TWI427806B - 堆疊型太陽能電池 - Google Patents

堆疊型太陽能電池 Download PDF

Info

Publication number
TWI427806B
TWI427806B TW098100992A TW98100992A TWI427806B TW I427806 B TWI427806 B TW I427806B TW 098100992 A TW098100992 A TW 098100992A TW 98100992 A TW98100992 A TW 98100992A TW I427806 B TWI427806 B TW I427806B
Authority
TW
Taiwan
Prior art keywords
junction
solar cell
alloy layer
tunnel junction
gallium
Prior art date
Application number
TW098100992A
Other languages
English (en)
Other versions
TW201027765A (en
Inventor
Rong Ren Lee
Yung Szu Su
Shih Chang Lee
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW098100992A priority Critical patent/TWI427806B/zh
Priority to US12/686,169 priority patent/US20100175746A1/en
Publication of TW201027765A publication Critical patent/TW201027765A/zh
Priority to US14/161,255 priority patent/US20140134783A1/en
Application granted granted Critical
Publication of TWI427806B publication Critical patent/TWI427806B/zh
Priority to US15/219,788 priority patent/US10217892B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

堆疊型太陽能電池
本發明係關於一種堆疊型太陽能電池(tandem solar cell)設計。
太陽能電池(Solar Cell)是一種能量轉換的光電元件,它是經由太陽光照射後,把光的能量轉換成電能。
堆疊型太陽能電池或多接面太陽能電池(multi-junction solar cell)是將兩個或兩個以上相同或不同能隙的p-n接面元件堆疊起來,製成堆疊型太陽能電池。設計上將能夠吸收較高能量光譜的p-n接面元件放在上層,吸收較低能量光譜的p-n接面元件放在下層,透過不同材料的p-n接面元件,將光子的能量層層吸收。可以提高太陽光的吸收,降低傳遞損失,提升效率。
如第一圖所示,係顯示一習知堆疊型太陽能電池結構剖面圖,包含一基板101、一緩衝層102、一穿隧接面(tunnel junction)103及一p-n接面(p-n junction)104。目前被廣泛使用的穿隧接面103包含有一重摻雜n型層(n++)1031和一重摻雜p型層(p++)1032,其中重摻雜n型層1031通常為摻雜矽(Si)、碲(Te)或硒(Se);重摻雜p型層1032通常為摻雜碳(C)、鋅(Zn)、鎂(Mg)或鈹(Be),一般較常用為碳(C)摻雜,但重摻雜p型層1032在摻雜碳(C)後會產生晶格常數變小的現象,此現象導致穿隧接面103的晶格常數和基板101的差異過大,而造成磊晶品質變差,影響穿隧接面103的效果。
本發明為一種堆疊型太陽能電池裝置,包含:一基板,一第一穿隧接面形成於基板之上,及一第一p-n接面形成於第一穿隧接面之上,其中第一穿隧接面包含一重摻雜n型層及一合金層,此合金層係由一重摻雜p型層包含至少一原子序較鎵(Ga)為大之元素所組成,其中此重摻雜p型層與此一原子序較大之元素形成合金。
以下配合圖式說明本發明之實施例。
第二A圖係顯示依照本發明一實施例之堆疊型太陽能電池結構剖面圖:包括一基板201、一緩衝層202、一第一穿隧接面203及一第一p-n接面204。其中第一穿隧接面203包含有一重摻雜n型層(n++)2031和一合金層2032。在本發明中,基板201之材料可選自矽(Si)、鍺(Ge)、矽鍺(Si-Ge)、砷化鎵(GaAs)、或磷化銦(InP)。緩衝層202、第一穿隧接面之重摻雜n型層2031、第一穿隧接面之合金層2032及第一p-n接面204之材料可選自包含一種或一種以上之物質選自鎵(Ga)、鋁(Al)、銦(In)、砷(As)以及磷(P)所構成群組,例如可為砷化鋁銦鎵(Alx Ga1-x )y In1-y As或磷化鋁銦鎵(Alx Ga1-x )y In1-y P。
第一穿隧接面之合金層2032係由一重摻雜p型層包含一原子序較鎵(Ga)為大之元素所組成。在形成p型層時,於磊晶製程中同時加入一高濃度之p型摻雜物質及一原子序較鎵(Ga)為大之元素,以形成一由一重摻雜p型層包含至少一原子序較鎵(Ga)為大之元素所組成之合金層2032。此合金層之晶格常數較習知之重摻雜p型層之晶格常數大,並可隨加入元素之含量增加而增加,因而降低合金層2032與基板201之晶格差異,而得到更好的磊晶品質。此外藉由原子序較鎵(Ga)為大之元素的加入,可使合金層2032之能階降低,Jp上昇,且Jp/Vp變大,提高通過第一穿隧接面203之穿隧電流。其中,加入原子序較鎵(Ga)為大之元素材料可包括銦(In)、鉈(Tl)、銻(Sb)、鉍(Bi)、錫(Sn)、鉛(Pb)、碲(Te)、釙(Po)、鎘(Cd)、汞(Hg)。加入的濃度可為1~2%,即約3.5×1021 ~1.7×1022 (l/cm3 )。
第二B圖係顯示依照本發明另一實施例之堆疊型太陽能電池結構剖面圖:包括一基板201、一緩衝層202、一第一穿隧接面203、一第一p-n接面204、一第二穿隧接面205及一第二p-n接面206。其中第一穿隧接面203及第二穿隧接面205分別包含有一重摻雜n型層(n++)2031、2051和一合金層2032、2052。
在本實施例中,基板201之材料可選自矽(Si)、鍺(Ge)、矽鍺(Si-Ge)、砷化鎵(GaAs)、磷化銦(InP)。緩衝層202、第一及第二穿隧接面之重摻雜n型層2031、2051、第一及第二穿隧接面之合金層2032、2052與第一及第二p-n接面204、206之材料可選自包含一種或一種以上之物質選自鎵(Ga)、鋁(Al)、銦(In)、砷(As)以及磷(P)所構成群組,例如可為砷化鋁銦鎵(Alx Ga1-x )y In1-y As或磷化鋁銦鎵(Alx Ga1-x )y In1-y P。
第一及第二穿隧接面之合金層2032、2052係由一重摻雜p型層包含一原子序較鎵(Ga)為大之元素所組成。在形成p型層時,於磊晶製程中同時加入一高濃度之p型摻雜物質及一原子序較鎵(Ga)為大之元素,以形成由重摻雜p型層包含至少一原子序較鎵(Ga)為大之元素所組成之合金層2032、2052。此合金層之晶格常數較習知之重摻雜p型層之晶格常數大,並可隨加入元素之含量增加而增加,因而降低合金層2032、2052分別與基板201及第一p-n接面204之晶格差異,而得到更好的磊晶品質。此外藉由原子序較鎵(Ga)為大之元素的加入,可使合金層2032、2052之能階降低,Jp上昇,且Jp/Vp變大,提高通過第一穿隧接面之穿隧電流。其中,加入原子序較鎵(Ga)為大之元素材料可包括銦(In)、鉈(Tl)、銻(Sb)、鉍(Bi)、錫(Sn)、鉛(Pb)、碲(Te)、釙(Po)、鎘(Cd)、汞(Hg)。加入的濃度可為1~2%,即約3.5×1021 ~1.7×1022 (l/cm3 )。
在一實施例中,基板201之材料為鍺(Ge),第一與第二穿隧接面203、205之重摻雜n型層(n++)2031、2051之材料為InGaP:Te,合金層2032、2052之材料為Alx Ga(1-x) As:C+,並包含銦(In)以形成Iny Alx Ga(1-x) As合金,可降低晶格差異,提高通過穿隧接面之穿隧電流。
第三圖係顯示依照本發明一實施例中穿隧接面之合金層所包含不同銦(In)含量之I-V curve圖,可以發現隨著銦(In)加入濃度的升高,I-V curve斜率變大,提高通過第一與第二穿隧接面203、205的穿隧電流。
在本發明另一實施例中,第二p-n接面206之上也可再形成一第三穿隧接面,且第三穿隧接面之上也可再形成一第三p-n接面,可隨產品設計需要,將穿隧接面與p-n接面反覆堆疊,而不限制堆疊型太陽能電池之p-n接面元件數量。其中穿隧接面之設計與上述實施例相同,不再贅述。
以上各圖式與說明雖僅分別對應特定實施例,然而,各個實施例中所說明或揭露之元件、實施方式、設計準則、及技術原理除在彼此顯相衝突、矛盾、或難以共同實施之外,吾人當可依其所需任意參照、交換、搭配、協調、或合併。
雖然本發明已說明如上,然其並非用以限制本發明之範圍、實施順序、或使用之材料與製程方法。對於本發明所作之各種修飾與變更,皆不脫本發明之精神與範圍。
101、201...基板
102、202...緩衝層
103、203...第一穿隧接面
104、204...第一p-n接面
105、205...第二穿隧接面
106、206...第二p-n接面
根據以上所述之較佳實施例,並配合所附圖式說明,讀者當能對本發明之目的、特徵和優點有更深入的理解。但值得注意的是,為了清楚描述起見,本說明書所附之圖式並未按照比例尺加以繪示。
圖式簡單說明如下:
第一圖係顯示一習知之堆疊型太陽能電池結構剖面圖;
第二A圖係顯示依照本發明一實施例之堆疊型太陽能電池結構剖面圖;
第二B圖係顯示依照本發明另一實施例之堆疊型太陽能電池結構剖面圖;
第三圖係顯示依照本發明一實施例中穿隧接面之合金層加入不同銦(In)含量之I-V curve圖。
201...基板
202...緩衝層
203...第一穿隧接面
204...第一p-n接面

Claims (10)

  1. 一種堆疊型太陽能電池裝置,包含:一基板;一第一穿隧接面形成於該基板之上;一第一p-n接面形成於該第一穿隧接面之上;一第二穿隧接面形成於該第一p-n接面之上;以及一第二p-n接面形成於該第二穿隧接面之上,其中該第一穿隧接面與該第二穿隧接面各自包含一重摻雜n型層及一合金層,並且該重摻雜n型層包含InGaP:Te,該合金層包含Iny Alx Ga(1-x) As。
  2. 如專利申請範圍第1項所述之堆疊型太陽能電池裝置,其中該合金層包含一高濃度之p型摻雜物質。
  3. 如專利申請範圍第1項所述之堆疊型太陽能電池裝置,其中於該第一穿隧接面中,該重摻雜n型層形成於該基板與該合金層之間。
  4. 如專利申請範圍第1項所述之堆疊型太陽能電池裝置,更包含一緩衝層形成於該基板與該第一穿隧接面之間。
  5. 如專利申請範圍第1項所述之堆疊型太陽能電池裝置,其中該合金層包含原子序較鎵(Ga)為大之元素材料。
  6. 如專利申請範圍第5項所述之堆疊型太陽能電池裝置,其中該原子序較鎵(Ga)為大之元素濃度為1~2%或3.5×1021 ~1.7×1022 (l/cm3 )。
  7. 如專利申請範圍第1項所述之堆疊型太陽能電池裝置,至少 一穿隧接面與至少一p-n接面,二者交疊於該第二p-n接面之上,且該穿隧接面包含具有一原子序較鎵(Ga)為大之元素之合金層。
  8. 一種堆疊型太陽能電池裝置的製作方法,包含:提供一基板;形成一第一穿隧接面於該基板之上;形成一第一p-n接面於該第一穿隧接面之上;形成一第二穿隧接面於該第一p-n接面之上;以及形成一第二p-n接面於該第二穿隧接面之上;其中該第一穿隧接面與該第二穿隧接面各自包含一重摻雜n型層及一合金層,該重摻雜n型層包含InGaP:Te以及該合金層包含Iny Alx Ga(1-x) As。
  9. 如專利申請範圍第8項所述之製作方法,其中該合金層包含原子序較鎵(Ga)為大之元素。
  10. 如專利申請範圍第8項所述之製作方法,更包含形成彼此交疊之至少一穿隧接面與至少一p-n接面於該第二p-n接面之上,且該穿隧接面包含具有一原子序較鎵(Ga)為大元素之合金層。
TW098100992A 2009-01-12 2009-01-12 堆疊型太陽能電池 TWI427806B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW098100992A TWI427806B (zh) 2009-01-12 2009-01-12 堆疊型太陽能電池
US12/686,169 US20100175746A1 (en) 2009-01-12 2010-01-12 Tandem solar cell
US14/161,255 US20140134783A1 (en) 2009-01-12 2014-01-22 Tandem solar cell
US15/219,788 US10217892B2 (en) 2009-01-12 2016-07-26 Tandem solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098100992A TWI427806B (zh) 2009-01-12 2009-01-12 堆疊型太陽能電池

Publications (2)

Publication Number Publication Date
TW201027765A TW201027765A (en) 2010-07-16
TWI427806B true TWI427806B (zh) 2014-02-21

Family

ID=42318175

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098100992A TWI427806B (zh) 2009-01-12 2009-01-12 堆疊型太陽能電池

Country Status (2)

Country Link
US (3) US20100175746A1 (zh)
TW (1) TWI427806B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427806B (zh) 2009-01-12 2014-02-21 Epistar Corp 堆疊型太陽能電池
KR20120047583A (ko) 2010-11-04 2012-05-14 삼성전자주식회사 태양 전지 및 이의 제조 방법
US10170652B2 (en) * 2011-03-22 2019-01-01 The Boeing Company Metamorphic solar cell having improved current generation
CN103107229B (zh) * 2013-02-25 2015-09-09 中国科学院苏州纳米技术与纳米仿生研究所 石墨烯/半导体多结级联太阳电池及其制备方法
CN103137766B (zh) * 2013-03-15 2015-09-09 中国科学院苏州纳米技术与纳米仿生研究所 三结级联太阳电池及其制备方法
CN105280745B (zh) * 2014-06-05 2018-04-24 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs /InGaAs/Ge四结级联太阳电池及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800630A (en) * 1993-04-08 1998-09-01 University Of Houston Tandem solar cell with indium phosphide tunnel junction
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6147296A (en) * 1995-12-06 2000-11-14 University Of Houston Multi-quantum well tandem solar cell
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
US7126052B2 (en) * 2002-10-02 2006-10-24 The Boeing Company Isoelectronic surfactant induced sublattice disordering in optoelectronic devices

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407491A (en) * 1993-04-08 1995-04-18 University Of Houston Tandem solar cell with improved tunnel junction
JP3657143B2 (ja) * 1999-04-27 2005-06-08 シャープ株式会社 太陽電池及びその製造方法
US6316715B1 (en) * 2000-03-15 2001-11-13 The Boeing Company Multijunction photovoltaic cell with thin 1st (top) subcell and thick 2nd subcell of same or similar semiconductor material
US20020144725A1 (en) * 2001-04-10 2002-10-10 Motorola, Inc. Semiconductor structure suitable for forming a solar cell, device including the structure, and methods of forming the device and structure
US6586669B2 (en) * 2001-06-06 2003-07-01 The Boeing Company Lattice-matched semiconductor materials for use in electronic or optoelectronic devices
US7812249B2 (en) * 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
JP5248782B2 (ja) * 2004-01-20 2013-07-31 シリアム・テクノロジーズ・インコーポレーテッド エピタキシャルに成長させた量子ドット材料を有する太陽電池
TWI427806B (zh) * 2009-01-12 2014-02-21 Epistar Corp 堆疊型太陽能電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800630A (en) * 1993-04-08 1998-09-01 University Of Houston Tandem solar cell with indium phosphide tunnel junction
US6147296A (en) * 1995-12-06 2000-11-14 University Of Houston Multi-quantum well tandem solar cell
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
US7126052B2 (en) * 2002-10-02 2006-10-24 The Boeing Company Isoelectronic surfactant induced sublattice disordering in optoelectronic devices

Also Published As

Publication number Publication date
US10217892B2 (en) 2019-02-26
US20100175746A1 (en) 2010-07-15
US20160336478A1 (en) 2016-11-17
US20140134783A1 (en) 2014-05-15
TW201027765A (en) 2010-07-16

Similar Documents

Publication Publication Date Title
Yamaguchi et al. Multi-junction solar cells paving the way for super high-efficiency
US10326042B2 (en) Highly doped layer for tunnel junctions in solar cells
US7629532B2 (en) Solar cell having active region with nanostructures having energy wells
TWI420700B (zh) 太陽能電池
CN102388466B (zh) 光伏电池
US9153724B2 (en) Reverse heterojunctions for solar cells
US10217892B2 (en) Tandem solar cell
US20070151595A1 (en) Solar cell with superlattice structure and fabricating method thereof
US20090173373A1 (en) Group III-Nitride Solar Cell with Graded Compositions
US20080314447A1 (en) Single P-N Junction Tandem Photovoltaic Device
JP2008103720A (ja) キャップ層の局在化ドーピングを有する太陽電池構造体
Huang et al. Design of passivation layers on axial junction GaAs nanowire solar cells
US20100044675A1 (en) Photovoltaic Device With an Up-Converting Quantum Dot Layer
CN101783371B (zh) 堆叠型太阳能电池
Saha et al. Efficient and lead-free perovskite solar cells based on defect-ordered methyl ammonium antimony iodide
Sadullah et al. Analysis of thin-film direct band-gap SiGeSn alloy based heterostructure solar cell featuring SiGe absorber layer
Mostaque et al. Numerical simulation on the impurity photovoltaic (IPV) effect in c-Si wafer-based dual-heterojunction solar cell
EP3598508B1 (en) Solar cell
CN102117849B (zh) 太阳能电池元件及其装置
CN206076259U (zh) 一种铟镓氮薄膜太阳能电池
Polly et al. Effect of cell size on GaAs concentrators with InAs quantum dots
US20210399147A1 (en) High performance long-lifetime charge-separation photodetectors
Yamada et al. An estimate of maximal conversion efficiency in regard to doping concentrations and junction position in Cu (In, Ga) Se2 solar cells
Choudhary et al. Performance analysis of Si/SiGe double junction solar cell
CN102386252A (zh) 多接面光电池元件