CN105609588A - Au纳米颗粒增强的高性能无机钙钛矿CsPbX3纳米晶可见光探测器 - Google Patents
Au纳米颗粒增强的高性能无机钙钛矿CsPbX3纳米晶可见光探测器 Download PDFInfo
- Publication number
- CN105609588A CN105609588A CN201610046489.5A CN201610046489A CN105609588A CN 105609588 A CN105609588 A CN 105609588A CN 201610046489 A CN201610046489 A CN 201610046489A CN 105609588 A CN105609588 A CN 105609588A
- Authority
- CN
- China
- Prior art keywords
- light detector
- cspbx
- nanocrystalline
- visible
- visible light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002105 nanoparticle Substances 0.000 title abstract description 15
- 238000000151 deposition Methods 0.000 claims abstract description 9
- 230000008021 deposition Effects 0.000 claims abstract description 9
- 238000004528 spin coating Methods 0.000 claims abstract description 9
- 239000006185 dispersion Substances 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 239000007772 electrode material Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- 230000004044 response Effects 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 6
- 238000004891 communication Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract description 3
- 230000003287 optical effect Effects 0.000 abstract description 3
- 238000002207 thermal evaporation Methods 0.000 abstract description 3
- 238000005530 etching Methods 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 abstract 3
- 229910052736 halogen Inorganic materials 0.000 abstract 1
- 150000002367 halogens Chemical class 0.000 abstract 1
- 239000012528 membrane Substances 0.000 abstract 1
- 239000002096 quantum dot Substances 0.000 abstract 1
- 238000001429 visible spectrum Methods 0.000 abstract 1
- JTCFNJXQEFODHE-UHFFFAOYSA-N [Ca].[Ti] Chemical compound [Ca].[Ti] JTCFNJXQEFODHE-UHFFFAOYSA-N 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 3
- 229910001507 metal halide Inorganic materials 0.000 description 3
- 150000005309 metal halides Chemical class 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000002707 nanocrystalline material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/09—Devices sensitive to infrared, visible or ultraviolet radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
- H01L31/0321—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种Au纳米颗粒增强的高性能CsPbX3无机钙钛矿纳米晶可见光探测器。通过旋涂制备Au纳米颗粒增强层,运用离心制膜的方法组装无机钙钛矿感光活性层,然后通过热蒸发沉积以及刻蚀工艺制备叉指电极组装成可见光探测器。本发明所述的可见光探测器的探测波长范围可通过改变量子点发光层材料的卤素配比进行调节,能够覆盖整个可见光谱范围;且其探测速度快,响应时间小于毫秒,可用于快速响应的光探测以及光通讯领域。
Description
技术领域
本发明涉及一种Au纳米颗粒增强的无机金属卤化物钙钛矿纳米晶可见光探测器,属于光探测器领域。
背景技术
可见光探测器在可见光通讯、成像感应、生物医学传感等军事和工业领域均具有许多重大的应用。随着各领域技术的逐步发展,要求光电探测器具备低成本,高灵敏度,可调谐波长等特点。有机无机杂化钙钛矿材料所具有的高量子效率,可溶液加工,波长易调等突出优势引起了各国研究者的大量关注,使得这种材料在太阳能电池,光电探测器,LED等光电器件中得到广泛应用。然而有机无机杂化钙钛矿材料的稳定性差是限制其实际应用的最大障碍,我们需要既能保留这类材料的优异光电性能,又能具有更好稳定性的材料,全无机钙钛矿纳米晶材料的出现有助于解决这一问题。
全无机钙钛矿纳米晶把有机无机杂化钙钛矿材料的优异光电性能与无机钙钛矿材料的稳定性结合起来,具有优异的光吸收能力、可调的带隙等优点。这些优势使得其在光电探测器、光通讯等领域具有广阔的前景。
金属纳米颗粒经常表现出局部表面等离子体共振(LSPR),它可以作为散射中心,纳入光电器件中来有效提高光的吸收,从而提高器件性能。在光电探测器件领域中被作为一种有效提高光电响应的手段,且方法较为简单可行,在提高器件性能方面具有广泛应用。
发明内容
本发明的目的在于提供一种通过Au纳米颗粒作用、性能提高的无机钙钛矿CsPbX3纳米晶可见光探测器。
本发明可通过如下技术方案实现,一种Au纳米颗粒增强的高性能无机钛矿CsPbX3纳米晶可见光探测器,由如下步骤制备:
1)取Au纳米颗粒分散液,在洁净的硅片上按一定转速旋涂;
2)再取CsPbX3纳米晶的分散液于旋涂后的硅片上进行离心沉积;
3)于步骤2)离心后的表面沉积一定厚度的电极材料;
4)刻蚀步骤3)沉积的电极得到一定叉指间距的电极,制得所述的可见光探测器。
步骤1)中,所述Au纳米颗粒分散液采用的溶剂为正己烷,旋涂的转速为4000r/min。
步骤2)中,所述CsPbX3纳米晶中的X为Cl、Br、I任意一种或任意两者组合,CsPbX3纳米晶的分散液采用的溶剂为甲苯,溶液的浓度为1.27*10-4mol/L。
步骤3)中,所述电极材料为Au,沉积厚度为70~100nm。
步骤4)中,所述叉指的间距为3~100μm。
本发明的优点是:1)本发明提供了一种Au纳米颗粒增强的高性能无机钙钛矿纳米晶可见光探测器,制备工艺简单;2)本发明对比了有无Au纳米颗粒增强的可见光探测器性能,提供了一种易实现的提升探测器性能的高可行性方案;3)本发明提供了一种性能优异、快速响应的光电探测器,响应时间在微秒级别。
附图说明
图1为本发明实施例1、2、3、4、5所用Au纳米颗粒的TEM透射图。
图2为本发明实施例1使用的金属卤化物钙钛矿纳米晶的HRTEM透射图。
图3为本发明实施例1制备的可见光探测器结构示意图。
图4为本发明实施例1制备的可见光探测器响应度图谱,并附同一条件制备的无Au纳米颗粒的器件响应度对比。
图5为本发明实施例1制备的可见光探测器的明暗电压-电流(I-V)曲线图,并附同一条件制备的无Au纳米颗粒的器件I-V曲线对比。
图6为本发明实施例1制备的可见光探测器的电流-时间响应(I-t)曲线图,并附同一条件制备的无Au纳米颗粒的器件I-t曲线对比。
具体实施方式
以下通过具体的实施例对本发明作进一步的描述。
本发明是在硅衬底上旋涂Au纳米颗粒分散液,然后离心沉积金属卤化物钙钛矿纳米晶,通过热蒸发沉积叉指电极,得到高性能的CsPbX3无机钙钛矿纳米晶可见光探测器。
实施例1
本实施例所述Au纳米颗粒增强的高性能无机钛矿CsPbX3纳米晶可见光探测器,具体包括如下步骤:
1)在清洗好的硅衬底上旋涂Au纳米颗粒分散液,转速为4000r/min,在常温下晾干,采用的Au纳米颗粒TEM透射图见图1;
2)离心沉积CsPbBr3纳米晶的分散液,离心机转速为6000r/min,采用的CsPbBr3纳米晶HRTEM透射图见图2;
3)通过热蒸发法蒸镀Au电极,电极厚度为80nm;
4)通过刻蚀得到10μm指间距的叉指电极,制得CsPbX3无机钙钛矿纳米晶可见光探测器,其结构示意图见图3,响应度见图4,其明暗电压-电流关系见图5,电流-时间响应见图6,由图可见其响应速度很快,可适用于快速响应的探测领域。
实施例2
与实施例1类似,区别在于,将实施例1的步骤2)中的CsPbBr3改为CsPbIxBr3-x(x的取值范围为0~3),其他条件保持一致,制得CsPbX3无机钙钛矿纳米晶可见光探测器。
实施例3
与实施例1类似,区别在于,将实施例1的步骤2)中的CsPbBr3改为CsPbClxBr3-x(x的取值范围为0~3),其他条件保持一致,制得CsPbX3无机钙钛矿纳米晶可见光探测器。
实施例4
与实施例1类似,区别在于,将实施例1的步骤3)中的电极厚度改为100nm,其他条件保持一致,制得CsPbX3无机钙钛矿纳米晶可见光探测器。
实施例5
与实施例1类似,区别在于,将实施例1的步骤4)中的叉指间距改为20μm,其他条件保持一致,制得CsPbX3无机钙钛矿纳米晶可见光探测器。
Claims (5)
1.一种CsPbX3纳米晶可见光探测器,其特征在于,由如下步骤制备:
1)取Au纳米颗粒分散液,在洁净的硅片上旋涂;
2)再取CsPbX3纳米晶的分散液于旋涂后的硅片上进行离心沉积;
3)于步骤2)离心后的表面沉积电极材料;
4)刻蚀步骤3)沉积的电极得到所需叉指间距的电极,制得所述的可见光探测器。
2.如权利要求1所述的CsPbX3纳米晶可见光探测器,其特征在于,步骤1)中,所述Au纳米颗粒分散液采用的溶剂为正己烷,旋涂的转速为4000r/min。
3.如权利要求1所述的CsPbX3纳米晶可见光探测器,其特征在于,步骤2)中,所述CsPbX3纳米晶中的X为Cl、Br、I任意一种或任意两者组合,CsPbX3纳米晶的分散液采用的溶剂为甲苯,溶液的浓度为1.27*10-4mol/L。
4.如权利要求1所述的CsPbX3纳米晶可见光探测器,其特征在于,步骤3)中,所述电极材料为Au,沉积厚度为70~100nm。
5.如权利要求1所述的CsPbX3纳米晶可见光探测器,其特征在于,步骤4)中,所述叉指间距为3~100μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610046489.5A CN105609588B (zh) | 2016-01-22 | 2016-01-22 | Au纳米颗粒增强的高性能无机钙钛矿CsPbX3纳米晶可见光探测器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610046489.5A CN105609588B (zh) | 2016-01-22 | 2016-01-22 | Au纳米颗粒增强的高性能无机钙钛矿CsPbX3纳米晶可见光探测器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105609588A true CN105609588A (zh) | 2016-05-25 |
CN105609588B CN105609588B (zh) | 2018-01-05 |
Family
ID=55989353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610046489.5A Active CN105609588B (zh) | 2016-01-22 | 2016-01-22 | Au纳米颗粒增强的高性能无机钙钛矿CsPbX3纳米晶可见光探测器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105609588B (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105870334A (zh) * | 2016-05-27 | 2016-08-17 | 陕西师范大学 | 一种高效钙钛矿单晶光探测器及其制备方法 |
CN106449987A (zh) * | 2016-11-15 | 2017-02-22 | 华南理工大学 | 一种光导型有机半导体探测器及其制备方法 |
CN107634143A (zh) * | 2017-09-25 | 2018-01-26 | 中国工程物理研究院材料研究所 | 一种钙钛矿电池的复合材料吸收层及其制法 |
CN108467725A (zh) * | 2018-03-30 | 2018-08-31 | 温州大学 | 一种Au-CsPbX3/PMMA纳米复合材料及其制备方法 |
CN108807562A (zh) * | 2017-04-28 | 2018-11-13 | 清华大学 | 光电探测器及其制备方法 |
CN108807678A (zh) * | 2018-06-11 | 2018-11-13 | 电子科技大学 | 一种pcbm受体增强型量子点光电探测单元及其制备方法和探测器 |
CN110112250A (zh) * | 2019-04-25 | 2019-08-09 | 淮阴工学院 | 石墨烯光-电探测器及其制备方法 |
US10473524B2 (en) | 2017-02-02 | 2019-11-12 | Samsung Electronics Co., Ltd. | Optical filter and optical spectrometer including the same |
CN111710745A (zh) * | 2020-06-28 | 2020-09-25 | 重庆邮电大学 | 一种锰掺杂纯无机钙钛矿-Au纳米晶异质结及其制备方法和应用 |
WO2020192016A1 (zh) * | 2019-03-22 | 2020-10-01 | 深圳市华星光电技术有限公司 | 量子点复合膜制备方法、背光模组 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2569347Y (zh) * | 2002-08-29 | 2003-08-27 | 中国科学院长春光学精密机械与物理研究所 | 铟镓砷红外探测器 |
US20060188401A1 (en) * | 2005-02-23 | 2006-08-24 | Karla Robotti | Microfluidic devices with SPR sensing capabilities |
CN101183691A (zh) * | 2007-11-30 | 2008-05-21 | 中山大学 | 半导体光电探测器芯片结构 |
US20080212102A1 (en) * | 2006-07-25 | 2008-09-04 | Nuzzo Ralph G | Multispectral plasmonic crystal sensors |
CN102163639A (zh) * | 2011-03-23 | 2011-08-24 | 吉林大学 | TiO2-ZrO2复合氧化物薄膜紫外光探测器及其制备方法 |
CN102522438A (zh) * | 2011-12-15 | 2012-06-27 | 东南大学 | 一种利用氧化铟锡纳米颗粒增效的近红外光电探测器 |
CN103545397A (zh) * | 2013-10-29 | 2014-01-29 | 中国科学院化学研究所 | 薄膜紫外光探测器及其制备方法与应用 |
CN103872155A (zh) * | 2014-03-19 | 2014-06-18 | 南京大学 | 一种表面等离激元增强的超导单光子探测器及其制备方法 |
-
2016
- 2016-01-22 CN CN201610046489.5A patent/CN105609588B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2569347Y (zh) * | 2002-08-29 | 2003-08-27 | 中国科学院长春光学精密机械与物理研究所 | 铟镓砷红外探测器 |
US20060188401A1 (en) * | 2005-02-23 | 2006-08-24 | Karla Robotti | Microfluidic devices with SPR sensing capabilities |
US20080212102A1 (en) * | 2006-07-25 | 2008-09-04 | Nuzzo Ralph G | Multispectral plasmonic crystal sensors |
CN101183691A (zh) * | 2007-11-30 | 2008-05-21 | 中山大学 | 半导体光电探测器芯片结构 |
CN102163639A (zh) * | 2011-03-23 | 2011-08-24 | 吉林大学 | TiO2-ZrO2复合氧化物薄膜紫外光探测器及其制备方法 |
CN102522438A (zh) * | 2011-12-15 | 2012-06-27 | 东南大学 | 一种利用氧化铟锡纳米颗粒增效的近红外光电探测器 |
CN103545397A (zh) * | 2013-10-29 | 2014-01-29 | 中国科学院化学研究所 | 薄膜紫外光探测器及其制备方法与应用 |
CN103872155A (zh) * | 2014-03-19 | 2014-06-18 | 南京大学 | 一种表面等离激元增强的超导单光子探测器及其制备方法 |
Non-Patent Citations (3)
Title |
---|
PARTHIBAN RAMASAMY: "All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications", 《CHEMICAL COMMUNICATIONS》 * |
曲文刚: "金属纳米粒子表面等离子体共振效应调控及相关应用", 《中国博士学位论文全文数据库工程科技I辑》 * |
董大银: "局域表面等离激元增强ZnO薄膜发光及MSM器件光电性能研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105870334A (zh) * | 2016-05-27 | 2016-08-17 | 陕西师范大学 | 一种高效钙钛矿单晶光探测器及其制备方法 |
CN105870334B (zh) * | 2016-05-27 | 2021-01-15 | 陕西师范大学 | 一种高效钙钛矿单晶光探测器及其制备方法 |
CN106449987A (zh) * | 2016-11-15 | 2017-02-22 | 华南理工大学 | 一种光导型有机半导体探测器及其制备方法 |
CN106449987B (zh) * | 2016-11-15 | 2019-05-14 | 华南理工大学 | 一种光导型有机半导体探测器及其制备方法 |
US10473524B2 (en) | 2017-02-02 | 2019-11-12 | Samsung Electronics Co., Ltd. | Optical filter and optical spectrometer including the same |
US10989594B2 (en) | 2017-02-02 | 2021-04-27 | Samsung Electronics Co., Ltd. | Optical filter and optical spectrometer including the same |
CN108807562A (zh) * | 2017-04-28 | 2018-11-13 | 清华大学 | 光电探测器及其制备方法 |
CN107634143A (zh) * | 2017-09-25 | 2018-01-26 | 中国工程物理研究院材料研究所 | 一种钙钛矿电池的复合材料吸收层及其制法 |
CN108467725A (zh) * | 2018-03-30 | 2018-08-31 | 温州大学 | 一种Au-CsPbX3/PMMA纳米复合材料及其制备方法 |
CN108807678A (zh) * | 2018-06-11 | 2018-11-13 | 电子科技大学 | 一种pcbm受体增强型量子点光电探测单元及其制备方法和探测器 |
WO2020192016A1 (zh) * | 2019-03-22 | 2020-10-01 | 深圳市华星光电技术有限公司 | 量子点复合膜制备方法、背光模组 |
CN110112250A (zh) * | 2019-04-25 | 2019-08-09 | 淮阴工学院 | 石墨烯光-电探测器及其制备方法 |
CN111710745A (zh) * | 2020-06-28 | 2020-09-25 | 重庆邮电大学 | 一种锰掺杂纯无机钙钛矿-Au纳米晶异质结及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN105609588B (zh) | 2018-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105609588A (zh) | Au纳米颗粒增强的高性能无机钙钛矿CsPbX3纳米晶可见光探测器 | |
Firdaus et al. | Characterization of ZnO and ZnO: TiO2 thin films prepared by sol-gel spray-spin coating technique | |
Ghadiri et al. | Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers | |
Mali et al. | Novel synthesis and characterization of mesoporous ZnO nanofibers by electrospinning technique | |
Yu et al. | Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles | |
Osminkina et al. | Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: evidences for light localization effect | |
Hosseini et al. | High-performance UV‐Vis-NIR photodetectors based on plasmonic effect in Au nanoparticles/ZnO nanofibers | |
Cook et al. | Heat-assisted inkjet printing of tungsten oxide for high-performance ultraviolet photodetectors | |
US20150036234A1 (en) | Methods and compositions related to dielectric coated metal nanoparticles in thin-film opto-electronic conversion devices | |
CN103346171A (zh) | 一种响应增强型ZnO基光电导探测器及其制备方法 | |
Joshna et al. | Fast response of UV photodetector based on Ag nanoparticles embedded uniform TiO2 nanotubes array | |
Deng et al. | A high sensitive and low detection limit of formaldehyde gas sensor based on hierarchical flower-like CuO nanostructure fabricated by sol–gel method | |
Zhong et al. | The enhanced light absorptance and device application of nanostructured black silicon fabricated by metal-assisted chemical etching | |
Asib et al. | Developing high-sensitivity UV sensors based on ZnO nanorods grown on TiO2 seed layer films using solution immersion method | |
Zeng et al. | Fabrication of flexible self-powered UV detectors based on ZnO nanowires and the enhancement by the decoration of Ag nanoparticles | |
CN103011068A (zh) | 一种金属纳米环的溶液法制备方法 | |
Al-Mayalee et al. | Optical and photoconductive response of CuO nanostructures grown by a simple hot-water treatment method | |
Jia et al. | Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances | |
Masuda et al. | Aqueous synthesis of ZnO rod arrays for molecular sensor | |
CN107322005B (zh) | 一种基于纳米银颗粒的表面增强拉曼散射衬底制备方法 | |
Sulaiman et al. | High-performance photodetector of Au–MgO/PS nanostructure manufactured via pulsed laser ablation technique | |
Yoon et al. | Toward high conductivity of electrospun indium tin oxide nanofibers with fiber morphology dependent surface coverage: postannealing and polymer ratio effects | |
Zhu et al. | Electrospun ZnO nanofibers‐based ultraviolet detector with high responsivity | |
Havigh et al. | Improving the performance of the self-powered polymer-based UV/Vis photodetectors via carbon fibers | |
KR102004650B1 (ko) | 태양전지용 메타소재 전극 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |