CN105606676A - 掺氮还原石墨烯-AuAg双金属纳米复合物的制备及其在电化学检测盐酸柔红霉素中的应用 - Google Patents
掺氮还原石墨烯-AuAg双金属纳米复合物的制备及其在电化学检测盐酸柔红霉素中的应用 Download PDFInfo
- Publication number
- CN105606676A CN105606676A CN201610170677.9A CN201610170677A CN105606676A CN 105606676 A CN105606676 A CN 105606676A CN 201610170677 A CN201610170677 A CN 201610170677A CN 105606676 A CN105606676 A CN 105606676A
- Authority
- CN
- China
- Prior art keywords
- auag
- nitrogen
- reduced graphene
- doped reduced
- daunorubicin hydrochloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 8
- 239000002184 metal Substances 0.000 title claims abstract description 8
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- NAALWFYYHHJEFQ-ZASNTINBSA-N (2s,5r,6r)-6-[[(2r)-2-[[6-[4-[bis(2-hydroxyethyl)sulfamoyl]phenyl]-2-oxo-1h-pyridine-3-carbonyl]amino]-2-(4-hydroxyphenyl)acetyl]amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid Chemical compound N([C@@H](C(=O)N[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C=1C=CC(O)=CC=1)C(=O)C(C(N1)=O)=CC=C1C1=CC=C(S(=O)(=O)N(CCO)CCO)C=C1 NAALWFYYHHJEFQ-ZASNTINBSA-N 0.000 title claims description 31
- 229960003109 daunorubicin hydrochloride Drugs 0.000 title claims description 31
- 238000000835 electrochemical detection Methods 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 title 2
- 239000002114 nanocomposite Substances 0.000 claims abstract description 18
- 229910021642 ultra pure water Inorganic materials 0.000 claims abstract description 12
- 239000012498 ultrapure water Substances 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 8
- 239000000725 suspension Substances 0.000 claims abstract description 8
- 239000002244 precipitate Substances 0.000 claims abstract description 7
- 238000010992 reflux Methods 0.000 claims abstract description 4
- 239000002246 antineoplastic agent Substances 0.000 claims description 14
- 229940041181 antineoplastic drug Drugs 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 229910021397 glassy carbon Inorganic materials 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 5
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- 239000006228 supernatant Substances 0.000 claims description 4
- 238000010586 diagram Methods 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 238000001903 differential pulse voltammetry Methods 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 239000000047 product Substances 0.000 abstract description 2
- 101710134784 Agnoprotein Proteins 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- 229910021389 graphene Inorganic materials 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 206010028980 Neoplasm Diseases 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 239000011258 core-shell material Substances 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- 238000003917 TEM image Methods 0.000 description 4
- 238000002651 drug therapy Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 206010025323 Lymphomas Diseases 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/308—Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种掺氮还原石墨烯-AuAg双金属纳米复合材料(NG-AuAg)的制备方法及其应用,包括如下步骤:制备掺氮石墨烯-Au(NG-Au)悬浮液。向上述NG-Au悬浮液中加入60?μL?0.1M?AgNO3和120?μL?0.1M?AA,然后移入25mL圆底烧瓶中110℃加热回流1h。最后用超纯水离心洗涤3次。得到的沉淀在60℃下真空干燥一夜,即制得产物。
Description
技术领域
本发明属于纳米复合材料的领域,具体涉及一种掺氮还原石墨烯-AuAg双金属纳米复合材料的制备方法及其应用。
背景技术
石墨烯因其独特的2维(2D)结构、优异的机械性能、卓越的电化学性能和大的比表面积,已经应用于许多领域,比如传感器、光催化、电池和超级电容器。用化学元素掺杂石墨烯可以调节石墨烯的能带结构、改变其电化学性质、调整其表面化学性质和改变石墨烯的带隙宽度。在众多的掺杂原子中,N具有理想的原子大小并含有5个共价键可以和C形成强共价键,是非常优秀的化学掺杂元素。目前,掺氮石墨烯主要有以下合成方法,氮等离子体处理法、化学气相沉积法(CVD)、电焦耳热法、热退火法和在N2H4或NH3存在的条件下水热还原GO法。但是这些方法复杂、昂贵、难以大规模生产。而且,在还原过程中,GO的还原程度也会影响石墨烯材料的电子传导。除了掺氮,石墨烯复合材料也是现在的研究热门。在石墨烯上引入纳米贵金属可以增加石墨烯的电化学性能。而且,独特的核壳双金属纳米颗粒因其更好的催化性能和选择性能也吸引了越来越多研究者的关注。目前为止,简单的一步水热法合成掺氮石墨烯-纳米贵金属复合材料还没有文献报道。
目前癌症是世界上死亡率第二的疾病,严重的影响人们的健康,对癌症的提前预防以及治疗是一项十分艰巨的任务。药物治疗是治疗癌症的三大治疗法之一,虽然药物治疗法已有很久的历史,但化学药物治疗法仅有四十年的历史。虽然药物治疗比放射治疗和手术治疗的历史要短得多,科学家们已经发现了多种疗效较好的抗癌药物。小分子抗癌药物不仅能够深入到传统癌症治疗方法难以攻克的皮肤癌、淋巴癌和血癌等领域,而且减轻了患者的痛苦。人们致力于研究各种小分子抗癌药物的药理,在基因和蛋白质层次上可以专属性地识别正常细胞和癌细胞,进一步推进了对癌症病发的了解。盐酸柔红霉素(Daunorubicinhydrochloride)作为一种小分子的抗癌药物,其制剂主要用于恶性淋巴瘤、乳腺癌和急性白血病的治疗。它的药理作用是通过和DNA分子结合,抑制核酸合成而导致癌细胞死亡。
发明内容
为克服现有技术中的不足,本发明的目的是提供一种掺氮还原石墨烯-AuAg双金属纳米复合材料(NG-AuAg)的制备制备方法及其应用,致力于结合核壳结构AuAg与石墨烯的诸多优点,构建一种检测抗癌药物盐酸柔红霉素(DNR)的新型高性能电化学传感器。本专利采用简单的一步水热法、环境友好的(NH4)2CO3作为还原剂和氮掺杂剂,合成了掺氮石墨烯-纳米金复合物(NG-Au)。在这一步中,(NH4)2CO3不仅掺杂还原了GO,同时还将HAuCl4还原为AuNPs。然后在水热条件下使用环境友好型还原剂AA制得了掺氮还原石墨烯-AuAg双金属纳米复合物(NG-AuAg)。而且,掺氮还原石墨烯-AuAg双金属纳米复合物对抗癌药物盐酸柔红霉素(DNR)有很好的电化学响应效果。从而为DNR的临床用药提供了一种简单有效的检测方法。
一种掺氮还原石墨烯-AuAg双金属纳米复合材料(NG-AuAg)的制备制备方法,包括以下步骤:步骤一:首先根据现有技术合成GO,然后将制备的GO分散到超纯水中,得到GO水溶液,后向得到的GO水溶液中加入质量分数为1%的HAuCl4超声搅拌0.5h,再加入(NH4)2CO3搅拌使其溶解,然后将混合液移入高压反应釜中130℃反应10h,最后用超纯水离心洗涤多次,直至上层清夜的pH为7左右,向沉淀中加入超纯水,得到1mgmL-1NG-Au悬浮液。
步骤二:向上述NG-Au悬浮液中加入60μL0.1MAgNO3和120μL0.1MAA,然后在110℃下加热回流1h,自然冷却后用超纯水离心洗涤3次,得到的沉淀在60℃下真空干燥一夜,即制得掺氮还原石墨烯-AuAg双金属纳米复合材料。
一种掺氮还原石墨烯-AuAg双金属纳米复合材料的应用,用于检测抗癌药物盐酸柔红霉素。
一种掺氮还原石墨烯-AuAg双金属纳米复合材料用于检测抗癌药物盐酸柔红霉素的方法,包括以下步骤:
步骤一、以5μL1mg/mLNG-Au-Ag纳米复合材料修饰的玻碳电极为工作电极,Ag/AgCl为参比电极,铂电极为对电极,用差分脉冲伏安法测定0.1MpH6.5PBS中含有的不同的DNR标准浓度;
步骤二、根据步骤一得到的检测结果,作出DNR浓度与响应电流的线性关系图,得到线性范围;
步骤三、在相同检测条件下,测出待测DNR溶液的电流响应值,带入步骤二得到的线性方程中,计算待测DNR浓度。
所述检测抗癌药物盐酸柔红霉素的方法,检测抗癌药物盐酸柔红霉素的线性范围为0.01-15μgmL-1。
本发明的有益技术效果为:首次一步法合成了掺氮石墨烯-Au纳米复合物,之后又在此基础上制备了掺氮石墨烯-AuAg核壳双金属纳米复合物。
与现有电化学方法检测盐酸柔红霉素的技术相比,本发明的检测效果更好,且操作简单,成本低,应用前景广阔。
附图说明
图1为GO(A)的TEM图;
图2为NG-Au的TEM图;
图3为NG-AuAg的TEM图;
图4为bare/GCE,(b)NG/GCE,(c)NG-Au/GCE和(d)NG-AuAg/GCE在含有4μgmL-1DNR的0.1MpH6.5PBS中的CVs图,扫速:100mVs-1;
图5为NG-AuAg/GCE修饰电极在含有0(a),2(b),4(c),6(d),8(e)和10(f)μgmL-1DNR的0.1MpH7PBS电解液中的CVs图,扫速:100mVs-1。
具体实施方式
实施例1
首先根据文献合成GO,然后将5mg制备的GO分散到5mL超纯水中,得到GO水溶液。之后向得到的GO水溶液中加入250μL1%(w/w)HAuCl4超声搅拌0.5h,之后加入500mg(NH4)2CO3搅拌使其溶解,然后将混合液移入高压反应釜中130℃反应10h。最后用超纯水离心洗涤多次,直至上层清夜的pH为7左右。向沉淀中加入5mL超纯水,得到1mgmL-1NG-Au悬浮液。向上述NG-Au悬浮液中加入60μL0.1MAgNO3和120μL0.1MAA,然后移入25mL圆底烧瓶中110℃加热回流1h。最后用超纯水离心洗涤3次。得到的沉淀在60℃下真空干燥一夜,即制得产物(NG-AuAg)。如图1表明,制备的GO呈现出褶皱的薄片状结构。图2表明,AuNPs均匀的分散在掺氮还原石墨烯的表面。从图3可以看出,掺氮还原石墨烯上的纳米颗粒明显比单独的纳米金颗粒尺寸大。以上TEM图证明在掺氮石墨烯表面成功制备了AuAg核壳结构纳米颗粒。
实施例2
分别用相同条件下制得的复合材料:掺氮石墨烯(NG)、掺氮石墨烯-Au(NG-Au)、NG-AuAg和裸电极修饰玻碳电极后,采用三电极体系(玻碳电极为工作电极,铂电极为对电极,Ag/AgCl电极为参比电极)在含有4μgmL-1DNR的0.1MpH6.5PBS溶液中进行循环伏安法测试,扫速为100mVs-1,电压范围为-0.2~-0.8V。如图4所示。发现:裸电极基本没有峰电流,说明裸电极不适合DNR的测定。掺氮石墨烯修饰电极明显比裸电极的电流大,说明掺氮可以增加石墨烯的电化学性能。而且曲线b、c的峰电流都没有曲线d中的峰电流大,进一步体现了石墨烯与核壳结构纳米颗粒AuAg之间的协同作用,使得NG-AuAg/GCE修饰电极对于测定DNR具有优越性。
实施例3
NG-AuAg/GCE修饰电极检测DNR的电化学行为:采用三电极体系(玻碳电极为工作电极,铂电极为对电极,Ag/AgCl电极为参比电极)在含有0(a)、2(b)、4(c)、6(d)、8(e)和10(f)μgmL-1DNR的0.1MpH7PBS溶液中进行循环伏安法测试,扫速为100mVs-1,电压范围为-0.2~-0.8V。如图5所示,比较曲线a、b可以发现,该修饰电极在空白的0.1MpH7PBS中没有出现氧化还原峰,但是添加了2μgmL-1DNR后,在-0.58V和-0.62V出现了一组氧化还原峰,而且,随着添加的DNR的浓度增大,这组氧化还原峰也逐渐增大,充分说明了该修饰电极对DNR有很好的电催化活性。
Claims (5)
1.一种掺氮还原石墨烯-AuAg双金属纳米复合材料的制备制备方法,包括以下步骤:
步骤一:首先根据现有技术合成GO,然后将制备的GO分散到超纯水中,得到GO水溶液,后向得到的GO水溶液中加入质量分数为1%的HAuCl4超声搅拌0.5h,再加入(NH4)2CO3搅拌使其溶解,然后将混合液移入高压反应釜中130℃反应10h,最后用超纯水离心洗涤多次,直至上层清夜的pH为7左右,向沉淀中加入超纯水,得到1mgmL-1NG-Au悬浮液。
2.步骤二:向上述NG-Au悬浮液中加入60μL0.1MAgNO3和120μL0.1MAA,然后在110℃下加热回流1h,自然冷却后用超纯水离心洗涤3次,得到的沉淀在60℃下真空干燥一夜,即制得掺氮还原石墨烯-AuAg双金属纳米复合材料。
3.一种根据权利要求1所述方法制得的掺氮还原石墨烯-AuAg双金属纳米复合材料的应用,用于检测抗癌药物盐酸柔红霉素。
4.一种根据权利要求1所述方法制得的掺氮还原石墨烯-AuAg双金属纳米复合材料用于检测抗癌药物盐酸柔红霉素的方法,包括以下步骤:
步骤一、以5μL1mg/mLNG-Au-Ag纳米复合材料修饰的玻碳电极为工作电极,Ag/AgCl为参比电极,铂电极为对电极,用差分脉冲伏安法测定0.1MpH6.5PBS中含有的不同的DNR标准浓度;
步骤二、根据步骤一得到的检测结果,作出DNR浓度与响应电流的线性关系图,得到线性范围;
步骤三、在相同检测条件下,测出待测DNR溶液的电流响应值,带入步骤二得到的线性方程中,计算待测DNR浓度。
5.根据权利要求4所述的检测抗癌药物盐酸柔红霉素的方法,其特征在于检测抗癌药物盐酸柔红霉素的线性范围为0.01-15μgmL-1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610170677.9A CN105606676B (zh) | 2016-03-24 | 2016-03-24 | 掺氮还原石墨烯-AuAg双金属纳米复合物的制备及其在电化学检测盐酸柔红霉素中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610170677.9A CN105606676B (zh) | 2016-03-24 | 2016-03-24 | 掺氮还原石墨烯-AuAg双金属纳米复合物的制备及其在电化学检测盐酸柔红霉素中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105606676A true CN105606676A (zh) | 2016-05-25 |
CN105606676B CN105606676B (zh) | 2018-09-28 |
Family
ID=55986777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610170677.9A Active CN105606676B (zh) | 2016-03-24 | 2016-03-24 | 掺氮还原石墨烯-AuAg双金属纳米复合物的制备及其在电化学检测盐酸柔红霉素中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105606676B (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106829947A (zh) * | 2017-04-01 | 2017-06-13 | 盐城工学院 | 一种纳米复合材料及其制备方法 |
CN106932453A (zh) * | 2017-04-01 | 2017-07-07 | 盐城工学院 | 一种电极及其制备方法和传感器及应用 |
CN107831195A (zh) * | 2017-10-30 | 2018-03-23 | 上海应用技术大学 | 一种动物肉用金属掺杂纳米石墨烯嗅觉传感器 |
CN108362815A (zh) * | 2018-01-08 | 2018-08-03 | 哈尔滨理工大学 | 一种新型的l-色氨酸电化学传感器 |
CN110441358A (zh) * | 2019-07-10 | 2019-11-12 | 云南大学 | 基于石墨烯/金@银纳米颗粒修饰电极检测碘离子的方法 |
CN111057898A (zh) * | 2019-12-30 | 2020-04-24 | 安徽理工大学 | 一种制备二维“骨头”型金纳米片/氧化石墨烯复合材料的方法 |
CN112461906A (zh) * | 2020-11-17 | 2021-03-09 | 山东省产品质量检验研究院 | 基于n-石墨烯纳米带-金铂纳米簇的生物传感器的制备及应用 |
CN114894867A (zh) * | 2022-03-25 | 2022-08-12 | 江南大学 | 一种基于Au-Ag@二氧化锰纳米材料的双氧水电化学检测方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103381369A (zh) * | 2013-07-10 | 2013-11-06 | 清华大学 | 一种氮掺杂碳材料负载的催化剂 |
CN103626158A (zh) * | 2012-08-23 | 2014-03-12 | 中国科学院宁波材料技术与工程研究所 | 氮掺杂石墨烯的制备方法及其应用 |
CN103887081A (zh) * | 2014-03-05 | 2014-06-25 | 南京理工大学 | 一种氮掺杂石墨烯/铁酸锌纳米复合材料及其制备 |
CN104280436A (zh) * | 2014-10-14 | 2015-01-14 | 广州盈思传感科技有限公司 | 一种测定水中邻苯二酚或/和对苯二酚的玻碳电极的制备方法 |
CN104280447A (zh) * | 2014-10-14 | 2015-01-14 | 广州盈思传感科技有限公司 | 一种水中苯二酚类物质的检测方法 |
US20150224484A1 (en) * | 2014-02-13 | 2015-08-13 | Postech Academy-Industry Foundation | Inorganic Nanoparticle Deposited Catalyst For Hydrogenation And Manufacturing Method Of The Same, And Hydrogenation For Biomass Derived Hydrocarbon Compounds |
CN105148977A (zh) * | 2015-10-19 | 2015-12-16 | 中国科学院宁波材料技术与工程研究所 | 一种负载银的氮掺杂石墨烯的制备方法及其在金属空气电池催化剂中的应用 |
-
2016
- 2016-03-24 CN CN201610170677.9A patent/CN105606676B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103626158A (zh) * | 2012-08-23 | 2014-03-12 | 中国科学院宁波材料技术与工程研究所 | 氮掺杂石墨烯的制备方法及其应用 |
CN103381369A (zh) * | 2013-07-10 | 2013-11-06 | 清华大学 | 一种氮掺杂碳材料负载的催化剂 |
US20150224484A1 (en) * | 2014-02-13 | 2015-08-13 | Postech Academy-Industry Foundation | Inorganic Nanoparticle Deposited Catalyst For Hydrogenation And Manufacturing Method Of The Same, And Hydrogenation For Biomass Derived Hydrocarbon Compounds |
CN103887081A (zh) * | 2014-03-05 | 2014-06-25 | 南京理工大学 | 一种氮掺杂石墨烯/铁酸锌纳米复合材料及其制备 |
CN104280436A (zh) * | 2014-10-14 | 2015-01-14 | 广州盈思传感科技有限公司 | 一种测定水中邻苯二酚或/和对苯二酚的玻碳电极的制备方法 |
CN104280447A (zh) * | 2014-10-14 | 2015-01-14 | 广州盈思传感科技有限公司 | 一种水中苯二酚类物质的检测方法 |
CN105148977A (zh) * | 2015-10-19 | 2015-12-16 | 中国科学院宁波材料技术与工程研究所 | 一种负载银的氮掺杂石墨烯的制备方法及其在金属空气电池催化剂中的应用 |
Non-Patent Citations (3)
Title |
---|
GUOHAI YANG 等: "Pt–Au/nitrogen-doped graphene nanocomposites for enhanced electrochemical activities", 《JOURNAL OF MATERIALS CHEMISTRY A》 * |
LI QINGNING 等: "Real-time detection of the interaction between anticancer drug daunorubicin and cancer cells by Au-MCNT nanocomposites modified electrodes", 《SCIENCE CHINA-CHEMISTRY》 * |
ZHI-LI WANG 等: "Au@Pd core–shell nanoclusters growing on nitrogen-doped mildly reduced graphene oxide with enhanced catalytic performance for hydrogen generation from formic acid", 《JOURNAL OF MATERIALS CHEMISTRY A》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106829947A (zh) * | 2017-04-01 | 2017-06-13 | 盐城工学院 | 一种纳米复合材料及其制备方法 |
CN106932453A (zh) * | 2017-04-01 | 2017-07-07 | 盐城工学院 | 一种电极及其制备方法和传感器及应用 |
CN106829947B (zh) * | 2017-04-01 | 2019-04-19 | 盐城工学院 | 一种纳米复合材料及其制备方法 |
CN107831195A (zh) * | 2017-10-30 | 2018-03-23 | 上海应用技术大学 | 一种动物肉用金属掺杂纳米石墨烯嗅觉传感器 |
CN108362815A (zh) * | 2018-01-08 | 2018-08-03 | 哈尔滨理工大学 | 一种新型的l-色氨酸电化学传感器 |
CN108362815B (zh) * | 2018-01-08 | 2020-11-06 | 哈尔滨理工大学 | 一种新型的l-色氨酸电化学传感器 |
CN110441358A (zh) * | 2019-07-10 | 2019-11-12 | 云南大学 | 基于石墨烯/金@银纳米颗粒修饰电极检测碘离子的方法 |
CN110441358B (zh) * | 2019-07-10 | 2021-08-13 | 云南大学 | 基于石墨烯/金@银纳米颗粒修饰电极检测碘离子的方法 |
CN111057898A (zh) * | 2019-12-30 | 2020-04-24 | 安徽理工大学 | 一种制备二维“骨头”型金纳米片/氧化石墨烯复合材料的方法 |
CN111057898B (zh) * | 2019-12-30 | 2021-04-16 | 安徽理工大学 | 一种制备二维“骨头”型金纳米片/氧化石墨烯复合材料的方法 |
CN112461906A (zh) * | 2020-11-17 | 2021-03-09 | 山东省产品质量检验研究院 | 基于n-石墨烯纳米带-金铂纳米簇的生物传感器的制备及应用 |
CN114894867A (zh) * | 2022-03-25 | 2022-08-12 | 江南大学 | 一种基于Au-Ag@二氧化锰纳米材料的双氧水电化学检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105606676B (zh) | 2018-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105606676B (zh) | 掺氮还原石墨烯-AuAg双金属纳米复合物的制备及其在电化学检测盐酸柔红霉素中的应用 | |
Shiri et al. | An electrochemical sensor for the simultaneous determination of rifampicin and isoniazid using a C-dots@ CuFe 2 O 4 nanocomposite modified carbon paste electrode | |
Sohouli et al. | A noble electrochemical sensor based on TiO2@ CuO-N-rGO and poly (L-cysteine) nanocomposite applicable for trace analysis of flunitrazepam | |
Han et al. | Leaf-templated synthesis of 3D hierarchical porous cobalt oxide nanostructure as direct electrochemical biosensing interface with enhanced electrocatalysis | |
Arumugam et al. | Ultrasonication-aided synthesis of nanoplates-like iron molybdate: Fabricated over glassy carbon electrode as an modified electrode for the selective determination of first generation antihistamine drug promethazine hydrochloride | |
Habibi et al. | Direct electrochemical synthesis of the copper based metal-organic framework on/in the heteroatoms doped graphene/pencil graphite electrode: Highly sensitive and selective electrochemical sensor for sertraline hydrochloride | |
CN108007998B (zh) | 氧化镍非酶葡萄糖电化学传感器 | |
Zhang et al. | Simultaneously electrochemical detection of uric acid and ascorbic acid using glassy carbon electrode modified with chrysanthemum-like titanium nitride | |
Borowiec et al. | Synthesis of PDDA functionalized reduced graphene oxide decorated with gold nanoparticles and its electrochemical response toward levofloxacin | |
Yang et al. | Fabrication of hierarchical 3D prickly ball-like Co–La oxides/reduced graphene oxide composite for electrochemical sensing of l-cysteine | |
Immanuel et al. | Graphene–metal oxide nanocomposite modified electrochemical sensors | |
Jiang et al. | A novel electrochemical sensor based on SH-β-cyclodextrin functionalized gold nanoparticles/reduced-graphene oxide nanohybrids for ultrasensitive electrochemical sensing of acetaminophen and ofloxacin | |
Zuo et al. | An efficient electrochemical assay for miR-3675-3p in human serum based on the nanohybrid of functionalized fullerene and metal-organic framework | |
Zhao et al. | Spherical COFs decorated with gold nanoparticles and multiwalled carbon nanotubes as signal amplifier for sensitive electrochemical detection of doxorubicin | |
CN108982631A (zh) | 一种石墨烯单原子金复合材料及其制备方法和应用 | |
Zhou et al. | Three-dimensional nano-network composed of Pt nanoparticles functionalized Mn-doped CeO2 and hemin/G-quadruplex as electrocatalysts for cardiovascular biomarker detection | |
Ali et al. | Construction of MIP/Bi2S3 nanoparticles/rGO nanoprobe for simultaneous electrochemical determination of amoxicillin and clavulanic acid | |
CN104535633A (zh) | 一种PtAuNPs-CTAB-GR修饰玻碳电极的制备方法 | |
Mahmoud et al. | Facile fabrication of a superior electrochemical sensor with anti-fouling properties for sensitive and selective determination of glutathione | |
Fan et al. | Target-induced formation of multiple DNAzymes in solid-state nanochannels: Toward innovative photoelectrochemical probing of telomerase activity | |
Sukanya et al. | Ultrasound supported synthesis of tantalum carbide integrated functionalized carbon composite for the voltammetric determination of the antibacterial drug nitrofurantoin in pharmaceutical samples | |
Lv et al. | Ternary NiO/Ag/reduced graphene oxide nanocomposites as, a sensitive electrochemical sensor for nanomolarity detection of sunset yellow in soft drinks | |
Han et al. | Ultra-sensitive non-enzymatic amperometric glucose sensors based on silver nanowire/graphene hybrid three-dimensional nanostructures | |
Liu et al. | Au nanoparticles attached Ag@ C core-shell nanocomposites for highly selective electrochemical detection of dopamine | |
Mo et al. | Novel optoelectronic metal organic framework material perylene tetracarboxylate magnesium: preparation and biosensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Shi Jianjun Inventor after: Luo Yu Inventor after: Kong Fenying Inventor after: Wang Wei Inventor before: Luo Yu Inventor before: Shi Jianjun Inventor before: Kong Fenying Inventor before: Wang Wei |
|
GR01 | Patent grant | ||
GR01 | Patent grant |