CN105609588B - Au纳米颗粒增强的高性能无机钙钛矿CsPbX3纳米晶可见光探测器 - Google Patents

Au纳米颗粒增强的高性能无机钙钛矿CsPbX3纳米晶可见光探测器 Download PDF

Info

Publication number
CN105609588B
CN105609588B CN201610046489.5A CN201610046489A CN105609588B CN 105609588 B CN105609588 B CN 105609588B CN 201610046489 A CN201610046489 A CN 201610046489A CN 105609588 B CN105609588 B CN 105609588B
Authority
CN
China
Prior art keywords
visible
light detector
cspbx
nanocrystalline
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610046489.5A
Other languages
English (en)
Other versions
CN105609588A (zh
Inventor
宋继中
董宇辉
李建海
许蕾梦
薛洁
王涛
曾海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201610046489.5A priority Critical patent/CN105609588B/zh
Publication of CN105609588A publication Critical patent/CN105609588A/zh
Application granted granted Critical
Publication of CN105609588B publication Critical patent/CN105609588B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种Au纳米颗粒增强的高性能CsPbX3无机钙钛矿纳米晶可见光探测器。通过旋涂制备Au纳米颗粒增强层,运用离心制膜的方法组装无机钙钛矿感光活性层,然后通过热蒸发沉积以及刻蚀工艺制备叉指电极组装成可见光探测器。本发明所述的可见光探测器的探测波长范围可通过改变量子点发光层材料的卤素配比进行调节,能够覆盖整个可见光谱范围;且其探测速度快,响应时间小于毫秒,可用于快速响应的光探测以及光通讯领域。

Description

Au纳米颗粒增强的高性能无机钙钛矿CsPbX3纳米晶可见光探 测器
技术领域
本发明涉及一种Au纳米颗粒增强的无机金属卤化物钙钛矿纳米晶可见光探测器,属于光探测器领域。
背景技术
可见光探测器在可见光通讯、成像感应、生物医学传感等军事和工业领域均具有许多重大的应用。随着各领域技术的逐步发展,要求光电探测器具备低成本,高灵敏度,可调谐波长等特点。有机无机杂化钙钛矿材料所具有的高量子效率,可溶液加工,波长易调等突出优势引起了各国研究者的大量关注,使得这种材料在太阳能电池,光电探测器,LED等光电器件中得到广泛应用。然而有机无机杂化钙钛矿材料的稳定性差是限制其实际应用的最大障碍,我们需要既能保留这类材料的优异光电性能,又能具有更好稳定性的材料,全无机钙钛矿纳米晶材料的出现有助于解决这一问题。
全无机钙钛矿纳米晶把有机无机杂化钙钛矿材料的优异光电性能与无机钙钛矿材料的稳定性结合起来,具有优异的光吸收能力、可调的带隙等优点。这些优势使得其在光电探测器、光通讯等领域具有广阔的前景。
金属纳米颗粒经常表现出局部表面等离子体共振(LSPR),它可以作为散射中心,纳入光电器件中来有效提高光的吸收,从而提高器件性能。在光电探测器件领域中被作为一种有效提高光电响应的手段,且方法较为简单可行,在提高器件性能方面具有广泛应用。
发明内容
本发明的目的在于提供一种通过Au纳米颗粒作用、性能提高的无机钙钛矿CsPbX3纳米晶可见光探测器。
本发明可通过如下技术方案实现,一种Au纳米颗粒增强的高性能无机钛矿CsPbX3纳米晶可见光探测器,由如下步骤制备:
1) 取Au纳米颗粒分散液,在洁净的硅片上按一定转速旋涂;
2) 再取CsPbX3纳米晶的分散液于旋涂后的硅片上进行离心沉积;
3) 于步骤2)离心后的表面沉积一定厚度的电极材料;
4) 刻蚀步骤3)沉积的电极得到一定叉指间距的电极,制得所述的可见光探测器。
步骤1)中,所述Au纳米颗粒分散液采用的溶剂为正己烷,旋涂的转速为4000r/min。
步骤2)中,所述CsPbX3纳米晶中的X为Cl、Br、I任意一种或任意两者组合,CsPbX3纳米晶的分散液采用的溶剂为甲苯,溶液的浓度为1.27*10-4mol/L。
步骤3)中,所述电极材料为Au,沉积厚度为70~100nm。
步骤4)中,所述叉指的间距为3~100μm。
本发明的优点是:1)本发明提供了一种Au纳米颗粒增强的高性能无机钙钛矿纳米晶可见光探测器,制备工艺简单;2)本发明对比了有无Au纳米颗粒增强的可见光探测器性能,提供了一种易实现的提升探测器性能的高可行性方案;3)本发明提供了一种性能优异、快速响应的光电探测器,响应时间在微秒级别。
附图说明
图1为本发明实施例1、2、3、4、5所用Au纳米颗粒的TEM透射图。
图2为本发明实施例1使用的金属卤化物钙钛矿纳米晶的HRTEM透射图。
图3为本发明实施例1制备的可见光探测器结构示意图。
图4为本发明实施例1制备的可见光探测器响应度图谱,并附同一条件制备的无Au纳米颗粒的器件响应度对比。
图5为本发明实施例1制备的可见光探测器的明暗电压-电流(I-V)曲线图,并附同一条件制备的无Au纳米颗粒的器件I-V曲线对比。
图6为本发明实施例1制备的可见光探测器的电流-时间响应(I-t)曲线图,并附同一条件制备的无Au纳米颗粒的器件I-t曲线对比。
具体实施方式
以下通过具体的实施例对本发明作进一步的描述。
本发明是在硅衬底上旋涂Au纳米颗粒分散液,然后离心沉积金属卤化物钙钛矿纳米晶,通过热蒸发沉积叉指电极,得到高性能的CsPbX3无机钙钛矿纳米晶可见光探测器。
实施例1
本实施例所述Au纳米颗粒增强的高性能无机钛矿CsPbX3纳米晶可见光探测器,具体包括如下步骤:
1)在清洗好的硅衬底上旋涂Au纳米颗粒分散液,转速为4000r/min,在常温下晾干,采用的Au纳米颗粒TEM透射图见图1;
2)离心沉积CsPbBr3纳米晶的分散液,离心机转速为6000r/min,采用的CsPbBr3纳米晶HRTEM透射图见图2;
3)通过热蒸发法蒸镀Au电极,电极厚度为80nm;
4)通过刻蚀得到10μm指间距的叉指电极,制得CsPbX3无机钙钛矿纳米晶可见光探测器,其结构示意图见图3,响应度见图4,其明暗电压-电流关系见图5,电流-时间响应见图6,由图可见其响应速度很快,可适用于快速响应的探测领域。
实施例2
与实施例1类似,区别在于,将实施例1的步骤2)中的CsPbBr3改为CsPbIxBr3-x (x的取值范围为0~3),其他条件保持一致,制得CsPbX3无机钙钛矿纳米晶可见光探测器。
实施例3
与实施例1类似,区别在于,将实施例1的步骤2)中的CsPbBr3改为CsPbClxBr3-x (x的取值范围为0~3),其他条件保持一致,制得CsPbX3无机钙钛矿纳米晶可见光探测器。
实施例4
与实施例1类似,区别在于,将实施例1的步骤3)中的电极厚度改为100nm,其他条件保持一致,制得CsPbX3无机钙钛矿纳米晶可见光探测器。
实施例5
与实施例1类似,区别在于,将实施例1的步骤4)中的叉指间距改为20μm,其他条件保持一致,制得CsPbX3无机钙钛矿纳米晶可见光探测器。

Claims (5)

1.一种CsPbX3纳米晶可见光探测器,其特征在于,由如下步骤制备:
1)取Au纳米颗粒分散液,在洁净的硅片上旋涂;
2)再取CsPbX3纳米晶的分散液于旋涂后的硅片上进行离心沉积,所述CsPbX3纳米晶中的X为Cl、Br、I任意一种或任意两者组合;
3)于步骤2)离心后的表面沉积电极材料;
4)刻蚀步骤3)沉积的电极得到所需叉指间距的电极,制得所述的可见光探测器。
2.如权利要求1所述的CsPbX3纳米晶可见光探测器,其特征在于,步骤1)中,所述Au纳米颗粒分散液采用的溶剂为正己烷,旋涂的转速为4000 r/min。
3.如权利要求1所述的CsPbX3纳米晶可见光探测器,其特征在于,步骤2)中,CsPbX3纳米晶的分散液采用的溶剂为甲苯,溶液的浓度为1.27*10-4mol/L。
4.如权利要求1所述的CsPbX3纳米晶可见光探测器,其特征在于,步骤3)中,所述电极材料为Au,沉积厚度为70~100 nm。
5.如权利要求1所述的CsPbX3纳米晶可见光探测器,其特征在于,步骤4)中,所述叉指间距为3~100µm。
CN201610046489.5A 2016-01-22 2016-01-22 Au纳米颗粒增强的高性能无机钙钛矿CsPbX3纳米晶可见光探测器 Active CN105609588B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610046489.5A CN105609588B (zh) 2016-01-22 2016-01-22 Au纳米颗粒增强的高性能无机钙钛矿CsPbX3纳米晶可见光探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610046489.5A CN105609588B (zh) 2016-01-22 2016-01-22 Au纳米颗粒增强的高性能无机钙钛矿CsPbX3纳米晶可见光探测器

Publications (2)

Publication Number Publication Date
CN105609588A CN105609588A (zh) 2016-05-25
CN105609588B true CN105609588B (zh) 2018-01-05

Family

ID=55989353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610046489.5A Active CN105609588B (zh) 2016-01-22 2016-01-22 Au纳米颗粒增强的高性能无机钙钛矿CsPbX3纳米晶可见光探测器

Country Status (1)

Country Link
CN (1) CN105609588B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870334B (zh) * 2016-05-27 2021-01-15 陕西师范大学 一种高效钙钛矿单晶光探测器及其制备方法
CN106449987B (zh) * 2016-11-15 2019-05-14 华南理工大学 一种光导型有机半导体探测器及其制备方法
KR20180090116A (ko) 2017-02-02 2018-08-10 삼성전자주식회사 광 필터 및 이를 포함하는 광 분광기
CN108807562B (zh) * 2017-04-28 2021-01-05 清华大学 光电探测器及其制备方法
CN107634143B (zh) * 2017-09-25 2020-04-03 中国工程物理研究院材料研究所 一种钙钛矿电池复合材料吸收层的制法
CN108467725A (zh) * 2018-03-30 2018-08-31 温州大学 一种Au-CsPbX3/PMMA纳米复合材料及其制备方法
CN108807678B (zh) * 2018-06-11 2021-07-09 电子科技大学 一种pcbm受体增强型量子点光电探测单元及其制备方法和探测器
CN110028949A (zh) * 2019-03-22 2019-07-19 深圳市华星光电技术有限公司 量子点复合膜制备方法、背光模组
CN110112250A (zh) * 2019-04-25 2019-08-09 淮阴工学院 石墨烯光-电探测器及其制备方法
CN111710745B (zh) * 2020-06-28 2023-03-21 重庆邮电大学 一种锰掺杂纯无机钙钛矿-Au纳米晶异质结及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2569347Y (zh) * 2002-08-29 2003-08-27 中国科学院长春光学精密机械与物理研究所 铟镓砷红外探测器
US8178046B2 (en) * 2005-02-23 2012-05-15 Sierra Sensors Gmbh Microfluidic devices with SPR sensing capabilities
US7705280B2 (en) * 2006-07-25 2010-04-27 The Board Of Trustees Of The University Of Illinois Multispectral plasmonic crystal sensors
CN101183691A (zh) * 2007-11-30 2008-05-21 中山大学 半导体光电探测器芯片结构
CN102163639A (zh) * 2011-03-23 2011-08-24 吉林大学 TiO2-ZrO2复合氧化物薄膜紫外光探测器及其制备方法
CN102522438A (zh) * 2011-12-15 2012-06-27 东南大学 一种利用氧化铟锡纳米颗粒增效的近红外光电探测器
CN103545397B (zh) * 2013-10-29 2016-02-24 中国科学院化学研究所 薄膜紫外光探测器及其制备方法与应用
CN103872155B (zh) * 2014-03-19 2016-08-17 南京大学 一种表面等离激元增强的超导单光子探测器及其制备方法

Also Published As

Publication number Publication date
CN105609588A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
CN105609588B (zh) Au纳米颗粒增强的高性能无机钙钛矿CsPbX3纳米晶可见光探测器
Yu et al. Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles
Tabatabaei et al. Tunable 3D plasmonic cavity nanosensors for surface-enhanced Raman spectroscopy with sub-femtomolar limit of detection
Akselrod et al. Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas
Luo et al. Light trapping and surface plasmon enhanced high-performance NIR photodetector
Chou et al. Tunable mid-infrared localized surface plasmon resonances in silicon nanowires
Chan et al. ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study
Yang et al. Broadband absorbing exciton–plasmon metafluids with narrow transparency windows
Bharmoria et al. Optical applications of nanomaterials
CN103011068A (zh) 一种金属纳米环的溶液法制备方法
Jia et al. Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances
Sulaiman et al. High-performance photodetector of Au–MgO/PS nanostructure manufactured via pulsed laser ablation technique
Wang et al. SERS study on the synergistic effects of electric field enhancement and charge transfer in an Ag 2 S quantum dots/plasmonic bowtie nanoantenna composite system
Guo et al. Charge transfer in 4-mercaptobenzoic acid-stabilized Au nanorod@ Cu2O nanostructures: implications for photocatalysis and photoelectric devices
Li et al. Plasmonic rare-earth nanosheets as surface enhanced Raman scattering substrates with high sensitivity and stability for multicomponent analysis
Rai et al. Engineering of Exciton–Plasmon Coupling Using 2D-WS2 Nanosheets for 1000-Fold Fluorescence Enhancement in Surface Plasmon-Coupled Emission Platforms
Liu et al. Induced SERS activity in Ag@ SiO2/Ag core‐shell nanosphere arrays with tunable interior insulator
Shao et al. Noble metal modified ReS 2 nanocavity for surface-enhanced Raman spectroscopy (SERS) analysis
Jabbar et al. Efficient detecting of TNT molecules using palladium nanoparticles/cross shape pores like structure porous silicon
Prajapati et al. Opportunities for enhanced omnidirectional broadband absorption of the solar radiation using deep subwavelength structures
Chen et al. Influence of cleaning treatment on structure, optical and electrical properties of Ag/ZnSe microspheres prepared by silver mirror reaction
Ge et al. Preparation and anti-reflection performance of porous silicon/gold nanocomposite structures
Holm et al. Work function-driven hot electron extraction in a bimetallic plasmonic MIM device
Efimova et al. Enhanced photon lifetime in silicon nanowire arrays and increased efficiency of optical processes in them
López-Rodríguez et al. A practical proposal for silver nanoparticles (Ag-NPs) separation by differential centrifugation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant