CN105606900B - 一种基于方波信号的单相谐波阻抗测量方法 - Google Patents

一种基于方波信号的单相谐波阻抗测量方法 Download PDF

Info

Publication number
CN105606900B
CN105606900B CN201610157522.1A CN201610157522A CN105606900B CN 105606900 B CN105606900 B CN 105606900B CN 201610157522 A CN201610157522 A CN 201610157522A CN 105606900 B CN105606900 B CN 105606900B
Authority
CN
China
Prior art keywords
harmonic
voltage
current
square
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610157522.1A
Other languages
English (en)
Other versions
CN105606900A (zh
Inventor
曾江
凌毓畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201610157522.1A priority Critical patent/CN105606900B/zh
Publication of CN105606900A publication Critical patent/CN105606900A/zh
Application granted granted Critical
Publication of CN105606900B publication Critical patent/CN105606900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明公开了一种基于方波信号的单相谐波阻抗测量方法,具体包括,将低压电网系统简化为串联电路,在串联电路中确定接入点,并接入精确测量器开路时候的接入点的电压,接入谐波电流发生器,通过使用谐波电流发生器向系统依次注入各次幅值以12.5Hz方波变化的谐波电流,能够较精确地测量出各次的谐波电压,从而能较精确地计算出各次的谐波阻抗。

Description

一种基于方波信号的单相谐波阻抗测量方法
技术领域
本发明涉及电力领域,具体涉及一种基于方波信号的单相谐波阻抗测量方法。
背景技术
在电力系统中,谐波产生的根本原因是由于非线性负载所致。非线性负载通常是以谐波电流为特征的,所以经常选择谐波电流来表述其扩散极限,而不用电压来表述。近年来,对非线性负荷向系统注入谐波电流,以及在节点产生的相应的谐波电压的大小的估计的研究受到了越来越广泛的关注,谐波源量化与定位一直是电能质量研究领域的重点和难点问题。随着工业的发展,大量非线性负荷接入电网,并向电网注入谐波电流,谐波电流流经系统阻抗,在各母线上形成谐波电压,从而影响电网中敏感负荷及设备的正常工作。采取有效的激励措施来抑制电网中的谐波水平是现代智能电网所要求的,如:对引起谐波事故的责任谐波源要进行相应惩罚,对那些对电网谐波水平起抑制作用的用户要进行相应奖励等。而所有这些“奖惩机制”实现的前提是要准确合理地划分各谐波源的谐波污染责任。出于分清谐波污染的责任,也出于更好地调整谐波治理策略等多方面原因,因此,确切地获知系统的谐波阻抗都是非常重要的。谐波阻抗测量是一项复杂的任务,国内外对系统谐波阻抗频率特性的测量也进行了大量研究,提出了许多关于系统谐波阻抗频率特性测量的方法。但目前对这一方面的研究仍处于理论分析阶段,没有研究开发出能够应用于实际的测量电力网络谐波阻抗的仪器或装备。测量和分析电力系统的谐波阻抗频率特性。目前,国际上通用一种方式是谐波电流注入法。这种方法首先通过一个谐波电流放生器将不同频率的谐波电流注入被测量的电力系统,然后由一个谐波信号接受器接受测量点处的谐波电压和电流,最后再有一个谐波阻抗计算器来完成谐波阻抗的计算。该方法原理简单,实施起来方便。但是,用该方法测量系统的谐波阻抗有一定的局限性,主要存在以下几个问题:1.注入系统的谐波电流有可能影响系统的正常运行,因此注入电流的值不能太大;2.由于注入电流量较小,因此造成的谐波电压的变化量比较微弱,容易被背景噪声淹没;3.由于测量结果的辨识困难,整个测量过程所需时间较长。4.测量时间较长导致被测电力系统的运行方式可能会变化,谐波阻抗也将随之而变,从而使得计算结果可能出现较大偏差。因此,原有的谐波电流注入法已经越来越难以满足对谐波阻抗测量的要求。
发明内容
针对上述现有技术存在的问题,本发明的目的在于提供一种基于方波信号的单相谐波阻抗测量方法,该方法通过使用谐波电流发生器向系统依次注入各次幅值以12.5Hz方波变化的谐波电流,能够较精确地测量出各次的谐波电压,从而能较精确地计算出各次的谐波阻抗。
本发明采用如下技术方案:
一种基于方波信号的单相谐波阻抗测量方法,包括谐波电流发生器、精确测量器、带通滤波器及谐波阻抗计算器,所述精确测量器与带通滤波器连接,所述带通滤波器与谐波阻抗计算器连接,具体步骤如下:
S1根据电路原理,将低压电网简化为一个电压源ush及系统阻抗Zsh的串联电路;
S2在串联电路确定谐波电流发生器的接入点G,并在接入点G装上精确测量器,然后将电压源开路,测得接入点G点的电压us,对其进行傅里叶分解,得
S3在接入点G中接入谐波电流发生器,并设置谐波电流频率为基波的h倍,即ωh=h×ω0,设置注入谐波电流的幅值为以12.5Hz波动的方波信号;
S4谐波电流发生器发出频率为ωh的谐波电流ish,即ish=A(t)sinωht,A(t)为谐波电流幅值为12.5Hz的方波信号,精确测量器测得此时接入点G的电压为u;
S5将测量得到的G点电压u通过带通滤波器滤波后得到uh,再提取uh的幅值|uh|,此时|uh|为电网电压幅值|ush|和注入谐波电流|Zsh|·A(t)引起的响应之和,再通过12.5Hz的带通滤波器得到|uh|12.5Hz与|Zsh|·A(t)相对应的响应;
S6通过谐波阻抗计算器,根据公式计算出相应的h次谐波阻抗|Zsh|。
所述
式中,a1、a1为方波信号的幅值上限和幅值下限;
Ts为方波的周期,等于方波频率的倒数;
d为方波的占空比;
ω为注入谐波电流的角频率。
所述带通滤波器的频率为h*50Hz。
所述谐波电流发生器由6个带并联二极管的IGBT管构成,其直流侧并联电容,三相出线端接滤波电感。
谐波电流发生器能根据给定的指令电流,通过控制开关管的开或者断,来控制输出的电流使其能够跟踪给定的指令电流。
所述精确测量器配置电压传感器及电流传感器,用于对输出点的电压电流进行采样,通过谐振阻抗计算机的傅里叶分解计算,将计算结果得到的各次谐波电压和谐波电流的值反馈回来,用于进一步的计算。
本发明的有益效果:
(1)可以在对电网注入较小的谐波电流情况下,获得较为精确的谐波阻抗值;
(2)向电网注入的谐波电流较小,减轻对电网的影响;
(3)可以方便、迅速地调整注入谐波电流的频率,操作方便,耗时短;
(4)投资成本相对较低。
附图说明
图1是本发明的谐波阻抗的测量原理图;
图2是本发明的电器接线原理图;
图3是本发明计算谐振阻抗的流程图。
具体实施方式
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例
如图1、图2及图3所示,一种基于方波信号的单相谐波阻抗测量方法,采用的测量装置包括谐波电流发生器、精确测量器、带通滤波器及谐波阻抗计算器;
图1中,ush为电网电压us的h次谐波电压分量
uh为并网点电压u的h次谐波电压分量
ish为谐波电流发生器注入的h次谐波电流
Zsh为系统的h次谐波阻抗
所述谐波电流发生器:能够根据人为设置发出不同频率的电流,向系统注入谐波电流,并且幅值为以12.5Hz波动的方波信号,可以看做一个幅值随时间变化的无伴电流源;
该谐波电流发生器,能够根据给定的指令电流,通过控制开关管的开或者断,来控制输出的电流使其能够跟踪给定的指令电流。所以,实际上能够等效成一个谐波电流源。目前,市面上流通的有源电力滤波器(APF)实际上就是一个谐波电流发生器,我们通过对其的一些改进就能使得该装置成为谐波电流发生器。
所述谐波电流发生器由6个带并联二极管的IGBT管构成,其直流侧并联电容,三相出线端接滤波电感。谐波电流发生器能根据给定的指令电流,通过控制开关管的开或者断,来控制输出的电流使其能够跟踪给定的指令电流。
精确测量器:能够测量出线路某一点的电压和电流信号;所述精确测量器配置电压传感器及电流传感器,用于对输出点的电压电流进行采样,通过谐振阻抗计算机的傅里叶分解计算,将计算结果得到的各次谐波电压和谐波电流的值反馈回来,用于进一步的计算。
带通滤波器:是指能通过某一频率范围内的频率分量,但将其他范围的频率分量衰减到极低水平的滤波器;
谐波阻抗计算器:能够根据谐波电压和谐波电流的数据,计算出谐波阻抗,一般为计算机或DSP处理器。
具体包括如下步骤:
S1根据电路原理,将低压电网系统简化为一个电压源ush及系统阻抗Zsh的串联电路;
S2在串联电路中确定谐波电流发生器的接入点G,并在接入点通过电压探头及电源探头装上精确测量系统,带通滤波器及谐波阻抗计算器,然后电压源开路,测得G点电压us,对其进行傅里叶分解,得
因此,由(1)可知,电网电压可以分解为一系列不同频率的电压之和,其中h次电网谐波电压ush,也称为背景谐波电压。
S3在接入点G跨接入谐波电流发生器,并设置谐波电流频率为基波的h倍,即ωh=h×ω0;并且设置注入谐波电流的幅值为以12.5Hz波动的方波信号,注入谐波电流表达式如下:
ish=A(t)sinωt (2)
其中
式中,a1、a1为方波信号的幅值上限和幅值下限;
Ts为方波的周期,等于方波频率的倒数;
d为方波的占空比;
ω为注入谐波电流的角频率。
S4精确测量器测得此时G点的电压为u;同理,也可对其做傅里叶分解,得
由公式(4)可知,并网点电压u也可以分解为不同频率的电压之和。
根据电路原理,可得:
u=us+Zs·ish (5)
此时,根据上述(1)式和(4)式的分解,可以通过相应频率的滤波器提取所需要的h次并网点电压分量uh,则(5)式变为:
uh=ush+Zsh·ish (6)
此时,再通过谐波信号接收器,提取得到uh的幅值,忽略相角的影响,得到(7)式:
|uh|=|ush|+|Zsh|·A(t) (7)
由(7)式,幅值|uh|将会以一定的频率波动,其中包含两部分:一部分是由12.5Hz方波信号A(t)引起的幅值波动|Zsh|·A(t);另外一部分是以非12.5Hz频率波动的背景谐波电压幅值|ush|。
接下来通过12.5Hz的带通滤波器,将其中以非12.5Hz频率波动的背景谐波电压幅值|ush|滤除,剩下的只有由方波A(t)引起的以12.5Hz波动的幅值,
|uh|12.5Hz=|Zsh|·A(t) (8)
因此,通过谐波阻抗计算器即可计算出谐波阻抗为
S5本实施例设置h取2-50,因此依次调整h的值,重复步骤S1-S4,得到相对应的h次阻抗。比如将h的值设为2-50次变化,就能计算出对应的2-50次谐波阻抗。
本发明中,电力系统谐波的定义是对周期性非正弦电量进行傅里叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。谐波频率与基波频率的比值称为谐波次数。
电力系统的某一次谐波阻抗是系统模型中降落在谐波阻抗的该次谐波电压差与该次谐波电流的比值。
本发明采用叠加的方波信号,它的频率是由用户设定的,这样虽然我们注入的谐波电流很小,但我们依据自己设定的方波信号的频率去滤除其他频率的量而只留下方波信号以及它所产生的响应,就可以计算出谐波阻抗了。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种基于方波信号的单相谐波阻抗测量方法,其特征在于,包括谐波电流发生器、精确测量器、带通滤波器及谐波阻抗计算器,所述精确测量器与带通滤波器连接,所述带通滤波器与谐波阻抗计算器连接,具体步骤如下:
S1根据电路原理,将低压电网简化为一个电压源ush及系统阻抗Zsh的串联电路;
S2在串联电路确定谐波电流发生器的接入点G,并在接入点G装上精确测量器,然后将电压源开路,测得接入点G点的电压us,对其进行傅里叶分解,得
S3在接入点G中接入谐波电流发生器,并设置谐波电流角频率为基波的h倍,即ωh=h×ω0,设置注入谐波电流幅值,其特征为波动频率是12.5Hz,波动的形状为方波;
S4谐波电流发生器发出角频率为ωh的谐波电流ish,即ish=A(t)sinωht,A(t)为谐波电流幅值为12.5Hz的方波信号,精确测量器测得此时接入点G的电压为u;
S5将测量得到的G点电压u通过带通滤波器滤波后得到uh,再提取uh的幅值|uh|,此时|uh|为电网电压幅值|ush|和注入谐波电流|Zsh|·A(t)引起的响应之和,再通过12.5Hz的带通滤波器得到|uh|12.5Hz与|Zsh|·A(t)相对应的响应;
S6通过谐波阻抗计算器,根据公式计算出相应的h次谐波阻抗|Zsh|。
2.根据权利要求1所述的单相谐波阻抗测量方法,其特征在于,所述
式中,a1、a1为方波信号的幅值上限和幅值下限;
Ts为方波的周期,等于方波频率的倒数;
d为方波的占空比。
3.根据权利要求1所述的单相谐波阻抗测量方法,其特征在于,所述带通滤波器的频率为h*50Hz。
4.根据权利要求1所述的单相谐波阻抗测量方法,其特征在于,所述谐波电流发生器由6个带并联二极管的IGBT构成,其直流侧并联电容,三相出线端接滤波电感。
5.根据权利要求4所述的单相谐波阻抗测量方法,其特征在于,谐波电流发生器能根据给定的指令电流,通过控制IGBT的开或者断,来控制输出的电流使其能够跟踪给定的指令电流。
6.根据权利要求1所述的单相谐波阻抗测量方法,其特征在于,所述精确测量器配置电压传感器及电流传感器,用于对输出点的电压电流进行采样,通过谐波阻抗计算器的傅里叶分解计算,将计算结果得到的各次谐波电压和谐波电流的值反馈回来,用于进一步的计算。
CN201610157522.1A 2016-03-18 2016-03-18 一种基于方波信号的单相谐波阻抗测量方法 Active CN105606900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610157522.1A CN105606900B (zh) 2016-03-18 2016-03-18 一种基于方波信号的单相谐波阻抗测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610157522.1A CN105606900B (zh) 2016-03-18 2016-03-18 一种基于方波信号的单相谐波阻抗测量方法

Publications (2)

Publication Number Publication Date
CN105606900A CN105606900A (zh) 2016-05-25
CN105606900B true CN105606900B (zh) 2019-01-18

Family

ID=55986988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610157522.1A Active CN105606900B (zh) 2016-03-18 2016-03-18 一种基于方波信号的单相谐波阻抗测量方法

Country Status (1)

Country Link
CN (1) CN105606900B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106908665B (zh) * 2017-02-10 2019-03-29 西南交通大学 一种单相交流系统dq分解阻抗测量方法
CN107390030B (zh) * 2017-07-26 2019-06-18 华南理工大学 基于线性自抗扰的三相电网谐波阻抗测量方法
WO2019112549A1 (en) * 2017-12-04 2019-06-13 Aerojet Rocketdyne, Inc. Load impedance tester and measurement method
CN111025023B (zh) * 2019-12-19 2021-03-23 西南交通大学 一种注入式谐波阻抗测量的扰动能量限值选定方法
CN112505416A (zh) * 2020-11-17 2021-03-16 广东电网有限责任公司 一种接地阻抗测量方法
CN113484609B (zh) * 2021-07-05 2024-03-12 西北工业大学 一种基于lcl滤波器阻尼的电网阻抗检测方法
CN113624269A (zh) * 2021-07-29 2021-11-09 浙江大学 一种基于谐波的频率响应测量系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914697A (zh) * 2012-10-30 2013-02-06 西安交通大学 基于三相对称方波电流注入的微型电网谐波阻抗测量方法
CN102998535A (zh) * 2012-12-10 2013-03-27 华北电力大学(保定) 一种基于极大似然估计理论的系统谐波阻抗计算方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189729A (ja) * 1996-01-09 1997-07-22 Nissin Electric Co Ltd 配電系統の高調波インピーダンス測定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914697A (zh) * 2012-10-30 2013-02-06 西安交通大学 基于三相对称方波电流注入的微型电网谐波阻抗测量方法
CN102998535A (zh) * 2012-12-10 2013-03-27 华北电力大学(保定) 一种基于极大似然估计理论的系统谐波阻抗计算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
New Method for Noninvasive Measurement of Utility Harmonic Impedance;Dariusz Borkowski等;《PROCEEDINGS OF PES GENERAL MEETING》;20121231;第2-9页
一种基于调制脉冲叠加的快速电网谐波阻抗测量方法;岳小龙等;《大功率变流技术》;20131231(第6期);第36-41页

Also Published As

Publication number Publication date
CN105606900A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
CN105606900B (zh) 一种基于方波信号的单相谐波阻抗测量方法
Asiminoaei et al. Implementation and test of an online embedded grid impedance estimation technique for PV inverters
Tomic et al. A new power system digital harmonic analyzer
Reza et al. Accurate estimation of single-phase grid voltage parameters under distorted conditions
Wen et al. Simple interpolated FFT algorithm based on minimize sidelobe windows for power-harmonic analysis
Chauhan et al. A novel distribution-level phasor estimation algorithm using empirical wavelet transform
CN103245832B (zh) 基于快速s变换的谐波时频特性参数估计方法及分析仪
Lin et al. Recursive algorithm for real-time measurement of electrical variables in power systems
CN106771786A (zh) 电网阻抗辨识的验证方法及实验装置
CN106324353B (zh) 一种感应滤波换流变压器谐波阻抗测量方法及装置
CN107576851B (zh) 基于旋转电流相量的系统谐波阻抗测量方法
Reddy et al. An open-loop fundamental and harmonic phasor estimator for single-phase voltage signals
CN101329374A (zh) 一种差分滤波器加全周复小波幅值计算方法
CN104502707A (zh) 一种基于三次样条插值的电力系统同步相量测量方法
CN105510719A (zh) 三相电网谐波阻抗测量方法
CN110108946A (zh) 三相并网变流器的自阻抗和互阻抗测量系统及方法
Dong et al. A method for filtering low frequency disturbance in PMU data before coordinated usage in SCADA
Yang et al. A novel algorithm for accurate frequency measurement using transformed consecutive points of DFT
CN103424621A (zh) 一种谐波电流的人工神经网络检测方法
CN103928930B (zh) 减少电动汽车充放电过程中电网谐波的方法
CN114707538A (zh) 一种电力系统强迫振荡源定位的耗散能量谱方法
CN207472983U (zh) 一种基于prbs扰动注入的电网阻抗在线辨识装置
CN109581045A (zh) 一种满足iec标准框架的间谐波功率计量方法
CN104022509A (zh) 快速准确检测指令信号的多功能电能质量调节器
Nayak et al. Comparative study of harmonics estimation in micro grid using adaptive extended Kalman filter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant