KR20190130661A - 화학물질에 대한 원유의 통합된 열분해 및 수첨분해 장치 - Google Patents

화학물질에 대한 원유의 통합된 열분해 및 수첨분해 장치 Download PDF

Info

Publication number
KR20190130661A
KR20190130661A KR1020197033335A KR20197033335A KR20190130661A KR 20190130661 A KR20190130661 A KR 20190130661A KR 1020197033335 A KR1020197033335 A KR 1020197033335A KR 20197033335 A KR20197033335 A KR 20197033335A KR 20190130661 A KR20190130661 A KR 20190130661A
Authority
KR
South Korea
Prior art keywords
fraction
vapor
hydrocarbon
liquid fraction
mixture
Prior art date
Application number
KR1020197033335A
Other languages
English (en)
Other versions
KR102366168B1 (ko
Inventor
칸다사미 미낙시 선더램
스티븐 제이. 스탠리
로널드 엠. 베너
우잘 케이. 무케르지
Original Assignee
루머스 테크놀로지 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 루머스 테크놀로지 엘엘씨 filed Critical 루머스 테크놀로지 엘엘씨
Publication of KR20190130661A publication Critical patent/KR20190130661A/ko
Application granted granted Critical
Publication of KR102366168B1 publication Critical patent/KR102366168B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/14Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/22Higher olefins

Abstract

탄화수소 혼합물, 예컨대 450℃, 500℃보다 높거나, 550℃보다 훨씬 높은 정상 비등 온도를 갖는 화합물을 포함하는 혼합물, 예를 들어 전체 원유의 효율적인 분해를 위한 통합된 열분해 및 수첨분해 시스템 및 공정이 개시되어 있다.

Description

화학물질에 대한 원유의 통합된 열분해 및 수첨분해 장치
본원에 개시된 구현예는 일반적으로 올레핀 및 다른 화학물질을 생성하기 위한 탄화수소 혼합물, 예컨대 전체 원유 또는 다른 탄화수소 혼합물의 통합된 열분해 및 수첨분해에 관한 것이다.
반응기가 상당히 급속하게 코크스를 만듦에 따라 올레핀을 생성하기 위하여 550℃ 이상의 최종 비등점을 갖는 탄화수소 혼합물은 일반적으로 열분해 반응기에서 직접 처리되지 못한다. 반응 조건을 제한하는 것은 파울링(fouling) 경향을 감소시킬 수 있지만, 덜 가혹한 조건은 수율의 상당한 손실을 초래한다.
당업계에서의 일반적인 합의는 넓은 비등 범위를 갖는 탄화수소 혼합물 및/또는 높은 최종 비등점을 갖는 탄화수소가 다수의 분획물, 예컨대 가스/경질 탄화수소, 나프타 범위 탄화수소, 경유 등으로의 탄화수소의 초기 분리, 그리고 이후 이들 분획물을 위한 특정 조건 하에서, 예컨대 별개의 분해로에서 각 분획물을 분해하는 것을 필요로 한다는 것이다. 증류 컬럼을 통하는 것과 같은 분별 및 별도의 공정은 자본 및 에너지 집약적일 수 있는 반면에, 분획물의 분리된 그리고 개별적인 처리는 공정 제어 및 수율과 관련하여 가장 큰 이점을 제공하는 것으로 일반적으로 여겨진다.
현재까지, 대부분의 원유는 큰 정유-석유화학 복합시설에서 화학물질로 부분적으로 전환되었다. 정제시설의 초점은 운송 연료, 예컨대 가솔린 및 디젤을 생산하는 것이다. 정제시설로부터의 저가치 스트림, 예컨대 LPG 및 경질 나프타는 정제시설에 인접하거나 인접하지 않을 수 있는 석유화학 복합시설로 보내진다. 석유화학 복합시설은 이후 벤젠, 파라-자일렌, 에틸렌, 프로필렌 및 부타디엔과 같은 화학물질을 생산한다. 이러한 종류의 전형적인 복합시설은 도 1에 도시된다.
통상적인 방법에서, 원유는 탈염되고 예열되어 원유 증류 컬럼으로 보내진다. 거기에서, 나프타, 등유, 디젤, 경유, 감압 경유 및 잔사유를 포함하는 다양한 컷(cut)이 생성된다. 나프타 및 경유와 같은 일부 컷은 올레핀 생산을 위한 공급물로서 사용된다. VGO 및 잔사유는 수첨분해되어 연료를 생성한다. 원유 타워 (대기 증류) 및 진공 타워로부터 수득된 생성물은 연료 (가솔린, 제트 연료, 디젤 등)로 사용된다. 일반적으로, 이들은 연료 사양을 충족하지 않는다. 따라서, 이성질체화, 개질 및/또는 수소화처리 (수첨탈황반응, 수첨탈질반응 및 수첨분해)는 연료로 사용하기 전에 이들 생성물에 대해 수행된다. 올레핀 플랜트는 정제시설에 따라 정제 전 및/또는 정제 후 공급물을 받을 수 있다.
고비등 코크스 전구체를 함유하는 전체 원유 및 다른 탄화수소 혼합물을 유연하게 처리하기 위하여 통합된 열분해 및 수첨분해 공정이 현재 개발되고 있다. 본원의 구현예는 열분해 공정 동안에 높은 가혹도 조건에서 조차도 코킹 및 파울링을 유리하게 감소시킬 수 있고, 일반적으로 전체 원유 처리와 관계 있는 사전-분별 및 별개의 공정과 관련된 자본 및 에너지 요구를 현저하게 감소시키면서, 전체 원유의 더 무거운 부분의 수첨분해를 효과적이고 효율적으로 통합하여 나프타 분해기에 필적하는 올레핀 수율을 달성할 수 있다.
일 양태에서, 본원에 개시된 구현예는 탄화수소 혼합물을 전환시켜 올레핀을 생성하기 위한 통합된 열분해 및 수첨분해 공정에 관한 것이다. 상기 공정은 전체 원유 및 경유를 혼합하여 탄화수소 혼합물을 형성하는 단계를 포함할 수 있다. 탄화수소 혼합물을 이후 가열기에서 가열하여 탄화수소 혼합물 내의 탄화수소 일부를 기화시키고 가열된 탄화수소 혼합물을 형성할 수 있다. 가열된 탄화수소 혼합물은 이후 제1 분리기에서 제1 증기 분획물 및 제1 액체 분획물로 분리될 수 있다. 선택적으로 증기를 제1 증기 분획물과 혼합하고, 생성된 혼합물을 대류 구역에서 과열시켜, 열분해 반응기의 복사 구역 내의 제1 복사 코일로 공급할 수 있다. 제1 액체 분획물 또는 그의 일부를 수소와 함께 수첨분해 반응기 시스템에 공급하고, 제1 액체 분획물을 수첨분해 촉매와 접촉시켜 제1 액체 분획물 내의 탄화수소 일부를 분해할 수 있다. 수첨분해 반응기 시스템으로부터 회수된 배출물을 분리하여 배출물 내의 탄화수소로부터 미반응된 수소를 회수하고, 배출물 탄화수소를 분별하여 경유 분획물을 포함하는 둘 이상의 탄화수소 분획물을 형성할 수 있다.
다른 양태에서, 본원에 개시된 구현예는 탄화수소 혼합물을 전환시켜 올레핀을 생성하기 위한 통합된 열분해 및 수첨분해 공정에 관한 것이다. 공정은 전체 원유 및 경유를 혼합하여 탄화수소 혼합물을 형성하는 단계를 포함할 수 있다. 탄화수소 혼합물은 탄화수소 혼합물 내의 탄화수소 일부를 기화시키고 가열된 탄화수소 혼합물을 형성하기 위해 가열기에서 가열될 수 있다. 가열된 탄화수소 혼합물은 제1 분리기에서 제1 증기 분획물 및 제1 액체 분획물로 분리될 수 있다. 제1 액체 분획물은 이후 열분해 반응기의 대류 구역에서 가열되어 제1 액체 분획물 내의 탄화수소 일부를 기화시키고 제2 가열된 탄화수소 혼합물을 형성할 수 있다. 제2 가열된 탄화수소 혼합물은 이후 제2 분리기에서 제2 증기 분획물 및 제2 액체 분획물로 분리될 수 있다. 증기는 제1 증기 분획물과 혼합될 수 있으며, 이 공정은 생성된 혼합물을 대류 구역에서 과열시키는 단계, 및 과열된 혼합물을 열분해 반응기의 복사 구역 내의 제1 복사 코일로 공급하는 단계를 포함한다. 증기는 또한 제2 증기 분획물과 혼합될 수 있으며, 이 공정은 생성된 혼합물을 대류 구역에서 과열시키는 단계, 및 과열된 혼합물을 열분해 반응기의 복사 구역 내의 제2 복사 코일로 공급하는 단계를 포함한다. 제2 액체 분획물 또는 그의 일부를 수소와 함께 수첨분해 반응기 시스템에 공급하고, 제2 액체 분획물을 수첨분해 촉매와 접촉시켜 제2 액체 분획물 내의 탄화수소 일부를 분해하며, 수첨분해 반응기 시스템으로부터 배출물을 회수할 수 있다. 미반응된 수소는 배출물 내의 탄화수소로부터 분리될 수 있으며, 이를 분별하여 경유 분획물 및 잔사유 분획물을 포함하는 둘 이상의 탄화수소 분획물을 형성할 수 있다.
다른 양태에서, 본원에 개시된 구현예는 상기 기술된 공정을 수행하기 위한 장치를 포함하는 시스템에 관한 것이다.
일부 구현예에서, 예를 들어, 본원의 구현예에 따른 올레핀 및/또는 디엔을 생성하기 위한 시스템은 대류 가열 구역 및 복사 가열 구역을 갖는 열분해 가열기를 포함할 수 있다. 전체 원유를 부분적으로 기화시켜 액체 분획물 및 증기 분획물을 형성하기 위한 대류 가열 구역 내의 가열 코일이 제공될 수 있다. 증기 분획물을 과열시키기 위한 대류 가열 구역 내의 제2 가열 코일이 제공될 수 있다. 또한, 복사 가열 코일은 과열된 증기 분획물을 열적으로 분해하여 올레핀 및 파라핀의 혼합물을 함유하는 분해된 탄화수소 배출물을 생성하기 위해 복사 가열 구역 내에 배치될 수 있다. 수첨분해 반응 구역은 액체 분획물의 적어도 일부를 수첨분해하여 추가의 올레핀 및/또는 디엔을 함유하는 수첨분해된 탄화수소 배출물을 생성하기 위해 사용될 수 있다. 흐름 도관, 밸브, 제어장치, 펌프 및 기타 장비가 시스템에 포함되어 상기 언급한 바람직한 연결 및 흐름을 제공할 수 있다.
본원의 시스템은 수첨분해된 탄화수소 배출물을 분리하여 경유 분획물을 함유하는 둘 이상의 탄화수소 분획물을 회수하기 위한 분리기를 포함할 수 있다. 본원의 시스템은 또한 경유 분획물을 가열 코일 상류의 전체 원유와 혼합하기 위한 수단을 포함할 수 있다. 증기를 제2 가열 코일 상류의 증기 분획물과 혼합하기 위한 수단이 또한 제공될 수 있다. 혼합하기 위한 수단은 예를 들어, 당업계에 공지된 다른 혼합하기 위한 수단 중 배관 티 또는 연결부, 펌프, 정적 혼합기 등을 포함할 수 있다.
본원의 시스템은 또한 예를 들어, 액체 분획물을 부분적으로 기화시켜 제2 액체 분획물 및 제2 증기 분획물을 형성하기 위한 대류 가열 구역 내의 제3 가열 코일, 및/또는 제2 증기 분획물을 과열시키기 위한 대류 가열 구역 내의 제4 가열 코일을 포함할 수 있다. 과열된 증기 분획물을 열적으로 분해하여 올레핀 및 파라핀의 혼합물을 함유하는 제2 분해된 탄화수소 배출물을 생성하기 위한 복사 가열 구역 내의 제2 복사 가열 코일이 사용될 수 있다. 액체 분획물의 적어도 일부로서 제2 액체 분획물을 수첨분해 단계로 공급하기 위한 흐름 라인이 제공될 수 있다.
본원의 시스템은 또한 증기를 다양한 탄화수소 함유 스트림과 혼합하기 위한 수단을 포함할 수 있다. 예를 들어, 본원의 시스템은 증기를 부분적으로 기화된 전체 원유와 혼합하고 분리하여 액체 분획물 및 증기 분획물을 형성하기 위한 수단 및/또는 증기를 부분적으로 기화된 액체 분획물과 혼합하고 분리하여 제2 액체 분획물 및 제2 증기 분획물을 형성하기 위한 수단을 포함할 수 있다.
본 개시의 구현예에서, 전체 원유는 탈염 후 열분해 장치로 보내질 수 있다. 대류 섹션에서, 경질 물질은 증기의 존재하에서 기화되고, 복사 섹션에서 반응할 수 있다. 중질물은 수첨분해장치로 보내진다. 수첨분해장치로부터의 생성물은 연료로 판매되고/되거나 열분해 장치에서 처리되어 추가의 화학물질을 만들 수 있다. 열분해 장치 (올레핀 장치)로부터의 중질 생성물, 예컨대 열분해 경유 및 연료유는 원유로부터 새로운 공급물과 함께 업그레이드하는 수첨분해장치로 보내질 수 있다. 공급물 및 생성물은 통합된 열분해 및 분해 시설 간에 교환되어 요구될 시 최대량의 화학물질 및/또는 연료를 생성한다. 적은 일부만 타르로서 폐기된다.
본원의 구현예는 원유 분리 장치를 필요로 하지 않는다. 따라서, 해당 장치와 관련된 비용 및 에너지를 감소시킨다. 다른 조건에서 작동하는 하나 이상의 수첨분해장치를 사용하여 화학물질/연료 생성을 최적화할 수 있다. 수첨분해장치에서 블리드/타르는 매우 중질의 고비등 물질이며 촉매 수명을 최대화하기 위해 생성물로서 판매될 수 있다. 수첨분해장치는 잔사유를 처리하도록 설계되므로, 분해기 및/또는 열분해 장치에서 생성된 열분해 경유 및 연료유는 수첨분해장치에서 공급물로서 사용될 수 있다. 이는 전체 플랜트에서 값비싼 화학물질을 최대화한다. 수첨분해장치에서 생성된 LPG 및 나프타와 같은 경질 물질은 올레핀 플랜트의 공급물로서 사용될 수 있다. 비전환된 오일은 열 분해기에 대한 공급물로서 사용될 수도 있다.
본원에 개시된 통합된 열분해 및 수첨분해 공정은 고수율의 바람직한 올레핀, 디엔, 디올레핀 및 방향족 화합물을 제공한다. 동시에, 값비싼 제트 및 등유 연료는 요구될 때 생성될 수도 있다. 별개의 원유 분리 장치를 설치할 필요가 없다. 각 컷은 본원의 구현예를 사용하여 최적으로 분해될 수 있다. 열분해 장치에서 생성된 연료유는 또한 수첨분해되어 올레핀 플랜트에 더 많은 공급물을 생성할 수 있다. 수첨분해장치에서 생성된 경질 공급물은 열적으로 분해되어 더 많은 올레핀을 생성할 수도 있다.
첨부된 도면에 도시된 공정 흐름도는 특정 원유 및 생성물 슬레이트를 위하여 약간 변형될 수 있다. 다른 양태 및 이점은 하기 설명 및 첨부된 청구 범위로부터 명백해질 것이다.
도 1은 전형적인 정유-석유화학 복합시설의 간략화된 공정 흐름도이다.
도 2는 본원의 구현예에 따른 탄화수소 혼합물을 처리하기 위한 통합된 열분해-수첨분해 시스템의 간략화된 공정 흐름도이다.
도 3은 본원의 구현예에 따른 탄화수소 혼합물을 처리하기 위한 통합된 열분해-수첨분해 시스템의 간략화된 공정 흐름도이다.
도 4는 본원의 구현예에 따른 탄화수소 혼합물을 처리하기 위한 통합된 열분해-수첨분해 시스템의 간략화된 공정 흐름도이다.
도 5는 본원의 구현예에 따른 탄화수소 혼합물을 처리하기 위한 통합된 열분해-수첨분해 시스템의 간략화된 공정 흐름도이다.
도 6은 본원의 구현예에 따른 탄화수소 혼합물을 처리하기 위한 통합된 열분해-수첨분해 시스템에 유용한 HOPS 타워의 간략화된 공정 흐름도이다.
도 7은 본원의 구현예에 따른 탄화수소 혼합물을 처리하기 위한 통합된 열분해-수첨분해 시스템의 간략화된 공정 흐름도이다.
본원에 개시된 구현예는 일반적으로 올레핀을 생성하기 위한 탄화수소 혼합물, 예컨대 전체 원유 또는 다른 탄화수소 혼합물의 열분해 및 수첨분해에 관한 것이다. 보다 구체적으로, 본원에 개시된 구현예는 분해가 수행되는 가열기의 대류 섹션으로부터 회수된 열을 사용하여 탄화수소 혼합물의 효율적인 분리에 관한 것이다.
본원에 개시된 구현예에서 유용한 탄화수소 혼합물은 비등점 범위를 갖는 다양한 탄화수소 혼합물을 포함할 수 있으며, 여기서 혼합물의 최종 비등점은 450℃ 초과 또는 500℃ 초과, 예컨대 525℃, 550℃, 또는 575℃ 초과일 수 있다. 고비등 탄화수소, 예컨대 550℃ 이상에서 비등하는 탄화수소의 양은 0.1 중량%, 1 중량% 또는 2 중량% 정도로 적을 수 있지만, 10 중량%, 25 중량%, 50 중량% 또는 그 이상만큼 많을 수 있다. 이 설명은 원유에 대해 기술되지만, 임의의 고비등 종말점 탄화수소 혼합물, 예컨대 원유 및 응축물이 사용될 수 있다. 하기 실시예는 예시적인 목적으로 나이지리아 경질 원유에 대해 기술되지만, 본 출원의 범위는 이러한 원유에 한정되지 않는다. 본원에 개시된 공정은 넓은 비등 곡선 및 500℃보다 높은 종말점을 갖는 원유, 응축물 및 탄화수소에 적용될 수 있다. 이러한 탄화수소 혼합물은 그 중에서도 전체 원유, 버진 원유, 수소화 처리된 원유, 경유, 감압 경유, 가열 오일, 제트 연료, 디젤, 등유, 가솔린, 합성 나프타, 라피네이트 개질유, 피셔-트로프슈 액체, 피셔-트로프슈 가스, 천연 가솔린, 유출유, 버진 나프타, 천연 가스 응축물, 대기 파이프스틸 잔사유(atmospheric pipestill bottoms), 잔사유를 포함한 진공 파이프스틸 스트림, 경유 응축물에 대한 넓은 비등 범위 나프타, 정제시설로부터의 중질 비-버진 탄화수소 스트림, 갑압 경유, 중질 경유, 대기압 잔사유물, 하이드로크래커 왁스 및 피셔-트로프슈 왁스 등을 포함할 수 있다. 일부 구현예에서, 탄화수소 혼합물은 나프타 범위 또는 그보다 경질 범위와 감압 경유 범위 또는 그보다 중질 범위 사이의 비등하는 탄화수소를 포함할 수 있다. 원할 경우, 이 공급물은 본원에 개시된 공정 상류의 황, 질소, 금속 및 콘래드슨 탄소의 일부를 제거하기 위해 전-처리될 수 있다.
열분해 반응은 자유 라디칼 메커니즘을 통해 진행된다. 따라서, 고온에서 분해될 때 높은 에틸렌 수율이 달성될 수 있다. 부탄 및 펜탄과 같은 경질의 공급물은 높은 올레핀 수율을 얻기 위해 높은 반응기 온도를 필요로 한다. 경유 및 감압 경유 (VGO)와 같은 중질의 공급물은 더 낮은 온도를 필요로 한다. 원유는 부탄에서 VGO 및 잔사유 (예를 들어, 520℃ 이상의 정상 비등점을 갖는 물질)로의 화합물 분포를 함유한다. 전체 원유를 고온으로 분리하지 않으면 높은 수율의 코크스 (높은 가혹도에서 분해되는 탄화수소 부산물)가 생성되고 반응기를 막는다. 열분해 반응기는 주기적으로 정지되어야 하며 코크스는 증기/공기 탈탄소로 세척된다. 올레핀이 생성될 때 두 세척 주기 사이의 시간을 실행 길이(run length)라고 한다. 원유가 분리 없이 분해되는 경우, 코크스는 (유체를 기화시키는) 대류 섹션 코일, (올레핀 생성 반응이 발생하는) 복사 섹션 및/또는 (냉각에 의해 반응이 빠르게 중단되어 올레핀 수율을 보존하는) 이송 라인 교환기에 침전될 수 있다.
본원에 개시된 구현예는 열분해 반응기 (또는 가열기)의 대류 섹션을 사용하여 공급물 탄화수소 혼합물을 예열하고 다양한 분획물로 분리한다. 증기는 탄화수소 혼합물의 기화를 증가시키고 가열 및 분리 정도를 제어하기 위해 적절한 위치에 주입될 수 있다. 탄화수소의 기화는 비교적 낮은 온도에서 및/또는 단열적으로 발생하여, 대류 섹션에서의 코킹(coking)이 억제될 것이다.
따라서, 대류 섹션은 전체 탄화수소 혼합물을 가열하여 증기-액체 혼합물을 형성하는데 사용될 수 있다. 증기성 탄화수소는 액체 탄화수소로부터 분리되고, 분리된 증기만이 단일 가열기의 하나 이상의 복사 셀 내의 복사 코일로 공급될 것이다. 복사 코일 형상은 임의의 유형일 수 있다. 최적의 체류 코일은 공급 탄화수소 증기 혼합물 및 원하는 반응 가혹도에 대해 올레핀 및 실행 길이를 최대화하기 위해 선택될 수 있다.
원하는 경우, 다수의 가열 및 분리 단계를 사용하여 탄화수소 혼합물을 둘 이상의 탄화수소 분획물로 분리할 수 있다. 이는 각 컷(cut)의 분해를 최적으로 가능하게 하여 복사 코일 및 관련 하류 설비에서의 제한된 코킹 동안에 처리량, 증기 대 오일 비율, 가열기 주입구와 배출구 온도 및 다른 변수는 원하는 생성물 프로파일과 같이 원하는 반응 결과를 이루도록 바람직한 수준에서 제어될 수 있다.
혼합물 내의 탄화수소의 비등점에 따라 다양한 컷이 분리되고 분해됨에 따라, 복사 코일 및 이송 라인 교환기에서 코킹이 제어될 수 있다. 결과적으로, 더 높은 올레핀 생성으로 가열기의 실행 길이가 수 시간이 아닌 수 주로 증가될 수 있다.
잔류 액체는 수소화처리될 수 있다 (예를 들어, 수첨처리 및/또는 수첨분해). 컷 포인트(cut point)가 약 200℃와 같이 낮으면, 수첨분해장치로의 공급물이 많다. 종말점이 높으면, 수첨분해장치로의 공급물은 임의의 원유에 비해 적다. 선택된 컷 포인트에 상관없이, 남아있는 전체 액체가 수첨분해장치로 보내질 수 있다. 선택적으로, 액체는 수소화처리 생성물 분리와 관련된 증류 컬럼으로 보내질 수 있다. 여기 이 컬럼에서, 제트/등유 (중간유분)가 분리되고 수첨분해장치에서 VGO+ 물질만이 수첨분해된다.
VGO+ 물질은 VGO 및 잔사유로 추가로 분리될 수 있다. 520℃ 이상 비등하는 임의의 물질은 잔사유로서 고려될 수 있다. 언급된 컷 포인트 520℃는 예시적이지만, 예를 들어 480℃ 내지 560℃까지 달라질 수 있다. VGO/잔사유 분리에 있어서, 다른 수첨분해장치가 VGO 및 잔사유를 별도로 처리하기 위해 사용될 수 있다. 잔사유 수첨분해는 VGO보다 더 어렵다. 원유의 질 및 잔사유의 양에 따라, 중질 액체를 VGO 및 잔사유로 분리하는 것이 경제적으로 매력적일 수 있다. 경제적으로 매력적이지 않다면, 모든 액체는 동일한 수첨분해장치에서 수첨분해될 수 있다.
수첨분해장치로부터의 배출물은 상기 논의된 바와 같이 증류 컬럼에서 분리될 수 있다. 수첨분해에도 불구하고, 잔사유의 재순환을 신중하게 고려해야 한다. 반응기에서 과도한 코킹을 방지하기 위해, 일부 잔사유 퍼지가 필요하다. 이 블리드(bleed)는 타르 또는 피치(pitch) 분획물이다. 기화 시스템으로부터 수득된 200℃+ 액체 물질 또는 350℃+ 물질이 수첨분해장치 배출물 증류 컬럼으로 가지 않고 직접적으로 수첨분해장치로 보내지는 경우, 수첨분해장치의 가혹도, 예컨대 약한 가혹도 또는 높은 가혹도는 분해를 적절하게 조정할 수 있다. 약한 조건에서, 고 분자량 종만이 수첨분해되어, 원유 (중간유분) 내 대부분의 경질 물질을 보존하고 배출물은 생성물 분리 컬럼으로 보내진다. 이것은 최대량의 중간유분 연료를 생성한다. 높은 가혹도 모드에서는, LPG 및 나프타 컷과 같은 경질의 성분이 증가될 것이다. 본원의 모든 경우에 있어서, 선택적인 수첨탈황 장치가 수첨분해장치 전에 사용될 수 있다. 생성물, 예컨대 LPG, 나프타, 중간유분, 및 잔사유 컷 포인트 이하 (전형적으로 540℃ 이하)의 비등하는 비전환된 오일은 공급 원료(feedstock)로서 올레핀 플랜트로 보내질 수 있다. 원하는 경우, 중간유분은 생성물로서 판매될 수 있다. 모든 생성물을 올레핀 플랜트로 보내는 경우, 화학물질 생성물 비율은 증가된다. 전체 원유 공급물의 5% 미만과 같은 소량의 타르만 타르로서 보낼 수 있다. 이는 최대 화학물질 생성 모드로 간주될 수 있다. 생성물로 판매되는 중간유분의 양에 따라 화학물질 생성이 감소한다. 올레핀 복합시설은 수소, 메탄, 에틸렌, 에탄, 프로필렌, 프로판, 부타디엔, 부텐, 부탄, C5-가솔린 (C5-400℉) 및 열분해 경유 (PGO)와 열분해 연료유 (PFO >550℉)를 생성한다. PGO 및 PFO 컷은 모두 수소가 매우 부족하고 그들은 덜 바람직한 화학물질이다. 잔사유 수첨분해장치가 사용되기 때문에, 모든 PGO 및 PFO의 특정 부분 (예컨대, 비등점이 1000℉ 미만)을 잔사유 수첨분해장치로 보낼 수 있다. 이는 올레핀 복합시설에서 생성된 올레핀을 최대화한다. 잔사유 수첨분해장치로, 고분자량 PGO 및 PFO가 수첨분해되고 다른 액체 생성물 이외에 저분자량 LPG 및 나프타가 올레핀 복합시설에 대한 공급물로서 사용될 수 있다. 이는 화학물질 생성을 최대화한다. 본원에서의 모든 작업은 원유 타워 없이 수행될 수 있다. 본원에 개시된 구현예에 대한 일부 사소한 변경은 공정 경제성 또는 요구되는 생성물을 개선하기 위해 현지 상황에 있어서 가능하다.
전술한 바와 같이, 520℃ 또는 550℃ 보다 높은 종말점을 갖는 원유 및/또는 중질 공급물은, 예를 들어, 상류 증류 또는 다수의 탄화수소 분획물로의 분별을 통해 이들을 분리하지 않고 현재 성공적이고 경제적으로 분해될 수 없다. 대조적으로, 본원의 구현예는 원유 분해를 위해 다양한 탄화수소를 분리하기 위해 분리기를 제한적으로 사용하거나 사용하지 않는다. 본원의 구현예는 광범위한 분리를 요구하는 공정보다 낮은 자본 비용을 가지며, 적은 에너지를 필요로 할 수 있다. 또한, 본원의 구현예는 분해를 통해 고수율의 올레핀을 생성하도록 대부분의 원유를 전환시킨다.
탄화수소 혼합물을 다양한 비등하는 분획물로의 분리에 따르면, 장비를 적절하게 설계하고 작동 조건을 제어함으로써 각 섹션에서의 코킹을 제어할 수 있다. 증기의 존재하에, 탄화수소 혼합물은 대류 섹션에서 코킹없이 고온으로 가열될 수 있다. 추가의 증기가 유체를 단열적으로 더 기화시키기 위해 첨가될 수 있다. 따라서, 대류 섹션에서의 코킹이 최소화된다. 다른 비등하는 컷이 독립적인 코일에서 처리될 수 있으므로, 각각의 컷에 대한 가혹도가 제어될 수 있다. 이는 복사 코일 및 이송 라인 교환기 (TLE)에서의 코킹을 감소시킨다. 전체적으로, 올레핀 생성은 중질 테일 (고비등 잔사유)이 제거된 단일 컷에 비해 최대화될 수 있다. 다양한 비등 분획물이 없는 전체 원유의 중유 공정 설계 또는 통상적인 예열은 본원에 개시된 구현예보다 더 적은 총 올레핀을 생성한다. 본원에 개시된 공정에서, 임의의 종말점 대비 낮은 비등점을 가진 임의의 물질은 그 물질에 대한 최적 조건에서 처리될 수 있다. 하나, 둘, 셋 또는 그 이상의 개별 컷이 원유에 대해 수행될 수 있으며, 각 컷은 최적의 조건에서 개별적으로 처리될 수 있다.
포화 및/또는 과열된 희석 증기는 적절한 위치에서 첨가되어 각 단계에서 원하는 정도로 공급물을 기화시킬 수 있다. 탄화수소 혼합물의 원유 분리는, 예컨대 최소한의 이론적 단계를 갖는 플래시 드럼 또는 분리기를 통해 수행되어 탄화수소를 다양한 컷으로 분리한다. 중질 테일은 이후 처리될 수 있다 (본 개시와 수첨분해 및 재순환을 위한 업데이트).
탄화수소 혼합물은 분해 공정으로부터의 배출물 또는 열분해 반응기/가열기로부터의 연도 가스를 포함하는 공정 스트림으로부터의 폐열로 예열될 수 있다. 선택적으로, 원유 가열기는 예열을 위해 사용될 수 있다. 그러한 경우에, 열분해 반응기의 열 효율을 최대화하기 위해, (보일러 공급수 (BFW) 또는 공기 예열 또는 절탄기(economizer)와 같은) 다른 차가운 유체가 대류 섹션의 최상단 콜드 싱크(cold sink)로서 사용될 수 있다.
열분해 반응기에서 탄화수소를 분해하는 공정은 이송 라인 교환기 (TLE) 내에서와 같이 세 부분, 즉 대류 섹션, 복사 섹션, 및 퀀치(quench) 섹션으로 나뉘어질 수 있다. 대류 섹션에서, 공급물은 예열되고 부분적으로 기화되며, 증기와 혼합된다. (주요 분해 반응이 일어나는) 복사 섹션에서, 공급물은 분해된다. TLE에서, 반응 유체를 신속하게 급냉되어 반응을 정지시키고 생성물 혼합물을 제어한다. 열 교환을 통한 간접적인 급냉 대신 오일을 이용하여 직접적인 급냉 또한 허용될 수 있다.
본원의 구현예는 대류 섹션을 효율적으로 이용하여 분해 공정을 향상시킨다. 일부 구현예에서 모든 가열은 단일 반응기의 대류 섹션에서 수행될 수 있다. 다른 구현예에서, 별개의 가열기가 각각의 분획물에 대해 사용될 수 있다. 일부 구현예에서, 원유는 대류 뱅크의 상단 열(row)로 들어가고, 임의의 증기 추가 없이 가열기의 복사 섹션에서 발생된 고온의 연도 가스로 작동 압력에서 중온(medium temperatures)으로 예열된다. 배출구 온도는 원유 및 처리량에 따라 150℃ 내지 400℃의 범위일 수 있다. 이러한 조건에서, 원유의 5% 내지 70% (부피)가 기화될 수 있다. 예를 들어, 이 제1 가열 단계의 배출구 온도는 (최대 약 200℃의 정상 비등점을 갖는) 나프타가 기화되는 온도일 수 있다. 그 중에서도 350℃ (경유)와 같은, 다른 컷 포인트 (종말점)가 사용될 수도 있다. 탄화수소 혼합물은 가열기의 복사 섹션에서 생성된 고온의 연도 가스로 예열되기 때문에, 제한된 온도 변화 및 배출구 온도의 유연성이 기대될 수 있다.
예열된 탄화수소 혼합물은 기화되지 않은 부분으로부터 기화된 일부의 분리를 위해 플래시 드럼으로 들어간다. 증기는 추가 과열되어 희석 증기와 혼합된 다음 분해를 위해 복사 코일로 공급될 수 있다. 충분한 물질이 기화되지 않으면, 과열된 희석 증기가 드럼의 유체에 첨가될 수 있다. 충분한 물질이 기화되면, 이후 차가운 (포화되거나 약하게 과열된) 증기를 증기에 첨가할 수 있다. 과열된 희석 증기는 적절한 열 균형(heat balance)을 위해 차가운 증기 대신 사용될 수도 있다.
증기 분획물, 예컨대 나프타 컷, 경유 컷 또는 경질 탄화수소 분획물 및 희석 증기 혼합물은 대류 섹션에서 추가로 과열되고 복사 코일로 들어간다. 복사 코일은 다른 셀 내에 있을 수 있거나, 단일 셀 내의 복사 코일 그룹은 증기 분획물에서 탄화수소를 분해하기 위해 사용될 수 있다. 희석 증기의 양은 총 에너지를 최소화하도록 제어될 수 있다. 전형적으로, 증기는 약 0.5 w/w의 증기 대 오일 비율로 제어되며, 0.2 w/w 내지 1.0 w/w, 예컨대 약 0.3 w/w 내지 약 0.7 w/w의 임의의 값이 허용될 수 있다.
플래시 드럼 내의 (기화되지 않은) 액체는 소량의 희석 증기와 혼합될 수 있고, 동일하거나 다른 가열기에 있을 수 있는 제2 대류 구역 코일의 대류 섹션에서 더 가열될 수 있다. 이 코일에 대한 S/O (증기 대 오일 비율)는 약 0.1 w/w일 수 있으며, 0.05 w/w 내지 0.4 w/w의 임의의 값이 허용될 수 있다. 이 증기는 또한 원유와 함께 가열되므로, 과열된 증기를 주입할 필요가 없다. 포화된 증기가 충분하다. 그러나, 포화된 증기 대신 과열된 증기를 사용할 수 있다. 과열된 증기는 또한 제2 플래시 드럼으로 공급될 수 있다. 이 드럼은 단순한 증기/액체 분리 드럼이거나 내부가 있는 타워처럼 더 복잡할 수 있다. 대부분의 원유의 경우, 최종 비등점이 높으며, 일부 물질은 이 코일의 배출구에서 절대 기화되지 않는다. 전형적인 배출구 온도는 약 300℃ 내지 약 500℃, 예컨대 약 400℃의 범위일 수 있다. 배출구 온도는 이 코일에서 코킹을 최소화하도록 선택될 수 있다. 스트림에 추가되는 증기의 양은 최소 희석 흐름이 사용되고 코킹 없이 최대 배출구 온도가 얻어지도록 할 수 있다. 일부 증기가 존재하기 때문에, 코킹은 억제된다. 높은 코킹 원유의 경우, 더 높은 증기 흐름이 바람직하다.
과열된 증기는 드럼에 첨가될 수 있고, 탄화수소 혼합물을 더 기화시킬 것이다. 증기는 대류 코일에서 더 과열되고 복사 코일로 들어간다. 라인 내에서의 임의의 증기 응축을 방지하기 위해, 소량의 과열된 희석 증기는 드럼의 배출구 (증기측)에 추가될 수 있다. 이는 라인 내의 중질 물질의 응축을 방지할 것이며, 결국 코크스로 변할 수 있다. 드럼은 이 특징을 수용하도록 설계될 수도 있다. 일부 구현예에서, 응축되는 중질 물질을 고려한 중유 처리 시스템 ("HOPS") 타워가 사용될 수 있다.
기화되지 않은 액체는 추가 처리되거나 연료로 보내질 수 있다. 기화되지 않은 액체가 추가로 처리되면, HOPS 타워가 우선적으로 사용될 수 있다. 기화되지 않은 액체의 일부가 연료로 보내지면, 기화되지 않은 고온의 액체는 탄화수소 공급 원료 또는 제1 액체 분획물과 같은 다른 차가운 유체와 교환될 수 있으며, 예를 들어, 에너지 회수를 최대화할 수 있다. 대안적으로, 기화되지 않은 액체는 본원에 기술된 바와 같이 처리되어 추가의 올레핀 및 더 높은 가치의 생성물을 생성할 수 있다. 추가적으로, 이 스트림에서 사용 가능한 열 에너지는 다른 공정 스트림을 예열하거나 증기를 생성하는데 사용될 수 있다.
복사 코일 기술은 다수의 열 및 다수의 평행 패스(pass) 및/또는 분할 코일 배열과 함께 90 밀리초 내지 1000 밀리초 범위의 체적 체류 시간(bulk residence times)을 갖는 임의의 유형일 수 있다. 이들은 수직형 또는 수평형일 수 있다. 코일 재료는 베어(bare) 및 핀(finned) 또는 내부적으로 열 이송이 개선된 튜브를 갖는 고강도 합금일 수 있다. 가열기는 다수의 코일을 갖는 하나의 복사 박스 및/또는 각 박스 내 다수의 코일을 갖는 2개의 복사 박스로 구성될 수 있다. 각 박스 내의 복사 코일 기하학적 구조 및 코일의 크기와 개수는 동일하거나 다를 수 있다. 비용이 요인이 아니라면, 다수의 스트림 가열기/교환기를 사용할 수 있다.
복사 코일에서 분해한 후에, 하나 이상의 이송 라인 교환기를 사용하여 생성물을 매우 빠르게 냉각하고 (초)고압 증기를 발생시킬 수 있다. 하나 이상의 코일이 각 교환기에 결합되고 연결될 수 있다. 교환기(들)은 이중 파이프 또는 다중 쉘 및 튜브 교환기(들)일 수 있다.
간접 냉각 대신에, 직접 급냉(quenching) 또한 사용될 수 있다. 이러한 경우, 오일이 복사 코일의 배출구에 주입될 수 있다. 오일 급냉 후, 물 급냉도 사용될 수 있다. 오일 급냉 대신에, 모든 물 급냉 또한 허용될 수 있다. 급냉 후, 생성물은 회수 섹션으로 보내진다.
도 2는 본원의 구현예에 따른 하나의 통합된 열분해 및 수첨분해 시스템의 간략화된 공정 흐름도를 도시한다. 연소 관형 로 1은 탄화수소 혼합물 내의 탄화수소를 에틸렌 및 다른 올레핀 화합물로 분해하기 위해 사용된다. 연소 관형로 1은 대류 섹션 또는 구역 2 및 분해 섹션 또는 구역 3을 갖는다. 로 1은 하나 이상의 공정 튜브 4 (복사 코일)를 포함하며, 탄화수소 공급 라인 22를 통해 시스템에 도입된 탄화수소의 일부는 이 공정 튜브를 통하여 분해되어 열의 적용시 생성물 가스를 생성한다. 복사 및 대류 열은 가열 매체 주입구 8을 통해 로 1의 분해 섹션 3, 예컨대, 노상 버너, 플로어 버너 또는 벽 버너로 도입된 가열 매체의 연소에 의하여 공급되며, 배기구 10을 통해 배출된다.
탄화수소 공급 원료 22는 전체 원유 19 및 경유 21의 혼합물일 수 있고, 나프타 범위 탄화수소에서 450℃보다 높은 정상 비등점 온도를 갖는 탄화수소로 비등하는 탄화수소를 포함할 수 있으며, 이는 열분해 가열기 1의 대류 섹션 2 내에 배치된 가열 코일 24로 도입될 수 있다. 예를 들어, 475℃보다 높은, 500℃보다 높은, 525℃보다 높은, 또는 550℃보다 높은 정상 비등 온도를 갖는 성분을 포함한 탄화수소 공급 원료가 가열 코일 24에 도입될 수 있다. 가열 코일 24에서, 탄화수소 공급 원료는 부분적으로 기화되어, 탄화수소 공급원료, 예컨대 나프타 범위 탄화수소 내의 경질 성분을 기화시킬 수 있다. 가열된 탄화수소 공급 원료 26은 이후 증기 분획물 28 및 액체 분획물 60으로 분리하기 위해 분리기 27에 공급된다.
증기는 흐름 라인 32를 통해 공정으로 공급될 수 있다. 공정의 다양한 부분은 저온 또는 포화된 증기를 사용할 수 있는 반면, 다른 부분은 고온의 과열된 증기를 사용할 수 있다. 과열될 증기는 흐름 라인 32를 통해 가열 코일 34로 공급될 수 있으며, 열분해 가열기 1의 대류 구역 2 내에서 가열될 수 있고, 과열된 증기로서 흐름 라인 36을 통해 회수될 수 있다.
증기의 일부는 흐름 라인 40을 통해 공급되고 증기 분획물 28과 혼합되어 라인 42 내에 증기/탄화수소 혼합물을 형성할 수 있다. 스트림 42 내의 증기/탄화수소 혼합물은 이후 가열 코일 44로 공급될 수 있다. 결과적으로 과열된 혼합물은 이후 흐름 라인 46을 통해 열분해 가열기 1의 복사 구역 3 내에 배치된 하나 이상의 분해 코일 4로 공급될 수 있다. 분해된 탄화수소 생성물은 전술한 바와 같이, 이후 열 회수, 급냉, 및 생성물 회수 (도시되지 않음)를 위해 흐름 라인 12를 통하여 회수될 수 있다.
과열된 증기 36은 흐름 라인 72를 통해 분리기 27 내로 직접적으로 주입될 수 있다. 분리기 내로의 과열된 증기의 주입은 부분압력을 감소시키고 증기 분획물 28 내의 탄화수소의 양을 증가시킬 수 있다. 증기 또는 과열된 증기는 또한 스트림 22, 26 중 하나 또는 둘 모두에 도입될 수 있다.
공급 혼합물 22 내에 고비등점 (잔사유) 탄화수소를 포함하는 수소 59 및 액체 분획물 60은 이후 수첨분해 반응기 시스템 61로 공급될 수 있다. 수첨분해 반응기 시스템 61은 하나 이상의 반응 구역을 포함 할 수 있으며, 당업계에 공지된 고정상 반응기(들), 유동상(ebullated bed) 반응기(들) 또는 다른 유형의 반응 시스템을 포함할 수 있다.
수첨분해 반응기 시스템 61에서, 액체 분획물 60 내의 수소 59 및 탄화수소는 액체 분획물 내의 탄화수소의 일부를 수첨분해하는 수첨분해 촉매와 접촉하여 다른 생성물 중에서 올레핀을 포함하는 더 경질의 탄화수소를 형성할 수 있다. 배출물 63은 수첨분해 반응기 시스템 61로부터 회수될 수 있으며, 이는 미반응된 수소 및 다양한 탄화수소를 포함할 수 있다. 이후, 분리기 65는 배출물 내의 탄화수소 69로부터 미반응된 수소 67을 분리하기 위해 사용될 수 있다. 원하는 경우, 미반응된 수소는 수첨분해 반응 시스템 61에서 연속 반응을 위해 재순환될 수 있다. 탄화수소 배출물 69는 이후 대기 증류 타워 및/또는 진공 증류 타워를 포함할 수 있는 분별 시스템 71에서 분별되어, 배출물 탄화수소를 둘 이상의 탄화수소 분획물로 분리할 수 있으며, 이는 하나 이상의 경질 석유 가스 분획물 73, 나프타 분획물 75, 제트 또는 등유 분획물 77, 하나 이상의 대기 또는 감압 경유 분획물 79, 및 잔사유 분획물 81을 포함할 수 있다. 일부 구현예에서, 경유 분획물(들) 79 또는 그의 일부(들)은, 이후 스트림 21로서 사용되고, 전체 원유 19와 조합되어 열분해 장치와 수첨분해 반응 시스템을 통합하여 혼합된 탄화수소 공급물 22를 형성할 수 있다. 외부 공급원 유래인 것들을 포함한, 기타 경유 분획물들이 경유 분획물(들) 79에 추가하여 또는 대안으로 공급 스트림 21로서 사용될 수도 있다. 또한, 도시되지는 않았지만, 공급물 22는 전체 원유 19 및/또는 경유 분획물(들) 79와 유사한 다른 공급물을 포함할 수 있다. 잔사유 분획물 81 또는 그의 일부는 추가적인 올레핀의 추가 전환 및 생성을 위해 수첨분해 반응 시스템으로 복귀될 수 있다.
도 3은 본원의 구현예에 따른 하나의 통합된 열분해 및 수첨분해 시스템의 간략화된 공정 흐름도를 도시한다. 연소 관형로 1은 탄화수소를 에틸렌 및 다른 올레핀 화합물로 분해하기 위해 사용된다. 연소 관형로 1은 대류 섹션 또는 구역 2 및 분해 섹션 또는 구역 3을 갖는다. 로 1은 하나 이상의 공정 튜브 4 (복사 코일)를 포함하며, 탄화수소 공급 라인 22를 통해 공급된 탄화수소의 일부는 이 공정 튜브를 통하여 분해되어 열의 적용시 생성물 가스를 생성한다. 복사 및 대류 열은 가열 매체 주입구 8을 통해 로 1의 분해 섹션 3, 예컨대, 노상 버너, 플로어 버너 또는 벽 버너로 도입된 가열 매체의 연소에 의하여 공급되며, 배기구 10을 통해 배출된다.
탄화수소 공급 원료, 예컨대 전체 원유 또는 나프타 범위 탄화수소에서 450℃보다 높은 정상 비등점 온도를 갖는 탄화수소로 비등하는 탄화수소를 포함하는 탄화수소 혼합물은 열분해 가열기 1의 대류 섹션 2 내에 배치된 가열 코일 24로 도입될 수 있다. 예를 들어, 475℃보다 높은, 500℃보다 높은, 525℃보다 높은, 또는 550℃보다 높은 정상 비등 온도를 갖는 성분을 포함한 탄화수소 공급 원료가 가열 코일 24에 도입될 수 있다. 가열 코일 24에서, 탄화수소 공급 원료는 부분적으로 기화되어, 탄화수소 공급원료, 예컨대 나프타 범위 탄화수소 내의 경질 성분을 기화시킬 수 있다. 가열된 탄화수소 공급 원료 26은 이후 증기 분획물 28 및 액체 분획물 30으로 분리하기 위해 분리기 27에 공급된다.
증기는 흐름 라인 32를 통해 공정으로 공급될 수 있다. 공정의 다양한 부분은 저온 또는 포화된 증기를 사용할 수 있는 반면, 다른 부분은 고온의 과열된 증기를 사용할 수 있다. 과열될 증기는 흐름 라인 32를 통해 가열 코일 34로 공급될 수 있으며, 열분해 가열기 1의 대류 구역 2 내에서 가열될 수 있고, 과열된 증기로서 흐름 라인 36을 통해 회수될 수 있다.
증기의 일부는 흐름 라인 40을 통해 공급되고 증기 분획물 28과 혼합되어 라인 42 내에 증기/탄화수소 혼합물을 형성할 수 있다. 스트림 42 내의 증기/탄화수소 혼합물은 이후 가열 코일 44로 공급될 수 있다. 결과적으로 과열된 혼합물은 이후 흐름 라인 46을 통해 열분해 가열기 1의 복사 구역 3 내에 배치된 분해 코일 4로 공급될 수 있다. 분해된 탄화수소 생성물은 이후 열 회수, 급냉, 및 생성물 회수를 위해 흐름 라인 12를 통하여 회수될 수 있다.
동일하거나 별개의 가열기에서, 액체 분획물 30은 증기 50과 혼합되어 열분해 반응기 1의 대류 구역 2 내에 배치된 가열 코일 52로 공급될 수 있다. 가열 코일 52에서, 액체 분획물은 부분적으로 기화될 수 있으며, 탄화수소 공급 원료, 예컨대 중간 내지 경유 범위 탄화수소 내의 나머지 더 경질의 성분을 기화시킬 수 있다. 액체 분획물 30 내로의 증기의 주입은 가열 코일 52에서 코크스의 형성을 방지하는 것을 도울 수 있다. 가열된 액체 분획물 54는 이후 증기 분획물 58 및 액체 분획물 60으로 분리하기 위해 분리기 56에 공급된다.
과열된 증기의 일부는 흐름 라인 62를 통해 공급되고 증기 분획물 58과 혼합되어 라인 64 내에 증기/탄화수소 혼합물을 형성할 수 있다. 스트림 64 내의 증기/탄화수소 혼합물은 이후 가열 코일 66에 공급될 수 있다. 결과적으로 과열된 혼합물은 이후 흐름 라인 68을 통해 열분해 가열기 1의 복사 구역 3 내에 배치된 분해 코일 4로 공급될 수 있다. 분해된 탄화수소 생성물은 이후 열 회수, 급냉, 및 생성물 회수를 위해 흐름 라인 13을 통해 회수될 수 있다.
과열된 증기는 각각 흐름 라인 72, 74를 통해 분리기 27, 56 내로 직접적으로 주입될 수 있다. 분리기 내로의 과열된 증기의 주입은 부분압력을 감소시키고 증기 분획물 28, 58 내의 탄화수소의 양을 증가시킬 수 있다.
탄화수소 및 증기 스트림을 가열하는 것 외에도, 대류 구역 2는 코일 80, 82, 84를 통하는 것과 같은 다른 공정 스트림 및 증기 스트림을 가열하는데 사용될 수 있다. 예를 들어, 코일 80, 82, 84는 특히 BFW(보일러 공급수)를 가열하고, 그 중에서도 SHP(초고압) 증기를 예열하는데 사용될 수 있다.
코일 24, 52, 34, 44, 66, 80, 82, 84의 배치 및 개수는 설계 및 이용 가능한 예상 공급 원료에 따라 달라질 수 있다. 이러한 방식으로, 대류 섹션은 연도 가스로부터의 에너지 회수를 최대화하도록 설계될 수 있다. 일부 구현예에서, 과열 코일 66보다 높은 연도 가스 온도 위치에 과열 코일 44를 배치하는 것이 바람직할 수 있다. 경질 탄화수소의 분해는 더 높은 가혹도로 수행될 수 있으며, 과열 코일을 적절하게 배치함으로써 분해 조건이 향상되거나 특정 증기 컷에 맞게 조정될 수 있다. 마찬가지로, 증기 분획물이 별개의 가열기에서 처리되는 경우, 코일의 위치, 가열기 조건 및 기타 변수는 분해 조건을 원하는 가혹도에 맞추기 위해 독립적으로 조정 가능할 수 있다.
일부 구현예에서, 하기 기술된 도 6에 도시된 바와 같이, 제1 분리기 27은 플래시 드럼일 수 있으며, 제2 분리기 56은 중유 처리 시스템(HOPS) 타워일 수 있다.
액체 분획물 60은 이후 도 2와 관련하여 전술한 바와 같이 통합된 수첨분해 시스템에서 처리될 수 있다. 공급 혼합물 22 내에 고비등점 (잔사유) 탄화수소를 포함하는 수소 59 및 액체 분획물 60은 하나 이상의 반응 구역을 포함할 수 있는 수첨분해 반응기 시스템 61로 공급될 수 있고, 고정상 반응기(들), 유동상 반응기(들) 또는 당업계에 공지된 다른 유형의 반응 시스템을 포함할 수 있다.
수첨분해 반응기 시스템 61에서, 액체 분획물 60은 액체 분획물 내의 탄화수소의 일부를 분해하는 수첨분해 촉매와 접촉하여 다른 생성물 중에서도 올레핀을 포함하는 더 경질의 탄화수소를 형성할 수 있다. 배출물 63은 수첨분해 반응기 시스템 61로부터 회수될 수 있으며, 이는 미반응된 수소 및 다양한 탄화수소를 포함할 수 있다. 이후, 분리기 65는 배출물 내의 탄화수소 69로부터 미반응된 수소 67을 분리하기 위해 사용될 수 있다. 탄화수소 배출물 69는 이후 대기 증류 타워 및/또는 진공 증류 타워를 포함할 수 있는 분별 시스템 71에서 분별되어, 배출물 탄화수소를 둘 이상의 탄화수소 분획물로 분리할 수 있으며, 이는 하나 이상의 경질 석유 가스 분획물 73, 나프타 분획물 75, 제트 또는 등유 분획물 77, 하나 이상의 대기 또는 감압 경유 분획물 79, 및 잔사유 분획물 81을 포함할 수 있다. 경유 분획물(들) 79 또는 그의 일부(들)은, 이후 스트림 21로서 사용되고, 전체 원유 19와 조합되어 열분해 장치와 수첨분해 반응 시스템을 통합하여 혼합된 탄화수소 공급물 22를 형성할 수 있다. 잔사유 분획물 81 또는 그의 일부는 추가적인 올레핀의 추가 전환 및 생성을 위해 수첨분해 반응 시스템으로 복귀될 수 있다.
도 2 또는 도 3에는 도시되지 않았지만, 액체 분획물 60 내의 부가적인 탄화수소는 휘발되고 분해되어 공정의 올레핀 회수를 최대화할 수 있다. 예를 들어, 액체 분획물 60은 증기와 혼합되어 증기/오일 혼합물을 형성할 수 있다. 결과적으로 증기/오일 혼합물은 이후 열분해 반응기 1의 대류 구역 2에서 가열되어 증기/오일 혼합물 내의 탄화수소의 일부를 기화시킬 수 있다. 가열된 스트림은 이후 제3 분리기로 공급되어 액체 분획물로부터 증기 분획물, 예컨대 감압 경유 범위 탄화수소를 분리할 수 있다. 과열된 증기는 또한 분리를 용이하게 하기 위하여 분리기뿐만 아니라 증기 분획물을 분해 코일로 도입하기 전에 이송 라인 내에서의 응축을 방지하기 위하여 회수된 증기 분획물로 도입되어 올레핀을 생성한다. 분리기로부터 회수된 액체 분획물은 탄화수소 혼합물 22의 가장 무거운 비등 성분, 예컨대 520℃ 또는 550℃보다 높은 정상 비등점 온도를 갖는 탄화수소를 포함할 수 있으며, 이 생성된 액체 분획물은 도 2 및 도 3과 관련하여 전술한 바와 같이 통합된 수첨분해 시스템을 통해 추가로 처리될 수 있다.
도 2 및 도 3의 구성은 혼합된 탄화수소 공급 원료 전체를 개별적으로 처리된 분획물로 예비-분별하는 전형적인 공정에 비해 상당한 이점을 제공한다. 부가적인 공정 유연성, 예컨대 광범위하게 가변적인 공급 원료를 처리하는 능력은 도 4에 도시된 구현예로 이루어질 수 있다.
유사한 도면 부호가 유사한 부분을 나타내는 도 4에 도시된 바와 같이, 혼합된 탄화수소 공급물 22가 가열기 90에 공급될 수 있다. 가열기 90에서, 탄화수소 공급물은 열 교환 매체 96과 간접적인 열교환으로 접촉하여 탄화수소 공급물 22의 온도를 증가시켜 가열된 공급물 92를 생성할 수 있다. 가열된 공급물 92는 액체로 남아 있거나 부분적으로 기화될 수 있다. 열 교환 매체 96은 혼합된 탄화수소 공급 물 22에 열을 제공하기 위해 사용되는 열 교환 오일, 증기, 공정 스트림 등일 수 있다.
가열된 공급물 92는 이후 분리기 27로 도입되어 경질 탄화수소를 중질 탄화수소로부터 분리할 수 있다. 증기 72는 또한 경질 탄화수소의 휘발을 증가시키기 위해 분리기 27로 도입될 수 있다. 이후, 증기 분획물 28 및 액체 분획물 30은 도 2 및 도 3과 관련하여 전술한 바와 같이 처리되어, 하나 이상의 증기 분획물을 분해하여 올레핀을 생성하고 550℃보다 높은 것과 같은 매우 높은 정상 비등점을 갖는 탄화수소를 함유한 중질 탄화수소 분획물을 회수할 수 있다.
도 4에 도시된 바와 같이, 원유 예열이 교환기 또는 예열기에서 외부적으로 행해질 때, 절탄기 또는 BFW 코일 83이 대류 섹션 2의 상단 열(들)을 점유할 수 있다. 효율을 더 개선하기 위하여, 둘 이상의 가열기로부터의 연도 가스가 수집될 수 있으며, 조합된 연도 가스가 사용되어 공급물 예열, 연소 공기 예열, 저압 증기 발생 또는 다른 공정 유체 가열에 의한 것과 같은 부가적인 열을 회수할 수 있다.
증기는 매우 낮은 열 용량을 가지며, 오일의 기화열 또한 상당하다. 더욱이, 열분해 반응기의 대류 구역에서 이용 가능한 열 에너지는 무한하지 않으며, 탄화수소 공급물을 휘발시키고, 증기를 과열시키며, 복사 코일에 대하여 탄화수소/증기 혼합물을 과열시키는 다수의 작업은 많은 양의 높은 비등 물질의 배제(rejection)를 야기할 수 있다. 별개의 가열기가 탄화수소 공급 원료 및/또는 희석 증기를 예열하는데 사용될 수 있으며, 그 결과 전체 공정이 소량 및 다량의 중질 탄화수소 모두를 갖는 탄화수소 혼합물 처리에 있어서 고도의 유연성을 갖게 하고, 탄화수소 혼합물로부터의 전체 올레핀 수율을 향상시킨다.
이 구현예는 도 5에서 확장되며, 여기서 전용 가열기 100이 탄화수소 공급 원료만을 예열하는데 사용된다. 가열기 100은 바람직하게는 임의의 공급물을 올레핀으로 분해하지 않으며, 오히려 이는 전술한 바와 같이 대류 섹션 가열의 역할을 한다. 도 5와 관련하여 언급된 온도는 단지 예시일 뿐이며, 원하는 탄화수소 컷을 달성하도록 변화될 수 있다.
원유 102는 가열 코일 104로 공급되고 가열기 100에서 비교적 낮은 온도로 예열된다. 가열된 공급물 106은 이후 증기 108과 혼합되는데, 이는 희석 증기 또는 과열된 희석 증기일 수 있다. 예열 및 증기 접촉은 약 200℃ 이하의 정상 비등점을 갖는 탄화수소 (즉, 나프타 분획물)를 기화시킬 수 있다. 휘발성 탄화수소 및 증기는 이후 드럼 110 내에서 비휘발성 탄화수소로부터 분리되어 증기 분획물 112 및 액체 분획물 114를 회수할 수 있다. 증기 분획물 112는 이후 대류 부분에서 증기로 더 희석될 수 있고, 필요하다면 과열될 수 있으며, 열분해 반응기(도시되지 않음)의 복사 코일로 보내질 수 있다.
액체 분획물 114는 포화된 희석 증기일 수 있는 희석 증기 116과 혼합될 수 있고, 가열 코일 117로 공급될 수 있으며, 연소 가열기 100에서 적당한 온도로 가열될 수 있다. 가열된 액체 분획물 118은 이후 과열된 희석 증기 120과 혼합될 수 있으며, 혼합물은 플래시 드럼 122로 공급된다. 약 200℃ 내지 약 350℃ 범위에서 비등하는 탄화수소는 기화되며 증기 분획물 124로서 회수된다. 증기 분획물 124는 이후 과열되고 열분해 반응기(도시되지 않음)의 복사 섹션으로 보내질 수 있다.
플래시 드럼 122로부터 회수된 액체 분획물 126은 포화된 (또는 과열된) 희석 증기 127로 재가열되고, 코일 128을 통과하여 연소 가열기 100에서 추가로 과열된다. 과열된 희석 증기 130은 가열된 액체/증기 스트림 132에 첨가되고 증기 분획물 136 및 액체 분획물 138로 분리하기 위해 분리기 134에 공급될 수 있다. 이 분리는 350℃ 내지 550℃ (VGO) 부분을 절단하고, 증기 분획물 136으로서 회수되며, 이는 필요하다면 추가의 희석 증기로 과열될 수 있고, 열분해 반응기(도시되지 않음)의 복사 섹션으로 보내질 수 있다.
일부 구현예에서, 분리기 134는 플래시 드럼일 수 있다. 다른 구현예에서, 분리기 134는 HOPS 타워일 수 있다. 대안적으로, 분리 시스템 134는 플래시 드럼 및 HOPS 타워 모두를 포함할 수 있으며, 여기서 증기 분획물 136은 플래시 드럼으로부터 회수될 수 있고, 이후 희석 증기로 가열되어 HOPS 타워로 공급된다. HOPS 장치를 사용하는 경우, 기화 가능한 물질만이 분해될 것이다. 기화되지 않은 물질 138은 회수되어 연료로 보내질 수 있으며, 예를 들어 하기 기술된 바와 같이 추가적인 올레핀을 생성하기 위해 추가로 처리될 수 있다. 추가의 희석 증기는 열분해 반응기(도시되지 않음)의 복사 섹션으로 보내지기 전에 증기에 첨가될 것이다. 이러한 방식으로, 별개의 연소 가열기로 많은 컷이 가능하며 각 컷은 최적으로 분해될 수 있다.
전술한 각각의 구현예에 대해, 공통적인 가열기 설계가 가능하다. 이러한 가열기의 열 효율을 증가시키기 위하여, 상단 열(콜드 싱크)은, 도 4에 도시된 바와 같이, 임의의 저온 유체 또는 BFW 또는 절탄기일 수 있다. 증기의 유무에 관계없이 유체의 가열 및 과열은 연소 가열기의 대류 섹션 또는 복사 섹션 또는 두 섹션 모두에서 수행될 수 있다. 추가적인 과열은 분해 가열기의 대류 섹션에서 수행될 수 있다. 가열기에서, 유체의 최대 가열은 원유의 코킹 온도보다 낮은 온도로 제한되어야 하며, 대부분의 원유의 경우 약 500℃ 일 수 있다. 고온에서는, 코킹을 억제하기에 충분한 희석 증기가 존재해야 한다.
분해 가열기의 에너지 균형이 분해 가혹도에 크게 영향을 미치지 않도록 희석 증기는 과열될 수도 있다. 전형적으로, 희석 증기는 공급물이 분해된 (통합형이라고 불리는) 동일한 가열기 내에서 과열된다. 대안적으로, 희석 증기는 별개의 가열기 내에서 과열될 수 있다. 통합형 또는 별개의 희석 증기 과열기의 이용은 연도 가스에서 이용 가능한 에너지에 따라 다르다.
HOPS 타워 150의 간단한 개요가 도 6에 도시되어 있다. 이 개략도의 다양한 변형이 가능하다. HOPS 타워에서, 과열된 희석 증기 152는 고온 액체 154에 첨가되고, 2 내지 10개의 이론적인 단계를 포함하는 분리 구역 156이 비기화성 탄화수소로부터 기화성 탄화수소를 분리하는데 사용된다. 이 공정에 의해, 증기 내의 고비등 캐리오버(carryover) 액체가 코킹을 유발할 것이므로, 오버헤드 분획물 160으로의 미세 액적의 캐리오버가 감소된다. 중질의 비기화성 탄화수소는 잔사유 분획물 162에서 회수되고, 기화성 탄화수소 및 희석 증기는 오버헤드 생성물 분획물 164에서 회수된다. HOPS 타워 150은 패킹 유무와 관계없이 일부 내부 분배기를 포함할 수 있다. HOPS 타워를 사용하는 경우, 증기/액체 분리가 거의 이상적일 수 있다. 작동 조건에 따라, 증기의 종말점을 예측할 수 있으며, 증기 상에서의 임의의 액체 캐리 오버는 최소화될 수 있다. 이 옵션은 플래시 드럼보다 비싸지만, 감소된 코킹의 이점은 추가된 비용보다 충분히 중요하다. 스트림 162 내의 액체는 연속 처리를 위해 공정의 적절한 단계로 재순환된다.
본원의 구현예에서, 모든 증기 분획물은 동일한 반응기 내에서 다른 코일에서 분해될 수 있다. 이러한 방식으로 단일 가열기가 다른 분획물에 대해 사용될 수 있으며, 각 컷에 대한 최적 조건이 달성될 수 있다. 대안적으로 다수의 가열기가 사용될 수 있다.
스트림 60, 138에서와 같은 생성된 비휘발성 물질은 도 2 및 도 3과 관련하여 상기 도시되고 기술된 바와 같이 통합된 수첨분해 장치에 공급될 수 있다.
일부 구현예에서, 통합된 수첨분해 및 열분해 시스템 내에서 추가 처리 전에 금속, 질소, 황 또는 콘래드슨 탄소 잔사유를 제거하기 위해, 하나 이상의 액체 분획물, 예컨대 액체 분획물 30 또는 60을 추가로 처리하는 것이 바람직할 수 있다. 본원의 구현예에 따른 이러한 추가 처리 및 통합을 위한 하나의 구성이 도 7에 도시되어 있다.
도 7에 도시된 바와 같이, 예를 들어 도 2 및 도 3과 관련하여 공급물 22에 대해 전술한 바와 같이, 탄화수소 혼합물 222, 예컨대 전체 원유 또는 경유와 혼합된 전체 원유는 열분해 가열기 201의 대류 구역 202로 보내진다. 가열된 혼합물 224는 분리기 203에서 플래싱(flashing)되고, 증기 분획물 204는 열분해 가열기 201 반응 섹션 (복사 구역) 205로 보내지고, 여기서 증기 스트림은 올레핀으로 전환된다. 생성된 배출물 206은 이후 올레핀 회수 섹션 208로 보내지고, 여기서 탄화수소는 분별을 통해 다양한 탄화수소 컷, 예컨대 경질 석유 가스 분획물 209, 나프타 분획물 210, 제트 또는 디젤 분획물 211 및 중질 분획물 212로 분리될 수 있다.
분리기 203으로부터 회수된 액체 부분 214는 고정상 반응기 시스템 216에서 수첨처리되어 금속, 황, 질소, CCR, 및 아스팔텐 중 하나 이상을 제거하고, 보다 낮은 밀도로 수첨처리된 액체 218을 생성할 수 있다. 액체 218은 이후 열분해 가열기 221의 대류 구역 220으로 보내진다. 분리기 219는 일부 구현예에서 수첨처리된 액체 218로부터 증기 245를 제거하기 위해 사용될 수 있으며, 여기서 증기 245는 열분해 가열기 201의 반응 섹션 205에서, 증기 204와 동일하거나 다른 코일에서 반응할 수 있다.
대류 구역 220에서 액체 218의 가열로 인해 가열된 혼합물 243은 이후 분리기 226에서 플래싱되고, 증기 227은 열분해 가열기 221 반응 구역 228로 보내지며, 여기서 증기 스트림은 올레핀으로 전환되고 흐름 라인 247을 통해 올레핀 회수 섹션 208로 보내진다.
분리기 226로부터의 액체 229는 명목상 550℃ 이상의 비등하는 액체의 준-총 전환을 위해 유동상 또는 슬러리 수첨분해 반응기 250으로 보내져 탄화수소를 <550℃ 생성물로 전환시킨다. 수첨분해 반응 구역 250으로부터의 배출물 253은 분리 구역 255로 공급될 수 있으며, 여기서 반응기 배출물로부터의 경질 생성물 251은 증류되어 가열기 201 및 221 내의 각각의 열분해 반응기 구역으로 보내지고, 수첨처리기 216을 통해 보내지거나 열분해 반응기 구역으로 공급되는 유사한 비등 범위 스트림과 간단히 결합될 수 있다.
분별 섹션 208로부터의 액체 212 (본질적으로 370-550℃)는 나프타 261 또는 나프타 및 비전환된 오일 스트림 261로의 총 전환을 위해 나머지 유동상 또는 슬러리 수첨분해 시스템 250과 통합된 전체 전환 수첨분해 장치 260으로 보내진다. 스트림 261 내의 모든 나프타 생성물의 경우, 나프타 261은 별개의 열분해 가열기 (도시되지 않음)의 반응 구역 또는 반응 구역 205, 228 중 하나 내의 가열기 코일에서 처리될 수 있다. 다른 구현예에서, 나프타 및 비전환된 오일 스트림 261은 하나 이상의 분리기 270, 272에서 다양한 분획물 274, 276으로 분리될 수 있으며, 이는 각각의 반응 구역 205, 228에서 증기 분획물 204, 245, 227과의 공동-처리 또는 별개의 처리를 위해 반응 구역 205, 228로 공급될 수 있다. 비전환된 오일 스트림 또는 그의 일부의 가열 및 분리는 열분해 가열기 292의 대류 섹션 290에서 발생할 수 있다. 비전환된 오일 스트림 중의 액체 280은 이후 올레핀으로의 전환을 위해 열분해 가열기 292에서 그 자체의 열분해 반응 섹션 294로 보내질 수 있다. 그 다음, 열분해 배출물 296은 올레핀 회수 구역 208에 공급될 수 있다.
본원의 구현예는 원유에서 화학물질로의 공정을 원유 측면에서 매우 유연하게 만들면서 정제시설을 완전히 제거할 수 있다. 본원에 개시된 공정은 고수준의 오염물질 (황, 질소, 금속, CCR)을 포함한 원유에 대해 유연하며, 이는 매우 경질의 원유 또는 응축물만 처리할 수 있는 전체 원유 공정과는 구별된다. 대량의 반응기 부피를 수반하고 수소 첨가 측면에서 비효율적일 수 있는, 전체 원유의 전부를 수첨처리하는 것과는 대조적으로, 본원의 공정은 필요에 따라 공정의 알맞은 단계에 수소만을 첨가한다.
또한, 본원의 구현예는 원유 성분의 선택적 수첨처리 및 수첨분해로부터 유도된 다른 유형의 공급물을 처리하기 위해 열분해 대류 및 반응 구역의 특유의 혼합물(blend)을 이용한다. 정제시설 없이 원유의 완전한 전환이 이루어질 수 있다.
대류 섹션에서 생성된 증기 및 액체는 HOPS 분리기를 통해 효율적으로 분리될 수 있다. 본원의 구현예는 제1 가열기의 대류 섹션을 사용하여 올레핀으로 쉽게 전환될 수 있고 수첨처리가 필요없는 경질 성분이 분리된다. 이후, 액체는 HDM, DCCR, HDS 및 HDN을 위한 고정상 촉매 시스템을 사용하여 추가 열분해 전에 수율/파울링 비율에 영향을 미치는 헤테로원자를 제거하기 위해 효율적으로 수첨처리될 수 있다. 본원의 구현예는 또한 중간 단계에서 원유 내 가장 중질 성분의 전환을 위해 유동상 또는 슬러리 수첨분해 반응 및 촉매 시스템을 사용할 수 있다.
본원의 구현예는 가장 중질의 원유 성분의 전환으로부터 유도된 저밀도, 방향족 생성물을 고수소 함량의 생성물로 전환시킨 다음 열분해를 위해 보내질 수 있는 고정상 수첨분해 시스템을 추가로 이용할 수 있다. 본원의 구현예는 세심한 수소의 첨가에 의해 그리고 처리되는 공급물에 맞춘 전용 가열기에서 열분해 반응을 수행함에 의해 열분해 연료유의 생산을 최소화할 수도 있다. 열분해 오일 생성은 다른 컷의 공급물을 처리할 수 있는 수소화 시스템에 의해, 예컨대 HOPS 분리기에서 공급물의 분리에 의해 최소화된다. 본원의 구현예에 의해 생성된 열분해 오일은 다른 수첨분해 섹션 내에서 회수되고 수소화처리되어, 낮은 가치의 열분해 오일의 수출을 방지한다.
또한, 본원의 구현예의 특징은 열분해 연료유의 수첨분해 및 수첨분해된 물질을 열적으로 분해하는 것이다. 전형적인 VGO는 약 12-13 중량%의 수소를 함유하는 반면 PFO는 약 7 중량%의 수소를 함유한다. 게다가, PFO는 6개 초과의 고리를 갖는 탄화수소 분자를 포함하는, 상당한 양의 다핵 방향족을 함유할 수 있다. 따라서, 감압 경유를 PFO보다 수첨분해하는 것이 더 쉽다. 본원의 구현예에서 수첨분해장치는 이러한 중질 공급물을 처리하도록 설계될 수 있다.
실시예
실시예 1: 아라비아 원유
표 1은 원유 분해에 대해 얻은 계산된 수율을 나타낸다. 모든 계산은 이론적 모델을 기반으로 한다. 실행 길이(몇 시간 조차도)가 요인이 아니라는 가정하에, 비록 다른 가혹도가 사용될 수 있을지라도, 높은 가혹도에서의 수율을 나타낸다.
이 실시예에서, 나이지리아 경질 원유가 고려된다. 원유는 표 1에 나타낸 바와 같은 특성 및 증류 곡선을 가졌다.
비중 0.79
황, 중량% 0.04
미세-탄소 잔사유 (MCRT), 중량% 0.67
금속, ppm 2.1
C7 아스팔텐, 중량% 0.11
TBP 종말점 ℃ 누적 수율 (중량%)
< 80 11.7
150 30.2
200 43.5
260 58.1
340 78.2
450 93.6
570 97.7
잔사유 (570℃ +) 100
모델에 기초하여 계산된, 원유를 분해하기 위한 모의 열분해 수율을 표 2에 나타내었다. 이 실시예에서 다음을 포함한 세가지 사례가 연구되었다: 사례 1 - 경유 생성물과 통합한 전체 경유; 사례 2 - 경유와 통합한 전체 경유 및 잔사유 수첨분해장치, 및 참조 사례, 사례 3 - 전 범위 나프타의 열분해.
나프타 컷 (<200℃), 경유 컷 (200-340℃, 및 VGO+ (>340℃)이 고려된다. 사례 1에서, 나프타 및 경유 컷은 열분해 코일에서 분해된다. VGO+ 물질은 잔사유 수첨분해장치로 보내진다. 수첨분해장치의 생성물은 열분해 장치로 보내진다. 소량의 분획물은 수첨분해장치 파울링(fouling) 비율을 최소화하기 위해 유출되어서 수첨분해장치로부터 제거된다.
사례 2에서, 생성된 열분해 경유 및 열분해 연료유 (205℃+)는 잔사유 수첨분해장치로 보내지고 수첨분해장치로부터의 생성물은 사례 1과 유사하게 열분해 장치로 보내진다.
모든 사례에 있어서, 공급물은 공급물 소비를 최소화하기 위해 높은 가혹도로 분해된다. 참고로, 일반적인 전 범위 나프타가 고려된다. 나프타 특성은 다음과 같다: 비중 = 0.708, 초기 비등점 = 32℃, 50 부피% = 110℃, 최종 비등점 = 203℃; 파라핀 = 68 중량%, 나프탈렌 = 23.2 중량% 및 방향족 화합물 = 8.8 중량%.
모든 경우에 있어서, 올레핀 플랜트에서 생성된 에탄 및 프로판은 소거(extinction)되기 위해 재순환된다. 에탄은 65% 전환 수준에서 분해된다. 고선택적인 두 개의 SRT 가열기가 이 실시예에서 사용된다. 코일 배출구 압력은 1.7 bara에서 선택된다.
하기 표는 높은 가혹도에서 전형적인 1 백만 메트릭 톤(metric ton)의 에틸렌 생성에 대한 물질 균형(material balance)을 나타낸다.
공급물 사례 1 사례 2 사례 3
복합시설에 대한 원유 (중량 단위) 3130.7 2937.9
복합시설에 대한 나프타 2970
반응 증기 3.5 3.5 3.3
총 공급물 3134.2 2941.4 2973.3
가혹도 높음 높음 높음
생성물
H2 + 연료 가스 456 457.8 516.2
C2H4 1000 1000 1000
C3H6 448.1 454.3 422.1
가공되지 않은 C4 276.9 279.8 245.9
240℃에 대한 열분해 가솔린 C5 651.1 666 631.5
PGO/PFO 174.9 -- 155.9
산성 가스 1.8 1.8 1.7
잔사유 125.2 -- 0
PFO로 블리드 -- 81.8 0
합계 3134.2 2141.4 2973.3
최종 C2H4 수율, 중량% 31.94 34.03 33.67
최종 C3H6 수율, 중량% 14.31 15.46 14.21
최종 C2H4 + C3H6 수율, 중량% 46.25 49.5 47.88
공급 원료로서 중질물을 수첨분해하고 생성물을 올레핀 플랜트로 보내는 것은 나프타 분해기에 필적하는 최종 수율을 산출한다. 잔사유 수첨분해장치를 사용하지 않는 경우, 잔사유는 수첨분해될 뿐만 아니라, 올레핀 복합시설에서 생성된 연료유가 수첨분해되어 올레핀 복합시설의 공급물로서 통합될 수 있다. 이는 최종 수율을 향상시키고 전형적인 나프타 분해기보다 더 우수하다. 원유를 다양한 분획물로의 분리 없이, 통상적인 수첨분해장치 및/또는 잔사유 수첨분해장치와 통합함에 의해 원유를 올레핀 복합시설에서 처리할 수 있다. 이는 최종적인 올레핀 생산을 향상시킬 수 있으며, 공급물 소비를 최소화하고 원유 분해의 경제성을 개선한다. 가치가 덜한 연료유 생산이 상당히 감소되어 자원을 보존한다.
등유 및/또는 디젤과 같은 고가의 연료가 요구되는 경우, 이들 생성물은 수첨분해장치에 사용된 증류 컬럼으로부터 수득될 수 있다. 이들이 수첨분해장치를 통과할 시 올레핀 복합시설로 전달되지 않을 수 있으며, 또한 이들이 원유 컬럼으로부터 생성될 시 원유 증류 장치에 필요한 별개의 수소화처리 장치를 회피하면서 연료 사양을 충족시킬 것이다. 이는 자본 투자를 감소시킨다. 또한, 본원에 제안된 흐름도는 요구되는 올레핀 대 연료 비율을 충족시키도록 변형될 수 있다.
실시예 2
아라비아 원유를 사용하여 하기와 같은 물질 균형이 산출된다.
Figure pct00001
이 균형의 경우, LPG가 없고 1564.3 kTA의 해당 잔사유와 혼합된 10,000KTA의 잔사유가 없는 원유 액체가 기준으로 선택된다. 잔사유가 없는 부분이 통상적인 공급물이다. 이는 가혹도가 높은 경우 (사례 1A) 3637.8 kTA의 에틸렌 및 1572.7 kTA의 프로필렌을 생성한다. 동일한 양의 공급물은 가혹도가 낮은 경우 (사례 1B) 3435.5 kTA의 에틸렌 및 11926.7 kTA의 프로필렌을 생성한다. 원유는 잔사유를 함유하고 10,000 KTA의 분해가능성 물질을 수득하기 위해서는, 11564.3 kTA의 원유가 사용되어야 하고 1564.3 kTA의 잔사유는 배제될 것이다. 현재 분해가능성 공급물은 경질 가스 (668.4 kTA), 경질 나프타 (2889.2 kTA), 중질 나프타 (2390. KTA) 및 중유 (4052.4 kTA)이다. 사례 1A, 2A, 3A는 높은 가혹도로 올레핀 플랜트의 모든 공급물을 분해한다. 사례 1B, 2B 및 3B는 해당 가혹도가 낮은 경우이다.
사례 1A, 1B는 통상적인 방식으로 기체성 공급물, 나프타 공급물 및 중질 비등 물질을 사용한다. 중질 비등 물질 중 일부는 수첨분해되어 올레핀 플랜트에 공급물을 생성한다.
사례 2A, 2B는 동일한 공급물을 사용하고, 잔사유는 잔사유 수소화처리 장치에서 수첨분해되며, 사례 1A 또는 1B에 사용된 공급물 외에 수첨분해장치의 생성물이 분해된다.
사례 3A, 3B는 2A 또는 2B에 사용된 모든 공급물을 사용하고, 또한 수소화처리된 열분해 연료유 (PFO)를 분해한다. 이 열분해 연료유는 특수한 수첨분해장치에서 수첨분해된다. PFO는 분해기에서 생산되고 수첨분해 후 분해기로 돌아가 재순환된다.
잔사유 분해 및 재순환 PFO 수첨분해함에 따라, 하기 표에 나타낸 바와 같이 에틸렌 및 프로필렌 생산이 상당히 증가된다. 모든 값은 KTA (연간 킬로톤)이다.
Figure pct00002
잔사유 및 열분해 연료 올레핀 또한 분해함에 의해, 수율이 상당히 증가된다. 고정된 양의 에틸렌 또는 올레핀 생산의 경우, 원유 소비를 감소시킨다. 이는 수소화처리 후 분해 잔사유 및 열분해 연료유의 이점이다. 산업계에서, 표에 나타낸 %C2+C3은 최종 수율로 표시된다.
상기 실시예 중 일부에서, 높은 가혹도 분해가 사용된다. 본원의 구현예는 높은 가혹도로 제한되지 않는다. 열분해 가열기는 원하는 프로필렌 대 에틸렌 비율을 충족시키기 위해 달라질 수 있다. 매우 높은 프로필렌 비율이 요구되는 경우, 생성된 부텐 및 에틸렌을 사용하여 프로필렌을 생성하는 것과 같은 올레핀 전환 기술이 사용될 수 있다 (예를 들어, 복분해). 열분해에서 생성된 부텐이 올레핀 전환에 불충분한 경우, 에틸렌 이합체화 기술을 사용하여 추가의 부텐이 생성될 수 있다. 따라서, 원하는 경우, 에틸렌이 0%인 100% 프로필렌이 생성될 수 있다. 역(reverse) 올레핀 전환 기술을 사용하여, 프로필렌은 에틸렌 및 부텐으로 전환될 수 있다. 따라서, 100% 에틸렌 및 100% 프로필렌은 원유 통합 열분해, 잔사유 수첨분해장치, 올레핀 전환 기술 및/또는 이합체화 기술로부터 생성될 수 있다.
전술한 바와 같이, 본원의 구현예는 전체 원유 및 고비등 코크스 전구체를 함유하는 다른 탄화수소 혼합물을 유연하게 처리하는 것을 제공할 수 있다. 본원의 구현예는 예열, 과열 및 분해 공정 동안에 높은 가혹도 조건에서 조차도 코킹 및 파울링을 유리하게 감소시킬 수 있다. 본원의 구현예는 바람직한 수율을 달성할 수 있는 한편, 다수의 가열기에서 분획물의 사전-분별 및 별개의 공정과 관련된 자본 및 에너지 요구를 현저하게 감소시킨다.
본원의 구현예에 따른 분해 공정을 통한 코킹의 억제 및 열분해 및 수첨분해의 통합은 증가된 올레핀 수율, 증가된 실행 길이 (감소된 정지 시간) 및 중질 탄화수소를 함유하는 공급물을 처리하는 능력을 포함하는 상당한 이점을 제공한다. 또한, 증류 분리 및 개별의 분해 반응기를 포함하는 종래의 공정에 비해 상당한 에너지 효율을 얻을 수 있다.
본 개시는 제한된 수의 구현예를 포함하지만, 본 개시의 이점을 갖는 당업자는 본 개시의 범위를 벗어나지 않는 다른 구현예가 고안될 수 있음을 이해할 것이다. 따라서, 범위는 첨부된 청구범위에 의해서만 제한되어야 한다.

Claims (21)

  1. 탄화수소 혼합물을 전환시켜 올레핀을 생성하기 위한 통합된 열분해 및 수첨분해 공정으로서,
    전체 원유 및 경유를 혼합하여 탄화수소 혼합물을 형성하는 단계;
    탄화수소 혼합물을 가열기에서 가열하여 탄화수소 혼합물 내의 탄화수소 일부를 기화시키고 가열된 탄화수소 혼합물을 형성하는 단계;
    가열된 탄화수소 혼합물을 제1 분리기에서 제1 증기 분획물 및 제1 액체 분획물로 분리하는 단계;
    증기를 제1 증기 분획물과 혼합하고, 생성된 혼합물을 대류 구역에서 과열시키며, 과열된 혼합물을 열분해 반응기의 복사 구역 내의 제1 복사 코일로 공급하는 단계;
    제1 액체 분획물 또는 그의 일부, 및 수소를 수첨분해 반응기 시스템에 공급하고, 제1 액체 분획물을 수첨분해 촉매와 접촉시켜 제1 액체 분획물 내의 탄화수소 일부를 분해하며, 수첨분해 반응기 시스템으로부터 배출물을 회수하는 단계;
    배출물 내의 탄화수소로부터 미반응된 수소를 분리하는 단계;
    배출물 탄화수소를 분별하여 경유 분획물을 포함하는 둘 이상의 탄화수소 분획물을 형성하는 단계를 포함하는 공정.
  2. 탄화수소 혼합물을 전환시켜 올레핀을 생성하기 위한 통합된 열분해 및 수첨분해 공정으로서,
    전체 원유 및 경유를 혼합하여 탄화수소 혼합물을 형성하는 단계;
    탄화수소 혼합물을 가열기에서 가열하여 탄화수소 혼합물 내의 탄화수소 일부를 기화시키고 가열된 탄화수소 혼합물을 형성하는 단계;
    가열된 탄화수소 혼합물을 제1 분리기에서 제1 증기 분획물 및 제1 액체 분획물로 분리하는 단계;
    열분해 반응기의 대류 구역에서 제1 액체 분획물을 가열하여 제1 액체 분획물 내의 탄화수소 일부를 기화시키고 제2 가열된 탄화수소 혼합물을 형성하는 단계;
    제2 가열된 탄화수소 혼합물을 제2 분리기에서 제2 증기 분획물 및 제2 액체 분획물로 분리하는 단계;
    증기를 제1 증기 분획물과 혼합하고, 생성된 혼합물을 대류 구역에서 과열시키며, 과열된 혼합물을 열분해 반응기의 복사 구역 내의 제1 복사 코일로 공급하는 단계; 및
    증기를 제2 증기 분획물과 혼합하고, 생성된 혼합물을 대류 구역에서 과열시키며, 과열된 혼합물을 열분해 반응기의 복사 구역 내의 제2 복사 코일로 공급하는 단계;
    제2 액체 분획물 또는 그의 일부, 및 수소를 수첨분해 반응기 시스템에 공급하고, 제2 액체 분획물을 수첨분해 촉매와 접촉시켜 제2 액체 분획물 내의 탄화수소 일부를 분해하며, 수첨분해 반응기 시스템으로부터 배출물을 회수하는 단계;
    배출물 내의 탄화수소로부터 미반응된 수소를 분리하는 단계;
    배출물 탄화수소를 분별하여 경유 분획물 및 잔사유 분획물을 포함하는 둘 이상의 탄화수소 분획물을 형성하는 단계를 포함하는 공정.
  3. 제1항에 있어서, 대류 구역에서 제1 액체 분획물을 가열하기 전에 제1 액체 분획물을 증기와 혼합하는 단계를 더 포함하는 공정.
  4. 제1항에 있어서, 제1 및 제2 분리기 중 적어도 하나에 증기를 공급하는 단계를 더 포함하는 공정.
  5. 제2항에 있어서,
    제2 액체 분획물을 증기와 혼합하여 증기/오일 혼합물을 형성하는 단계;
    열분해 반응기의 대류 구역에서 증기/오일 혼합물을 가열하여 증기/오일 혼합물 내의 탄화수소 일부를 기화시키고 제3 가열된 탄화수소 혼합물을 형성하는 단계;
    제3 분리기에서 제3 가열된 탄화수소 혼합물을 제3 증기 분획물 및 제3 액체 분획물로 분리하는 단계;
    증기를 제3 증기 분획물과 혼합하고, 생성된 혼합물을 대류 구역에서 과열시키며, 과열된 혼합물을 열분해 반응기의 복사 구역에서 제3 복사 코일로 공급하는 단계를 더 포함하는 공정.
  6. 제5항에 있어서,
    증기 스트림의 일부를 빼내고, 그 일부를 탄화수소 혼합물, 제1 액체 분획물, 제1 증기 분획물 및 제2 액체 분획물 중 적어도 하나와 혼합하기 위한 증기로서 이용하는 단계;
    열분해 반응기의 대류 구역에서 증기 스트림의 나머지 부분을 과열시키는 단계; 및
    과열된 증기를 제1 분리기, 제2 분리기 및 제3 분리기 중 적어도 하나에 공급하는 단계를 더 포함하는 공정.
  7. 제6항에 있어서, 과열된 증기의 일부를 제3 증기 분획물과 혼합하기 위한 증기로서 이용하는 단계를 더 포함하는 공정.
  8. 제5항에 있어서, 대류 구역에서 연도 가스의 온도는 제1 액체 분획물을 가열할 때보다 제2 액체 분획물을 가열할 때 더 높은 것인 공정.
  9. 제8항에 있어서, 대류 구역에서 연도 가스의 온도는 제2 액체 분획물을 가열할 때보다 제1, 제2 및 제3 증기 분획물을 과열할 때 더 높은 것인 공정.
  10. 제1항에 있어서, 탄화수소 혼합물은 전체 원유 및/또는 적어도 550℃의 정상 비등점을 갖는 탄화수소를 함유하는 경유를 포함하는 공정.
  11. 올레핀 및/또는 디엔을 생성하기 위한 공정으로서,
    전체 원유를 부분적으로 기화시켜 액체 분획물 및 증기 분획물을 형성하는 단계;
    증기 분획물을 과열시키는 단계;
    과열된 증기 분획물을 열적으로 분해하여 올레핀 및 파라핀의 혼합물을 함유하는 분해된 탄화수소 배출물을 생성하는 단계;
    액체 분획물의 적어도 일부를 수첨분해하여 추가의 올레핀 및/또는 디엔을 함유하는 수첨분해된 탄화수소 배출물을 생성하는 단계를 포함하는 공정.
  12. 제11항에 있어서, 수첨분해된 탄화수소 배출물을 분리하여 경유 분획물을 함유하는 둘 이상의 탄화수소 분획물을 회수하는 단계; 및 부분적으로 기화시키는 단계 전에 경유 분획물을 전체 원유와 혼합하는 단계를 더 포함하는 공정.
  13. 제11항에 있어서, 과열시키는 단계 전에 증기를 증기 분획물과 혼합하는 단계를 더 포함하는 공정.
  14. 제11항에 있어서,
    액체 분획물을 부분적으로 기화시켜 제2 액체 분획물 및 제2 증기 분획물을 형성하는 단계;
    제2 증기 분획물을 과열시키는 단계;
    과열된 증기 분획물을 열적으로 분해하여 올레핀 및 파라핀의 혼합물을 함유하는 제2 분해된 탄화수소 배출물을 생성하는 단계; 및
    액체 분획물의 적어도 일부로서 제2 액체 분획물을 수첨분해 단계로 공급하는 단계를 더 포함하는 공정.
  15. 제11항에 있어서, 증기를 부분적으로 기화된 전체 원유와 혼합하고 분리하여 액체 분획물 및 증기 분획물을 형성하는 단계를 더 포함하는 공정.
  16. 올레핀 및/또는 디엔을 생성하기 위한 시스템으로서,
    대류 가열 구역 및 복사 가열 구역을 포함하는 열분해 가열기;
    전체 원유를 부분적으로 기화시켜 액체 분획물 및 증기 분획물을 형성하기 위한 대류 가열 구역 내의 가열 코일;
    증기 분획물을 과열시키기 위한 대류 가열 구역 내의 제2 가열 코일;
    과열된 증기 분획물을 열적으로 분해하여 올레핀 및 파라핀의 혼합물을 함유하는 분해된 탄화수소 배출물을 생성하기 위한 복사 가열 구역 내의 복사 가열 코일;
    액체 분획물의 적어도 일부를 수첨분해하여 추가의 올레핀 및/또는 디엔을 함유하는 수첨분해된 탄화수소 배출물을 생성하기 위한 수첨분해 반응 구역을 포함하는 시스템.
  17. 제16항에 있어서, 수첨분해된 탄화수소 배출물을 분리하여 경유 분획물을 함유하는 둘 이상의 탄화수소 분획물을 회수하기 위한 분리기; 및 경유 분획물을 가열 코일 상류의 전체 원유와 혼합하기 위한 수단을 더 포함하는 시스템.
  18. 제16항에 있어서, 증기를 제2 가열 코일 상류의 증기 분획물과 혼합하기 위한 수단을 더 포함하는 시스템.
  19. 제16항에 있어서,
    액체 분획물을 부분적으로 기화시켜 제2 액체 분획물 및 제2 증기 분획물을 형성하기 위한 대류 가열 구역 내의 제3 가열 코일;
    제2 증기 분획물을 과열시키기 위한 대류 가열 구역 내의 제4 가열 코일;
    과열된 증기 분획물을 열적으로 분해하여 올레핀 및 파라핀의 혼합물을 함유하는 제2 분해된 탄화수소 배출물을 생성하기 위한 복사 가열 구역 내의 제2 복사 가열 코일; 및
    액체 분획물의 적어도 일부로서 제2 액체 분획물을 수첨분해 단계로 공급하기 위한 흐름 라인을 더 포함하는 시스템.
  20. 제19항에 있어서, 증기를 부분적으로 기화된 액체 분획물과 혼합하고 분리하여 제2 액체 분획물 및 제2 증기 분획물을 형성하기 위한 수단을 더 포함하는 시스템.
  21. 제16항에 있어서, 증기를 부분적으로 기화된 전체 원유와 혼합하고 분리하여 액체 분획물 및 증기 분획물을 형성하기 위한 수단을 더 포함하는 시스템.
KR1020197033335A 2017-07-18 2018-07-18 화학물질에 대한 원유의 통합된 열분해 및 수첨분해 장치 KR102366168B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762534095P 2017-07-18 2017-07-18
US62/534,095 2017-07-18
PCT/US2018/042738 WO2019018554A2 (en) 2017-07-18 2018-07-18 INTEGRATED PYROLYSIS AND HYDROCRACKING UNITS FOR RAW OIL TO OBTAIN CHEMICALS

Publications (2)

Publication Number Publication Date
KR20190130661A true KR20190130661A (ko) 2019-11-22
KR102366168B1 KR102366168B1 (ko) 2022-02-21

Family

ID=65016379

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197033335A KR102366168B1 (ko) 2017-07-18 2018-07-18 화학물질에 대한 원유의 통합된 열분해 및 수첨분해 장치

Country Status (13)

Country Link
US (3) US10793793B2 (ko)
EP (1) EP3609985A4 (ko)
JP (3) JP7027447B2 (ko)
KR (1) KR102366168B1 (ko)
CN (1) CN110770327A (ko)
BR (1) BR112019022726B1 (ko)
MY (1) MY198003A (ko)
PH (1) PH12019502489A1 (ko)
RU (1) RU2727803C1 (ko)
SA (1) SA519410770B1 (ko)
SG (1) SG11201910132TA (ko)
WO (1) WO2019018554A2 (ko)
ZA (1) ZA201907280B (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7027447B2 (ja) 2017-07-18 2022-03-01 ラマス・テクノロジー・リミテッド・ライアビリティ・カンパニー 原油から化学製品用の統合された熱分解および水素化分解ユニット
SG11202104697QA (en) * 2018-11-07 2021-06-29 Exxonmobil Chemical Patents Inc Process for c5+ hydrocarbon conversion
WO2020190777A1 (en) 2019-03-15 2020-09-24 Lummus Technology Llc Process for mixing dilution steam with liquid hydrocarbons before steam cracking
WO2020205210A1 (en) * 2019-04-05 2020-10-08 Lummus Technology Llc A process for conversion of crudes and condensates to chemicals utilizing a mix of hydrogen addition and carbon rejection
CN111944556B (zh) * 2019-05-14 2022-07-08 中国石化工程建设有限公司 一种锅炉给水灵活性预热与裂解气热量回收方法及乙烯裂解炉换热系统
US11946000B2 (en) 2019-05-24 2024-04-02 Eastman Chemical Company Blend small amounts of pyoil into a liquid stream processed into a gas cracker
CN112745942B (zh) * 2019-10-29 2022-12-13 中国石油化工股份有限公司 一种原油的处理方法与系统
US11945998B2 (en) * 2019-10-31 2024-04-02 Eastman Chemical Company Processes and systems for making recycle content hydrocarbons
US11319262B2 (en) 2019-10-31 2022-05-03 Eastman Chemical Company Processes and systems for making recycle content hydrocarbons
EP4054997A4 (en) 2019-11-07 2024-02-21 Eastman Chem Co ALPHA-OLEFINS AND FAT ALCOHOLS WITH RECYCLING CONTENT
CN116348573A (zh) 2020-09-28 2023-06-27 切弗朗菲利浦化学公司 来自热解塑料废物的循环化学品或聚合物以及质量平衡核算允许将所得产物计为循环的用途
US11370731B1 (en) 2021-01-12 2022-06-28 Saudi Arabian Oil Company Systems and processes for producing olefins from crude oil
EP4281518A1 (en) * 2021-01-20 2023-11-29 SABIC Global Technologies B.V. Optimization of steam cracking furnaces for light feedstocks containing high boiling components

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090050523A1 (en) * 2007-08-20 2009-02-26 Halsey Richard B Olefin production utilizing whole crude oil/condensate feedstock and selective hydrocracking

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1393841A1 (ru) * 1986-06-11 1988-05-07 Институт газа АН УССР Пиролизна печь
US8658022B2 (en) 2010-11-23 2014-02-25 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
EP2756056A1 (en) 2011-09-13 2014-07-23 ExxonMobil Research and Engineering Company Process for the production of diesel fuel and lubricant base oil
US9255230B2 (en) 2012-01-27 2016-02-09 Saudi Arabian Oil Company Integrated hydrotreating and steam pyrolysis process for direct processing of a crude oil
KR102148950B1 (ko) * 2012-03-20 2020-08-27 사우디 아라비안 오일 컴퍼니 원유로부터 석유화학제품을 생산하기 위한 통합된 수소화공정, 스팀 열분해 및 촉매 크래킹 방법
HUE030989T2 (en) * 2012-11-08 2017-06-28 Linde Ag A process for producing olefin-containing products by thermal steam cracking
CN105408456A (zh) 2013-07-02 2016-03-16 沙特基础工业公司 用于将高沸点烃原料转化为较低沸点的烃产物的方法
US10017702B2 (en) * 2014-10-07 2018-07-10 Lummus Technology Inc. Thermal cracking of crudes and heavy feeds to produce olefins in pyrolysis reactor
WO2016142806A1 (en) 2015-03-10 2016-09-15 Sabic Global Technologies, B.V. Process for hydrocracking of hydrocarbon streams and pyrolysis oils
JP7027447B2 (ja) 2017-07-18 2022-03-01 ラマス・テクノロジー・リミテッド・ライアビリティ・カンパニー 原油から化学製品用の統合された熱分解および水素化分解ユニット

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090050523A1 (en) * 2007-08-20 2009-02-26 Halsey Richard B Olefin production utilizing whole crude oil/condensate feedstock and selective hydrocracking

Also Published As

Publication number Publication date
CN110770327A (zh) 2020-02-07
BR112019022726B1 (pt) 2022-12-20
US20210017462A1 (en) 2021-01-21
US10793793B2 (en) 2020-10-06
US11421167B2 (en) 2022-08-23
SG11201910132TA (en) 2019-11-28
JP7417579B2 (ja) 2024-01-18
MY198003A (en) 2023-07-25
JP2024037744A (ja) 2024-03-19
WO2019018554A3 (en) 2019-04-11
JP2022050490A (ja) 2022-03-30
ZA201907280B (en) 2021-03-31
US11634649B2 (en) 2023-04-25
PH12019502489A1 (en) 2020-07-13
SA519410770B1 (ar) 2023-06-15
JP7027447B2 (ja) 2022-03-01
BR112019022726A2 (pt) 2020-05-12
EP3609985A4 (en) 2020-12-23
RU2020117205A (ru) 2020-06-04
JP2020523424A (ja) 2020-08-06
US20210017463A1 (en) 2021-01-21
RU2727803C1 (ru) 2020-07-24
KR102366168B1 (ko) 2022-02-21
WO2019018554A2 (en) 2019-01-24
EP3609985A2 (en) 2020-02-19
US20190023999A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
KR102366168B1 (ko) 화학물질에 대한 원유의 통합된 열분해 및 수첨분해 장치
CN107001955B (zh) 在热解反应器中热裂化原油和重质进料以生成烯烃
US11959032B2 (en) Process for mixing dilution steam with liquid hydrocarbons before steam cracking
KR101521314B1 (ko) 부분 기화 및 분리 조절 세트의 열분해 코일을 이용하여 탄화수소 공급원료로부터 올레핀 및 열분해 산물을 생산하는 방법.
CN113874475B (zh) 利用加氢和脱碳的混合将原油和凝析油转化为化学品的方法
CA2728567C (en) Process for the on-stream decoking of a furnace for cracking a hydrocarbon feed
KR20090079892A (ko) 증류물 생산이 증가된 전체 원유 및/또는 응축물 공급원료를 활용한 올레핀의 제조
EP2300564A1 (en) Process and apparatus for cooling liquid bottoms from vapor-liquid separator by heat exchange with feedstock during steam cracking of hydrocarbon feedstocks
RU2786677C1 (ru) Способ преобразования сырых нефтей и конденсатов в химические продукты с использованием комбинации добавления водорода и удаления углерода
RU2816315C2 (ru) Объединенные установки пиролиза и гидрокрекинга для превращения сырой нефти в химические продукты

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant