 3.40
碳五组分 4.06
其他 3.65
合计 100.00
通过将实施例1与对比例1进行比较可以看出,裂解炉运行初期,实施例1的混合预热段的压降为110.9kpa(在表2中,在运行初期,上混合预热段入口与下混合预热段出口的差值),在对比例1中,混合预热段在运行末期的压降为120.5kPa(在表4中,在运行初期,上混合预热段入口与下混合预热段出口的差值);这说明在实施例1中混合预热段管段内的结焦要少于对比例1中混合预热段管段内的结焦,因此其压降要低一些。
通过将实施例1与对比例1进行比较,由表3和表5的数据可以看出,实施例1的乙烯的收率为15.09重量%、丙烯的收率为19.90重量%以及丁二烯收率为16.17重量%;而对比例1的乙烯的收率为13.43重量%、丙烯的收率为18.58重量%以及丁二烯收率为13.68重量%。
因此,通过将实施例1与对比例1进行比较,由表3和表5的数据可以看出,根据本发明提供的所述蒸汽裂解方法,将不饱和烃作为裂解原料,本发明采用裂解原料在对流段预热到一定温度后裂解原料直接从裂解炉的辐射段的中间部分进入裂解炉并进行裂解反应,从而提高了裂解原料在裂解炉管内的升温速度,进而提高裂解反应的选择性,从而显著提高了乙烯、丙烯和丁二烯的收率。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (10)

1.一种蒸汽裂解方法,该方法在汽化装置和裂解炉中实施,所述裂解炉包括对流段和辐射段,所述对流段包括预热管排以及处于裂解炉对流段之外的预热管排之间的连接箱,所述方法包括:将不饱和烃在汽化装置进行汽化,然后将汽化后的气相不饱和烃与稀释蒸汽混合,并将得到的裂解原料混合物引入裂解炉的对流段预热,然后再将预热后的裂解原料混合物从裂解炉的辐射段的中间部位引入并进行裂解反应,其特征在于,所述预热管排与所述处于裂解炉对流段之外的预热管排之间的连接箱的直径比为1:5-12,优选为1:8-10,所述裂解炉的辐射段的中间部位是在裂解炉的高度的1/4至4/5处。
2.根据权利要求1所述的方法,其中,所述裂解原料混合物在所述对流段内预热后的温度为540-660℃,优选为590-640℃。
3.根据权利要求1所述的方法,其中,所述处于裂解炉对流段之外的预热管排之间的连接箱成对出现且二者之间存有切换阀。
4.根据权利要求1或3所述的方法,其中,所述预热管排的体积与所述处于裂解炉对流段之外的预热管排之间的连接箱的体积比为1:2-12,优选为1:3-6。
5.根据权利要求1或4所述的方法,其中,所述裂解炉的辐射段的中间部位是在裂解炉的高度优选为2/5至3/5处。
6.根据权利要求1所述的方法,其中,所述不饱和烃在汽化装置进行汽化的温度为175-185℃。
7.根据权利要求1或6所述的方法,其中,所述不饱和烃为C4、C5和C6的烯烃。
8.根据权利要求1或7所述的方法,其中,所述不饱和烃和所述稀释蒸汽的用量的重量比为1:0.2-5。
9.根据权利要求1或8所述的方法,其中,所述不饱和烃和所述稀释蒸汽的用量的重量比为1:0.3-0.8。
10.根据权利要求1-9中任意一项所述的方法,其中,所述裂解反应的条件包括:所述辐射段的出口温度为780-850℃,优选为790-840℃;反应时间为0.1-0.5秒,优选为0.2-0.3秒。
CN201410586847.2A 2014-10-28 2014-10-28 一种蒸汽裂解方法 Pending CN105622323A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410586847.2A CN105622323A (zh) 2014-10-28 2014-10-28 一种蒸汽裂解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410586847.2A CN105622323A (zh) 2014-10-28 2014-10-28 一种蒸汽裂解方法

Publications (1)

Publication Number Publication Date
CN105622323A true CN105622323A (zh) 2016-06-01

Family

ID=56037717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410586847.2A Pending CN105622323A (zh) 2014-10-28 2014-10-28 一种蒸汽裂解方法

Country Status (1)

Country Link
CN (1) CN105622323A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111892470A (zh) * 2020-06-17 2020-11-06 中国石油天然气股份有限公司 蒸汽裂解制烯烃模拟试验装置及方法
CN112694908A (zh) * 2020-12-15 2021-04-23 浙江大学 一种石油烃高效裂解方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711568A (en) * 1970-09-24 1973-01-16 H Cooper Pyrolysis process
CN101146893A (zh) * 2005-01-20 2008-03-19 特克尼普法国公司 将包含重质尾部馏分的烃进料裂化的工艺
CN103588602A (zh) * 2012-08-14 2014-02-19 中国石油化工股份有限公司 一种蒸汽裂解方法
CN103787808A (zh) * 2012-10-29 2014-05-14 中国石油化工股份有限公司 一种蒸汽裂解方法
CN105541531A (zh) * 2014-10-28 2016-05-04 中国石油化工股份有限公司 一种蒸汽裂解方法
CN105623709A (zh) * 2014-10-28 2016-06-01 中国石油化工股份有限公司 一种蒸汽裂解方法
CN105622313A (zh) * 2014-10-28 2016-06-01 中国石油化工股份有限公司 一种蒸汽裂解方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711568A (en) * 1970-09-24 1973-01-16 H Cooper Pyrolysis process
CN101146893A (zh) * 2005-01-20 2008-03-19 特克尼普法国公司 将包含重质尾部馏分的烃进料裂化的工艺
CN103588602A (zh) * 2012-08-14 2014-02-19 中国石油化工股份有限公司 一种蒸汽裂解方法
CN103787808A (zh) * 2012-10-29 2014-05-14 中国石油化工股份有限公司 一种蒸汽裂解方法
CN105541531A (zh) * 2014-10-28 2016-05-04 中国石油化工股份有限公司 一种蒸汽裂解方法
CN105623709A (zh) * 2014-10-28 2016-06-01 中国石油化工股份有限公司 一种蒸汽裂解方法
CN105622313A (zh) * 2014-10-28 2016-06-01 中国石油化工股份有限公司 一种蒸汽裂解方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111892470A (zh) * 2020-06-17 2020-11-06 中国石油天然气股份有限公司 蒸汽裂解制烯烃模拟试验装置及方法
CN111892470B (zh) * 2020-06-17 2022-08-30 中国石油天然气股份有限公司 蒸汽裂解制烯烃模拟试验装置及方法
CN112694908A (zh) * 2020-12-15 2021-04-23 浙江大学 一种石油烃高效裂解方法
CN112694908B (zh) * 2020-12-15 2022-03-25 浙江大学 一种石油烃高效裂解方法

Similar Documents

Publication Publication Date Title
US7019187B2 (en) Olefin production utilizing whole crude oil and mild catalytic cracking
KR20190130661A (ko) 화학물질에 대한 원유의 통합된 열분해 및 수첨분해 장치
US7977524B2 (en) Process for decoking a furnace for cracking a hydrocarbon feed
CA2728567C (en) Process for the on-stream decoking of a furnace for cracking a hydrocarbon feed
CN103787808B (zh) 一种蒸汽裂解方法
JP2009528426A (ja) 凝縮液原料を利用したオレフィンの製造
RU2640592C2 (ru) Способ парового крекинга
CN105622313A (zh) 一种蒸汽裂解方法
US7648626B2 (en) Process for cracking asphaltene-containing feedstock employing dilution steam and water injection
CN103788989B (zh) 一种蒸汽裂解方法
CN103787804B (zh) 一种蒸汽裂解方法
CN103787805B (zh) 一种蒸汽裂解方法
CN101920187B (zh) 一种裂解反应制备低碳烯烃的设备及方法
CN105622323A (zh) 一种蒸汽裂解方法
CN105623709B (zh) 一种蒸汽裂解方法
CN103788990B (zh) 一种蒸汽裂解方法
CN105622314A (zh) 一种蒸汽裂解方法
CN105622311A (zh) 一种蒸汽裂解方法
RU2548002C1 (ru) Способ получения этилена из углеводородного сырья
CN105622312A (zh) 一种蒸汽裂解方法
CN103210063B (zh) 裂化重质烃进料的工艺
CN105541531A (zh) 一种蒸汽裂解方法
CN103588602A (zh) 一种蒸汽裂解方法
CN103788988B (zh) 一种蒸汽裂解方法
CN105541535A (zh) 一种蒸汽裂解方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160601

RJ01 Rejection of invention patent application after publication