CN105609582B - 一种结合带间和价带子带间吸收的稀铋量子阱探测器及制备方法 - Google Patents

一种结合带间和价带子带间吸收的稀铋量子阱探测器及制备方法 Download PDF

Info

Publication number
CN105609582B
CN105609582B CN201510867591.7A CN201510867591A CN105609582B CN 105609582 B CN105609582 B CN 105609582B CN 201510867591 A CN201510867591 A CN 201510867591A CN 105609582 B CN105609582 B CN 105609582B
Authority
CN
China
Prior art keywords
bismuth
layer
dilute
valence band
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510867591.7A
Other languages
English (en)
Other versions
CN105609582A (zh
Inventor
顾溢
张永刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201510867591.7A priority Critical patent/CN105609582B/zh
Publication of CN105609582A publication Critical patent/CN105609582A/zh
Application granted granted Critical
Publication of CN105609582B publication Critical patent/CN105609582B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种结合带间和价带子带间吸收的稀铋量子阱探测器及制备方法,探测器以稀铋多量子阱作为吸收层,其中势阱层为p型稀铋III‑V族材料,势垒层为不掺杂的不含铋III‑V族材料。制备方法包括依次在衬底上生长p型高掺杂不含铋III‑V族缓冲层、稀铋多量子阱结构吸收层以及p型高掺杂不含铋III‑V族材料上接触层。本发明的探测器可以同时利用带间吸收和价带子带间吸收,增强对光的吸收,也可在太阳电池等利用光吸收的器件中进行应用,具有广泛的应用前景。

Description

一种结合带间和价带子带间吸收的稀铋量子阱探测器及制备 方法
技术领域
本发明属于半导体探测器领域,特别涉及一种结合带间和价带子带间吸收的稀铋量子阱探测器及制备方法。
背景技术
半导体探测器是用于探测光的半导体器件,根据所探测光波长的不同可以分为紫外探测器、可见光探测器、红外探测器等等。半导体探测器件的应用领域包含军事,工业,农业,医疗,气象,地球物理,资源勘查等,几乎覆盖了所有的人类科技领域。
半导体探测器采用的机理有许多种,根据其所采用的机理可以分为不同的多种类别。如光导型半导体探测器,利用pn结和肖特基结光伏特性的半导体光伏探测器,肖特基势垒光电管和金属-半导体-金属探测器,具有内部增益的雪崩光电二极管,上述这些探测器一般是吸收光后电子从半导体材料的价带跃迁到导带,利用的是带间跃迁。还有一些探测器利用的则是子带间跃迁,吸收光后电子在导带的不同子带间发生跃迁,或空穴在价带的不同子带间发生跃迁,如量子阱红外探测器、量子点红外探测器、量子级联探测器等。
电子型量子阱红外探测器由于电子的子带光跃迁对入射光的偏振状态具有很强的选择性,只有电矢量垂直于多量子阱生长面入射光才能被电子吸收完成在量子阱中的子带间跃迁,因此对光的耦合方式提出了要求。空穴型量子阱红外探测器的自旋轨道分裂带或轻重空穴价带能够直接吸收垂直入射的光线,完成在不同价带子带间的跃迁,因此无需光栅耦合。传统上,量子阱红外探测器由于利用的是载流子在子带间的跃迁,针对的均是波长较长的光的探测。在一般的半导体材料中,带间吸收和子带间吸收的波长一般是相差很大的,子带间吸收比带间吸收的能量小、波长长。例如,GaAs材料的带间吸收能量约为1.4eV(0.88μm),而导带子带间吸收波长范围3-15μm。GaAs的自旋轨道分裂能为0.34eV,对应空穴从重空穴价带到自旋轨道分裂带的跃迁波长约为3.6μm。如果能有一种半导体材料制备的探测器能同时利用带间吸收和子带间吸收,则可以增强器件对光的吸收。
近年来,稀铋半导体材料因具有很多独特而重要的特性而引起了国际上越来越多的关注。人们发现当在III-V族材料中加入铋后会产生类似于稀氮材料的带隙收缩,对于GaAs1-xBix材料,1%的Bi引起的带隙收缩约为60-80meV。而铋元素主要对价带产生作用,对导带作用很小,空穴迁移率只是随着铋浓度的升高而略微降低,不会像稀氮材料那样大幅降低电子迁移率及产生大量非辐射复合中心。由于铋原子大的原子质量,稀铋半导体材料还具有大的自旋轨道分裂能,GaAs1-xBix材料中每1%的Bi引起的材料自旋轨道分裂能增加约为45meV。铋元素在普通生长温度下III-V族材料的生长中起表面活化剂的作用,有利于形成平整的界面,增强材料的光学特性。
发明内容
本发明所要解决的技术问题是提供一种结合带间和价带子带间吸收的稀铋量子阱探测器及制备方法,该探测器以p型稀铋势阱层和不掺杂不含铋势垒层构成的量子阱结构作为吸收层,可增强光吸收,提高器件性能;探测器可吸收垂直入射的光,不需要采用光栅耦合,降低器件制备成本;结构和制备方法还可运用于同样进行光吸收的太阳电池制备中,增强太阳电池对光的吸收,提高太阳电池的光电转换效率,具有良好的应用前景。
本发明的一种结合带间和价带子带间吸收的稀铋量子阱探测器,所述探测器以稀铋多量子阱作为吸收层,其中势阱层为p型稀铋III-V族材料,势垒层为不掺杂的不含铋III-V族材料,势阱层p型掺杂浓度介于3×1017cm-3至5×1018cm-3之间。
所述势阱层中空穴从重空穴价带到自旋轨道分裂带的跃迁能量E2与电子从价带到导带的跃迁能量E1相同。
所述稀铋多量子阱吸收层下方为p型高掺杂不含铋III-V族缓冲层,同时作为下接触层;吸收层上方为p型高掺杂不含铋III-V族材料上接触层。
所述上下接触层p型掺杂浓度大于3×1018cm-3
本发明的一种结合带间和价带子带间吸收的稀铋量子阱探测器,包括如下步骤:
(1)在半绝缘或p型衬底上先生长一层p型高掺杂不含铋III-V族缓冲层,p型掺杂浓度大于3×1018cm-3,同时作为下接触层;
(2)在下接触层上方生长稀铋多量子阱吸收层,其中势阱层为p型稀铋III-V族材料,空穴从重空穴价带到自旋轨道分裂带的跃迁能量E2与电子从价带到导带的跃迁能量E1相同,p型掺杂浓度介于3×1017cm-3至5×1018cm-3之间;势垒层为不掺杂的不含铋III-V族材料;量子阱数目为N,3≤N≤50,即依次生长N+1层势垒层和N层势阱层;
(3)在吸收层上方生长一层p型高掺杂不含铋III-V族上接触层,p型掺杂浓度大于3×1018cm-3
(4)生长完成的样品采用常规腐蚀台面、在上下接触层淀积金属电极、封装制得探测器。
本发明的探测器结构稀铋势阱层中空穴从重空穴价带到自旋轨道分裂带的跃迁以及电子从价带到导带的跃迁具有一致的光吸收波长,在工作时同时利用了空穴从重空穴价带到自旋轨道分裂带的跃迁以及电子从价带到导带的跃迁,由于稀铋势阱层所具有的大的自旋轨道分裂能,这两种跃迁具有一致的光吸收波长,增强光吸收。
有益效果
本发明以p型稀铋势阱层和不掺杂不含铋势垒层构成的量子阱结构作为吸收层,可增强光吸收,提高器件性能;探测器可吸收垂直入射的光,不需要采用光栅耦合,降低器件制备成本;本发明的结构和制备方法还可运用于同样进行光吸收的太阳电池制备中,增强太阳电池对光的吸收,提高太阳电池的光电转换效率,具有良好的应用前景。
附图说明
图1是本发明提供的结合带间和价带子带间吸收的稀铋量子阱探测器的结构示意图;
图2是本发明提供的结合带间和价带子带间吸收的稀铋量子阱探测器的载流子跃迁示意图;
图3是实施例1GaAs0.90Bi0.10/GaAs量子阱探测器的结构示意图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
本实施例提供了一种结合带间和价带子带间吸收的稀铋量子阱探测器结构,如图1所示,包括衬底1上的p型高掺杂不含铋III-V族缓冲层2、稀铋多量子阱结构吸收层以及p型高掺杂不含铋III-V族材料上接触层5。其中稀铋多量子阱结构吸收层的势垒层为不掺杂的不含铋III-V族材料3,势阱层为p型稀铋III-V族材料4,量子阱数目为N(3≤N≤50)。势阱层p型掺杂浓度介于3×1017cm-3至5×1018cm-3之间,上下接触层p型掺杂浓度大于3×1018cm-3。所述的探测器在工作时同时利用了稀铋势阱层中空穴从重空穴价带到自旋轨道分裂带的跃迁以及电子从价带到导带的跃迁,由于稀铋势阱层所具有的大的自旋轨道分裂能,调节铋组分可使得空穴从重空穴价带到自旋轨道分裂带的跃迁能量E2与电子从价带到导带的跃迁能量E1相同,增强探测器对光的吸收。
以GaAs衬底上的GaAs0.90Bi0.10/GaAs量子阱探测器的制备过程为例说明结合带间和价带子带间吸收的稀铋量子阱探测器及制备步骤,这些结构和制备步骤可以直接推广到其他类型的此类稀铋量子阱探测器,只要对材料组分、厚度等参数进行调整即可。具体结构和制备步骤如下:
(1)在半绝缘GaAs衬底上先生长1μm厚的GaAs p型高掺杂缓冲层,同时作为下接触层,掺杂浓度为5×1018cm-3
(2)生长GaAsBi/GaAs多量子阱结构吸收层,势阱层材料选取合适的组分GaAs0.90Bi0.10,使空穴从重空穴价带到自旋轨道分裂带的跃迁能量E2与电子从价带到导带的跃迁能量E1均为0.8eV,对应波长1.6μm;每层势阱层厚度较薄以确保材料处于应变状态,不产生多余的位错,这里选定为6nm厚;势阱层为p型掺杂浓度为1×1018cm-3;势垒层为30nm厚不掺杂GaAs;量子阱数目为30,即依次生长31层势垒层和30层势阱层;
(3)生长400nm厚p型高掺杂GaAs上接触层,掺杂浓度为5×1018cm-3,完成该探测器材料的生长,形成如图3所示的结构;
(4)生长完成的样品采用常规腐蚀台面、在上下接触层淀积金属电极、封装等工艺步骤制备成探测器器件。

Claims (5)

1.一种结合带间和价带子带间吸收的稀铋量子阱探测器,其特征在于:所述探测器以稀铋多量子阱作为吸收层,其中势阱层为p型稀铋III-V族材料,势垒层为不掺杂的不含铋III-V族材料,势阱层p型掺杂浓度介于3×1017cm-3至5×1018cm-3之间。
2.根据权利要求1所述的一种结合带间和价带子带间吸收的稀铋量子阱探测器,其特征在于:所述势阱层中空穴从重空穴价带到自旋轨道分裂带的跃迁能量E2与电子从价带到导带的跃迁能量E1相同。
3.根据权利要求1所述的一种结合带间和价带子带间吸收的稀铋量子阱探测器,其特征在于:所述稀铋多量子阱吸收层下方为p型高掺杂不含铋III-V族缓冲层,同时作为下接触层;吸收层上方为p型高掺杂不含铋III-V族材料上接触层。
4.根据权利要求3所述的一种结合带间和价带子带间吸收的稀铋量子阱探测器,其特征在于:所述上接触层和下接触层p型掺杂浓度大于3×1018cm-3
5.一种结合带间和价带子带间吸收的稀铋量子阱探测器,包括如下步骤:
(1)在半绝缘或p型衬底上先生长一层p型高掺杂不含铋III-V族缓冲层,高掺杂不含铋III-V族缓冲层的p型掺杂浓度大于3×1018cm-3,同时作为下接触层;
(2)在下接触层上方生长稀铋多量子阱吸收层,其中势阱层为p型稀铋III-V族材料,空穴从重空穴价带到自旋轨道分裂带的跃迁能量E2与电子从价带到导带的跃迁能量E1相同,稀铋多量子阱吸收层的p型掺杂浓度介于3×1017cm-3至5×1018cm-3之间;势垒层为不掺杂的不含铋III-V族材料;量子阱数目为N,3≤N≤50,即依次生长N+1层势垒层和N层势阱层;
(3)在吸收层上方生长一层p型高掺杂不含铋III-V族上接触层,高掺杂不含铋III-V族上接触层的p型掺杂浓度大于3×1018cm-3
(4)生长完成的样品采用腐蚀台面、在上下接触层淀积金属电极、封装制得探测器。
CN201510867591.7A 2015-12-01 2015-12-01 一种结合带间和价带子带间吸收的稀铋量子阱探测器及制备方法 Active CN105609582B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510867591.7A CN105609582B (zh) 2015-12-01 2015-12-01 一种结合带间和价带子带间吸收的稀铋量子阱探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510867591.7A CN105609582B (zh) 2015-12-01 2015-12-01 一种结合带间和价带子带间吸收的稀铋量子阱探测器及制备方法

Publications (2)

Publication Number Publication Date
CN105609582A CN105609582A (zh) 2016-05-25
CN105609582B true CN105609582B (zh) 2017-11-21

Family

ID=55989349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510867591.7A Active CN105609582B (zh) 2015-12-01 2015-12-01 一种结合带间和价带子带间吸收的稀铋量子阱探测器及制备方法

Country Status (1)

Country Link
CN (1) CN105609582B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784119B (zh) * 2016-11-29 2018-04-03 苏州苏纳光电有限公司 含Bi化合物光电探测器及其制作方法
CN113130682B (zh) * 2021-04-13 2022-10-11 清华大学 内含调制掺杂局域电场的半导体红外探测器及其调控方法
CN114420772B (zh) * 2021-12-30 2022-09-16 上海镓芯科技有限公司 一种双光谱薄膜型多结光伏器件结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367520A (zh) * 2013-06-27 2013-10-23 中国科学院上海微系统与信息技术研究所 InP基截止波长大范围可调的晶格匹配InGaAsBi探测器结构及其制备

Also Published As

Publication number Publication date
CN105609582A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
US7915521B2 (en) Type II quantum dot solar cells
Rogalski et al. InAs/GaSb type-II superlattice infrared detectors: three decades of development
Sablon et al. Effects of AlGaAs energy barriers on InAs/GaAs quantum dot solar cells
Cuesta et al. Effect of bias on the response of GaN axial p–n junction single-nanowire photodetectors
CN106299015B (zh) 一种采用低维量子点倍增层的半导体雪崩光电探测器
US10181539B2 (en) Photoelectric conversion element and photoelectric conversion device including the same
CN105609582B (zh) 一种结合带间和价带子带间吸收的稀铋量子阱探测器及制备方法
CN108305911A (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN104900731A (zh) 红外光电探测器及其制造方法
CN101271933A (zh) 量子点-阱红外探测器的结构及其制备方法
EP2523218A2 (en) Solar Cell
CN102820365A (zh) 半导体红外上转换单光子探测设备及方法
CN103022218A (zh) 一种InAs雪崩光电二极管及其制造方法
CN103280482A (zh) 多结太阳能电池及其制备方法
CN105957908A (zh) 倍增区控制的雪崩光电二极管及其制造方法
US9240507B2 (en) Intermediate band solar cell using type I and type II quantum dot superlattices
Norman et al. InGaAs/GaAs QD superlattices: MOVPE growth, structural and optical characterization, and application in intermediate-band solar cells
Wang et al. Ultra-low noise avalanche photodiodes with a" centered-well" multiplication region
TWI427806B (zh) 堆疊型太陽能電池
CN101304051A (zh) 具渐变式超晶格结构的太阳电池
Noman et al. Optimizing band gap, electron affinity, & carrier mobility for improved performance of formamidinium lead tri-iodide perovskite solar cells
CN106409966B (zh) 半导体受光元件
CN101262025A (zh) 量子放大的p型量子阱红外探测器
US20160211393A1 (en) Tunnel Diode With Broken-Gap Quantum Well
Goodnick et al. Solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant