CN105601271B - 一种中介电常数的微波介质陶瓷及其制备方法 - Google Patents

一种中介电常数的微波介质陶瓷及其制备方法 Download PDF

Info

Publication number
CN105601271B
CN105601271B CN201610022467.5A CN201610022467A CN105601271B CN 105601271 B CN105601271 B CN 105601271B CN 201610022467 A CN201610022467 A CN 201610022467A CN 105601271 B CN105601271 B CN 105601271B
Authority
CN
China
Prior art keywords
medium
microwave
dielectric constant
ceramics
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610022467.5A
Other languages
English (en)
Other versions
CN105601271A (zh
Inventor
高峰
张大帅
王利
史芳军
宋皓宇
崔栋
袁姣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Yuhui Electronic Technology Co Ltd
Original Assignee
Nanjing Pansite Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Pansite Electronic Technology Co Ltd filed Critical Nanjing Pansite Electronic Technology Co Ltd
Priority to CN201610022467.5A priority Critical patent/CN105601271B/zh
Publication of CN105601271A publication Critical patent/CN105601271A/zh
Application granted granted Critical
Publication of CN105601271B publication Critical patent/CN105601271B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种中介电常数的微波介质陶瓷及其制备方法。本发明方法工艺简单,采用分步烧制的方式,先分别烧制得到BLT预烧粉和SLT预烧粉,二者在后续烧制过程中将得到(Sr1‑ nBan)La4Ti4O15基体,充分保证所得中介电常数的微波介质陶瓷的综合介电性能;优选地,可根据需要加入Nd2O3进行烧制,按照所需化学计量比进行配料,Nd2O3能够均匀地进入(Sr1‑nBan)La4Ti4O15基体中,改善所得中介电常数的微波介质陶瓷的综合介电性能,得到介电常数高,Q×f值高,谐振频率温度系数稳定、接近于零的中介电常数的微波介质陶瓷,充分满足电子通信等领域的实际应用要求。

Description

一种中介电常数的微波介质陶瓷及其制备方法
技术领域
本发明涉及信息功能材料技术领域,具体而言,涉及一种中介电常数的微波介质陶瓷及其制备方法。
背景技术
微波介质陶瓷是应用于微波频段作为介质完成一种或多种功能的陶瓷材料,适于制作稳频振荡器、滤波器、鉴频器、介质天线和介质波导等各种微波器件,在移动电话、电讯广播及卫星通信系统等方面有着十分广泛的应用。随着现代通讯技术高频化的发展,为实现电子产品的小型化、便携化、多功能等,要求微波介质陶瓷材料具有良好的微波介电性能。
类钙钛矿结构的微波介质陶瓷BaLa4Ti4O15(BLT)和SrLa4Ti4O15(SLT)具有良好的微波介电性能。C.Vineis等人首次报道了BLT的微波介电性能:εr=43,Q×f=11583GHz,τf=-17ppm/℃,其烧结温度是1575℃,保温时间是10h;I.N.Jawahar等人研究了MO-La2O3-TiO2(M=Ca,Sr,Ba)系微波介质陶瓷,结果表明SLT具有最佳的微波介电性能:εr=45.1,Q×f=50215GHz,τf=-14ppm/℃,该系陶瓷需要在1500-1675℃下烧结4h;H.Ohsato等人详细研究了BanLa4Ti3+nO12+3n系微波介质陶瓷,发现当n=1时的BLT具有最佳微波介电性能:εr=46,Q×f=46000GHz,τf=-11ppm/℃,该系陶瓷需要在1400-1600℃下烧结2h;Y.Tohdo等人研究了ALa4Ti4O15(A=Ba,Sr,Ca)系微波介质陶瓷的晶体结构与微波性能的关系,发现BLT具有最大的介电常数(44.4),SLT具有最佳的谐振频率温度系数(-8.4ppm/℃),BLT需要在1600℃下烧结2h,SLT需要在1550℃下烧结48h;H.Zheng等人单独研究了BLT陶瓷的微波介电性能与晶体结构、显微结构的关系,通过调节烧结工艺,得到了较好的微波介电性能:εr=45,Q×f=44000GHz,τf=-2ppm/℃,BLT需要在1450℃下烧结6h;Y.Fukami等人研究了模板籽晶的加入量对BLT微波性能的影响,发现随模板籽晶加入量的增大,介电常数和谐振频率温度系数提高,而品质因数变化不大,该法制备的陶瓷需要在1600℃下烧结2h。
从以上分析可见,BLT、SLT都具有优异的微波介电性能,但烧结温度都比较高,极大的提高了其实际应用的成本;BLT相对于SLT而言具有较高的介电常数,但其谐振频率温度系数较高,严重的限制了其实际应用;而SLT相对于BLT而言具有更接近于零的谐振频率温度系数。现有的BLT、SLT材料其性能并不能满足实际使用需要,此外制备方法往往烧制温度过高,烧制时间过长,产生大量能耗,烧制工艺复杂,不利于推广。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种中介电常数(30-50)的微波介质陶瓷,所述的中介电常数的微波介质陶瓷具有陶瓷介电性能优异,能够满足电子通信等领域的实际应用需求等优点。
本发明的第二目的在于提供一种所述的中介电常数的微波介质陶瓷的制备方法,该方法工艺简单,烧制温度低,烧制时间短,适于推广。
为了实现本发明的上述目的,特采用以下技术方案:
一种中介电常数的微波介质陶瓷,所述中介电常数的微波介质陶瓷的化学组成通式如下:
(Sr1-nBan)La4Ti4O15·xwt%Nd2O3
其中0≤x≤8,xwt%为Nd2O3占(SrnBa1-n)La4Ti4O15的质量分数;0<n<1。
本发明中介电常数的微波介质陶瓷采用特定化学组成结构,所述的中介电常数的微波介质陶瓷介电常数高,Q×f值高,谐振频率温度系数稳定、接近于零,综合介电性能优异,充分满足电子通信等领域的实际应用要求。
优选地,0<x≤8,进一步优选为2≤x≤8。
优选地,0<n≤0.5,进一步优选为n=0.1。
采用特定的比配,可进一步优化本发明中介电常数的微波介质陶瓷的综合介电性能。
上述的一种中介电常数的微波介质陶瓷的制备方法,包括如下步骤:
(1)将含有Ba、Ti和La的原料按BaLa4Ti4O15化学计量比配料,充分混合,预烧得到BLT预烧粉;
(2)将含有Sr、Ti和La的原料按SrLa4Ti4O15化学计量比配料,充分混合,预烧得到SLT预烧粉;
(3)将BLT预烧粉、SLT预烧粉或BLT预烧粉、SLT预烧粉、Nd2O3按所需化学计量比配料,充分混合,塑型得到陶瓷坯体;
(4)将步骤(3)所得陶瓷坯体烧制得到一种中介电常数的微波介质陶瓷。
本发明方法工艺简单,采用分步烧制的方式,先分别烧制得到BLT预烧粉和SLT预烧粉,二者在后续烧制过程中将得到(Sr1-nBan)La4Ti4O15基体,充分保证所得中介电常数的微波介质陶瓷的综合介电性能;优选地,可根据需要加入Nd2O3进行烧制,按照所需化学计量比进行配料,Nd2O3能够均匀地进入(Sr1-nBan)La4Ti4O15基体中,改善所得中介电常数的微波介质陶瓷的综合介电性能,得到介电常数高,Q×f值高,谐振频率温度系数稳定、接近于零的中介电常数的微波介质陶瓷,充分满足电子通信等领域的实际应用要求。
所述含有Ba、Ti和La的原料包括BaO和Ba(OH)2、BaCO3中的一种或多种、TiO2和Ti(OH)4中的一种或两种、La2O3、La(OH)3、La2(CO3)3中的一种或多种。
在烧制过程中,含有Ba、Ti和La的氢氧化物和碳酸盐化合物分别将分解成Ba、Ti和La的氧化物,以Ba、Ti和La的氧化物形式作为原料烧制成BLT预烧粉,原料采用氧化物的形式有利于原料在烧制过程中的充分熔融,严格按照BaLa4Ti4O15化学计量比得到BLT预烧粉。
所述步骤(1)中的预烧温度为1150-1450℃,优选为1250-1350℃,进一步优选为1300℃。
所述步骤(1)中的预烧时间为2-6h,优选为3-5h,进一步优选为4h。
本发明采用特定的预烧温度和时间,能够按照BaLa4Ti4O15化学计量比得到BLT预烧粉,由于还需要进行后续的烧制步骤,BLT预烧粉的制备可采用较低的温度进行预烧,并采用较短的时间进行预烧。
所述含有Sr、Ti和La的原料包括SrO和Sr(OH)2、SrCO3中的一种或多种、TiO2和Ti(OH)4中的一种或两种、La2O3、La(OH)3、La2(CO3)3中的一种或多种。
在烧制过程中,含有Sr、Ti和La的氢氧化物和碳酸盐化合物分别将分解成Sr、Ti和La的氧化物,以Sr、Ti和La的氧化物形式作为原料烧制成SLT预烧粉,原料采用氧化物的形式有利于原料在烧制过程中的充分熔融,严格按照SrLa4Ti4O15化学计量比得到SLT预烧粉。
所述步骤(2)中的预烧温度为1100-1400℃,优选为1200-1300℃,进一步优选为1250℃。
所述步骤(2)中的预烧时间为2-6h,优选为3-5h,进一步优选为4h。
本发明采用特定的预烧温度和时间,能够按照SrLa4Ti4O15化学计量比得到SLT预烧粉,由于还需要进行后续的烧制步骤,SLT预烧粉的制备可采用较低的温度进行预烧,并采用较短的时间进行预烧。
优选地,所述步骤(1)-(3)分别采用球磨方式将反应原料进行充分混合。
采用球磨方式,更利于固体粉体材料以细小颗粒形式充分混合。
优选地,采用球磨机对原料进行球磨;所述球磨机的磨球优选采用ZrO2,ZrO2具有极高的硬度,能够充分地将原料磨至更低粒度,便于原料的充分混合。
优选地,在球磨时在球磨机中加入适量乙醇,乙醇能够起到助磨剂和分散剂的作用,保证原料充分混合,此外,还能阻止原料颗粒粘结,产生局部反应,改善原料颗粒的表面形貌,使其更利于后续烧制反应,并且能够通过蒸发吸热,降低球磨机的温度,保证设备安全。
优选地,所述步骤(3)中,将原料充分混合,烘干、造粒后,塑型得到陶瓷坯体;所述塑型方式优选为等静压压制。
优选地,所述步骤(4)中烧制温度为1280-1580℃,优选为1330-1450℃,进一步优选为1350℃。
所述步骤(4)中的烧制时间为2-6h,优选为3-5h,进一步优选为4h。
本发明通过分步预烧的方式,并根据需要掺杂Nd2O3,可在较低温度下和较短时间内烧制得到(Sr1-nBan)La4Ti4O15·xwt%Nd2O3,以(Sr1-nBan)La4Ti4O15作为基体,Nd2O3作为改性剂,使所得中介电常数的微波介质陶瓷的综合介电性能得到改善,得到介电常数高,Q×f值高,谐振频率温度系数稳定、接近于零的中介电常数的微波介质陶瓷,充分满足电子通信等领域的实际应用要求。
优选地,本发明步骤(4)中以较慢的速度进行升温,升温速度为20℃/mim以下,优选为10℃/mim以下,进一步优选为5℃/mim。采用较低的升温速度,能够使原料反应更为充分完全,严格按照所需(Sr1-nBan)La4Ti4O15·xwt%Nd2O3化学计量比制备得到中介电常数的微波介质陶瓷,防止局部反应导致杂质过多,所得中介电常数的微波介质陶瓷品质下降,综合介电性能降低。
与现有技术相比,本发明的有益效果为:
(1)本发明选取(Sr0.9Ba0.1)La4Ti4O15作为基体材料,该基体材料具有良好的微波性能,在国内,原材料充足,价格低廉,且可根据需要添加少量的Nd2O3,成本较低,使现代通讯技术中高性能微波通讯元器件的低成本转化成为可能;(2)本发明的配方中不含Pb、Cd等挥发性或重金属物质,是一种环境友好型微波介质陶瓷;(3)本发明微波介质陶瓷的微波性能优异,特别是具有高Q×f值,同时材料的烧结温度得到降低,降低了其实际应用的成本。
本发明中介电常数的微波介质陶瓷,其εr=43~50,Q×f=29000~42000GHz(f为5.8~6.2GHz),且τf=-10.1~-7.2ppm/℃,能满足微波军用雷达及微波通讯中作为介质谐振器件对中介电常数(30~50)的微波介质陶瓷材料的需求。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
本实施例中介电常数的微波介质陶瓷分别以分析纯的BaCO3、SrCO3、La2O3、TiO2和Nb2O5为起始原料,按(Sr0.9Ba0.1)La4Ti4O15+xwt%Nd2O3(其中x=0,x为质量百分数)的化学剂量比配料。
本实施例具体制备步骤是:
(1)将分析纯的BaCO3、TiO2和La2O3按BaLa4Ti4O15(BLT)化学计量比配料,将配好的料置于ZrO2球磨罐中,加入与粉料等质量的无水乙醇,在球磨机上球磨12h,出料、烘干,粉料在1300℃预烧4h,得BLT预烧粉体;
(2)将分析纯的SrCO3、TiO2和La2O3按SrLa4Ti4O15(SLT)化学计量比配料,将配好的料置于ZrO2球磨罐中,加入与粉料等质量的无水乙醇,在球磨机上球磨12h,出料、烘干,粉料在1250℃预烧4h,得SLT预烧粉体;
(3)将BLT预烧粉、SLT预烧粉,Nd2O3,按(Sr0.9Ba0.1)La4Ti4O15+xwt%Nd2O3(x=0,x为质量百分数)的化学计量比称量,将称量好的粉料置于ZrO2球磨罐中,加入与粉料等质量的无水乙醇,在球磨机上球磨12h,出料、烘干、造粒后在100MPa等静压压制成Φ12mm×6mm的圆柱状,得到圆柱状陶瓷坯体;
(4)将得到的陶瓷坯体按5℃/mim的升温速率升至1580℃,保温4h,之后随炉冷却至室温;
(5)将烧结好的陶瓷试样打磨抛光测试其密度及微波性能。
经测试,本实施例陶瓷片的密度为5.41g/cm3,其电学性能见表1。
实施例2
本实施例中介电常数的微波介质陶瓷分别以分析纯的BaCO3、SrCO3、La2O3、TiO2和Nb2O5为起始原料,按(Sr0.9Ba0.1)La4Ti4O15+xwt%Nd2O3(其中x=2,x为质量百分数)的化学剂量比配料。
本实施例具体制备步骤是:
(1)将分析纯的BaCO3、TiO2和La2O3按BaLa4Ti4O15(BLT)化学计量比配料,将配好的料置于ZrO2球磨罐中,加入与粉料等质量的无水乙醇,在球磨机上球磨12h,出料、烘干,粉料在1150℃预烧2h,得BLT预烧粉体;
(2)将分析纯的SrCO3、TiO2和La2O3按SrLa4Ti4O15(SLT)化学计量比配料,将配好的料置于ZrO2球磨罐中,加入与粉料等质量的无水乙醇,在球磨机上球磨12h,出料、烘干,粉料在1100℃预烧2h,得SLT预烧粉体;
(3)将BLT预烧粉、SLT预烧粉,Nd2O3,按(Sr0.9Ba0.1)La4Ti4O15+xwt%Nd2O3(x=2,x为质量百分数)的化学计量比称量,将称量好的粉料置于ZrO2球磨罐中,加入与粉料等质量的无水乙醇,在球磨机上球磨12h,出料、烘干、造粒后在100MPa等静压压制成Φ12mm×6mm的圆柱状,得到圆柱状陶瓷坯体;
(4)将得到的陶瓷坯体按20℃/mim的升温速率升至1280℃,保温2h,之后随炉冷却至室温;
(5)将烧结好的陶瓷试样打磨抛光测试其密度及微波性能。
经测试,本实施例陶瓷片的密度为5.41g/cm3,其电学性能见表1。
实施例3
本实施例中介电常数的微波介质陶瓷分别以分析纯的BaO、SrO、La2O3、TiO2和Nb2O5为起始原料,按(Sr0.9Ba0.1)La4Ti4O15+xwt%Nd2O3(其中x=4,x为质量百分数)的化学剂量比配料。
本实施例具体制备步骤是:
(1)将分析纯的BaO、TiO2和La2O3按BaLa4Ti4O15(BLT)化学计量比配料,将配好的料置于ZrO2球磨罐中,加入与粉料等质量的无水乙醇,在球磨机上球磨12h,出料、烘干,粉料在1300℃预烧4h,得BLT预烧粉体;
(2)将分析纯的SrO、TiO2和La2O3按SrLa4Ti4O15(SLT)化学计量比配料,将配好的料置于ZrO2球磨罐中,加入与粉料等质量的无水乙醇,在球磨机上球磨12h,出料、烘干,粉料在1250℃预烧4h,得SLT预烧粉体;
(3)将BLT预烧粉、SLT预烧粉,Nd2O3,按(Sr0.9Ba0.1)La4Ti4O15+xwt%Nd2O3(x=4,x为质量百分数)的化学计量比称量,将称量好的粉料置于ZrO2球磨罐中,加入与粉料等质量的无水乙醇,在球磨机上球磨12h,出料、烘干、造粒后在100MPa等静压压制成Φ12mm×6mm的圆柱状,得到圆柱状陶瓷坯体;
(4)将得到的陶瓷坯体按5℃/mim的升温速率升至1350℃,保温4h,之后随炉冷却至室温;
(5)将烧结好的陶瓷试样打磨抛光测试其密度及微波性能。
经测试,本实施例陶瓷片的密度为5.50g/cm3,其电学性能见表1。
实施例4
本实施例中介电常数的微波介质陶瓷分别以分析纯的BaCO3、SrCO3、La2O3、Ti(OH)4和Nb2O5为起始原料,按(Sr0.9Ba0.1)La4Ti4O15+xwt%Nd2O3(其中x=8,x为质量百分数)的化学剂量比配料。
本实施例具体制备步骤是:
(1)将分析纯的BaCO3、Ti(OH)4和La2O3按BaLa4Ti4O15(BLT)化学计量比配料,将配好的料置于ZrO2球磨罐中,加入与粉料等质量的无水乙醇,在球磨机上球磨12h,出料、烘干,粉料在1450℃预烧6h,得BLT预烧粉体;
(2)将分析纯的SrCO3、Ti(OH)4和La2O3按SrLa4Ti4O15(SLT)化学计量比配料,将配好的料置于ZrO2球磨罐中,加入与粉料等质量的无水乙醇,在球磨机上球磨12h,出料、烘干,粉料在1400℃预烧6h,得SLT预烧粉体;
(3)将BLT预烧粉、SLT预烧粉,Nd2O3,按(Sr0.9Ba0.1)La4Ti4O15+xwt%Nd2O3(x=8,x为质量百分数)的化学计量比称量,将称量好的粉料置于ZrO2球磨罐中,加入与粉料等质量的无水乙醇,在球磨机上球磨12h,出料、烘干、造粒后在100MPa等静压压制成Φ12mm×6mm的圆柱状,得到圆柱状陶瓷坯体;
(4)将得到的陶瓷坯体按10℃/mim的升温速率升至1580℃,保温6h,之后随炉冷却至室温;
(5)将烧结好的陶瓷试样打磨抛光测试其密度及微波性能。
经测试,本实施例陶瓷片的密度为5.76g/cm3,其电学性能见表1。
表1本发明实施例所得中介电常数的微波介质陶瓷的电学性能
根据表1可以看出,本发明所得微波介质陶瓷为中介电常数的微波介质陶瓷,Q×f值高,谐振频率温度系数稳定、接近于零,综合介电性能优异。
本发明中介电常数的微波介质陶瓷采用特定配方通式,所述的中介电常数的微波介质陶瓷介电常数高,Q×f值高,谐振频率温度系数稳定、接近于零,综合介电性能优异,充分满足电子通信等领域的实际应用要求。本发明方法工艺简单,采用分步烧制的方式,先分别烧制得到BLT预烧粉和SLT预烧粉,二者在后续烧制过程中将得到(Sr1-nBan)La4Ti4O15基体,充分保证所得中介电常数的微波介质陶瓷的综合介电性能;优选地,可根据需要加入Nd2O3进行烧制,按照所需化学计量比进行配料,Nd2O3能够均匀地进入(Sr1-nBan)La4Ti4O15基体中,改善所得中介电常数的微波介质陶瓷的综合介电性能,得到介电常数高,Q×f值高,谐振频率温度系数τf稳定、接近于零的中介电常数的微波介质陶瓷,充分满足电子通信等领域的实际应用要求。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (14)

1.一种中介电常数的微波介质陶瓷,其特征在于,所述中介电常数的微波介质陶瓷的化学组成通式如下:
(Sr1-nBan)La4Ti4O15·xwt%Nd2O3
其中0<x≤8,xwt%为Nd2O3占(SrnBa1-n)La4Ti4O15的质量分数;0<n<1;
所述中介电常数的微波介质陶瓷的制备方法,包括如下步骤:
(1)将含有Ba、Ti和La的原料按BaLa4Ti4O15化学计量比配料,充分混合,预烧得到BLT预烧粉;
(2)将含有Sr、Ti和La的原料按SrLa4Ti4O15化学计量比配料,充分混合,预烧得到SLT预烧粉;
(3)将BLT预烧粉、SLT预烧粉、Nd2O3按所需化学计量比配料,充分混合,塑型得到陶瓷坯体;
(4)将步骤(3)所得陶瓷坯体烧制得到一种中介电常数的微波介质陶瓷;
所述步骤(1)中的预烧温度为1150-1450℃;
所述步骤(2)中的预烧温度为1100-1400℃;
所述步骤(4)中烧制温度为1280-1580℃。
2.根据权利要求1所述的一种中介电常数的微波介质陶瓷,其特征在于,2≤x≤8。
3.根据权利要求1所述的一种中介电常数的微波介质陶瓷,其特征在于,0<n≤0.5。
4.根据权利要求3所述的一种中介电常数的微波介质陶瓷,其特征在于,n=0.1。
5.如权利要求1-4任一所述的一种中介电常数的微波介质陶瓷的制备方法,其特征在于,包括如下步骤:
(1)将含有Ba、Ti和La的原料按BaLa4Ti4O15化学计量比配料,充分混合,预烧得到BLT预烧粉;
(2)将含有Sr、Ti和La的原料按SrLa4Ti4O15化学计量比配料,充分混合,预烧得到SLT预烧粉;
(3)将BLT预烧粉、SLT预烧粉、Nd2O3按所需化学计量比配料,充分混合,塑型得到陶瓷坯体;
(4)将步骤(3)所得陶瓷坯体烧制得到一种中介电常数的微波介质陶瓷。
6.根据权利要求5所述的一种中介电常数的微波介质陶瓷的制备方法,其特征在于,所述含有Ba、Ti和La的原料包括BaO和Ba(OH)2、BaCO3中的一种或多种、TiO2和Ti(OH)4中的一种或两种、La2O3、La(OH)3、La2(CO3)3中的一种或多种。
7.根据权利要求5所述的一种中介电常数的微波介质陶瓷的制备方法,其特征在于,所述步骤(1)中的预烧温度为1250-1350℃。
8.根据权利要求7所述的一种中介电常数的微波介质陶瓷的制备方法,其特征在于,所述步骤(1)中的预烧温度为1300℃。
9.根据权利要求5所述的一种中介电常数的微波介质陶瓷的制备方法,其特征在于,所述含有Sr、Ti和La的原料包括SrO和Sr(OH)2、SrCO3中的一种或多种、TiO2和Ti(OH)4中的一种或两种、La2O3、La(OH)3、La2(CO3)3中的一种或多种。
10.根据权利要求5所述的一种中介电常数的微波介质陶瓷的制备方法,其特征在于,所述步骤(2)中的预烧温度为1200-1300℃。
11.根据权利要求10所述的一种中介电常数的微波介质陶瓷的制备方法,其特征在于,所述步骤(2)中的预烧温度为1250℃。
12.根据权利要求5所述的一种中介电常数的微波介质陶瓷的制备方法,其特征在于,采用球磨方式将反应原料进行充分混合。
13.根据权利要求5所述的一种中介电常数的微波介质陶瓷的制备方法,其特征在于,所述步骤(4)中烧制温度为1330-1450℃。
14.根据权利要求13所述的一种中介电常数的微波介质陶瓷的制备方法,其特征在于,所述步骤(4)中烧制温度为1350℃。
CN201610022467.5A 2016-01-13 2016-01-13 一种中介电常数的微波介质陶瓷及其制备方法 Active CN105601271B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610022467.5A CN105601271B (zh) 2016-01-13 2016-01-13 一种中介电常数的微波介质陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610022467.5A CN105601271B (zh) 2016-01-13 2016-01-13 一种中介电常数的微波介质陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN105601271A CN105601271A (zh) 2016-05-25
CN105601271B true CN105601271B (zh) 2018-09-11

Family

ID=55981704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610022467.5A Active CN105601271B (zh) 2016-01-13 2016-01-13 一种中介电常数的微波介质陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN105601271B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108439973A (zh) * 2018-01-17 2018-08-24 天津大学 一种高q值高介电常数微波介质陶瓷材料及其制备方法
CN109761603B (zh) * 2019-03-12 2022-02-08 广东国华新材料科技股份有限公司 一种bcsltm-sa复合微波介质陶瓷及其制备方法
CN113185280B (zh) * 2021-04-27 2022-06-28 四川海祥电子科技有限公司 一种高Qf微波介质材料制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105000877A (zh) * 2015-07-21 2015-10-28 天津大学 一种高品质因数温度稳定型微波介质材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105000877A (zh) * 2015-07-21 2015-10-28 天津大学 一种高品质因数温度稳定型微波介质材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
(Ba1-xSrx)La4Ti4O15(x=0.8~0.95)陶瓷的微结构及微波介电性能研究;刘林 等;《无机材料学报》;20120331;第27卷(第3期);第281~284页 *
Phases, microstructure and microwave dielectric properties of hexagonal perovskite Ca(La1-xNdx)4Ti4O15 ceramics;Zhenxing Yue et al.;《Journal of Alloys and Compounds》;20050108;第395卷;第126~131页 *

Also Published As

Publication number Publication date
CN105601271A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
CN106045513A (zh) 一种中介电常数、高品质因子的微波介质陶瓷及制备方法
CN101648807A (zh) 锆钛酸钡钙基压电陶瓷及其制备方法
CN110282968A (zh) 一种微波介质陶瓷材料及其制备方法
CN111995383B (zh) Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN105693241B (zh) 高品质因数锂镁铌系微波介质陶瓷及其制备方法
CN108516826B (zh) 一种含Sn中介微波介质陶瓷材料及其制备方法
CN105601271B (zh) 一种中介电常数的微波介质陶瓷及其制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN107188557A (zh) 一种微波介质陶瓷材料及其制备方法
CN108569903B (zh) 一种低温烧结ltcc微波介质陶瓷及制备方法
CN101811869A (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN109251028A (zh) 一种低介高q锂镁铌系微波介质陶瓷及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN106007707B (zh) Mg-Nb掺杂钛酸铋微波介质陶瓷及其制备方法
CN108585809A (zh) 一种低温烧结SiO2基微波介质陶瓷材料及其制备方法
JP2000007429A (ja) 誘電体材料及びその製造方法
CN108002836B (zh) 中介电常数微波介电陶瓷材料及其制备方法
CN108793994A (zh) 一种施主掺杂中介电常数微波介质陶瓷及其制备方法
CN105503202A (zh) 一种新型低损耗Li2MgZrO4微波介质陶瓷材料及制备方法
CN102219501A (zh) 一种锂基低损耗温度稳定型微波介质陶瓷材料及其制备方法
CN105294103B (zh) 一种钒基温度稳定型微波介质陶瓷及其制备方法
CN106866143A (zh) 微波复相陶瓷AWO4‑TiO2及其制备方法
CN108794004B (zh) 一种镧钕掺杂镍酸盐陶瓷及其制备方法和应用
CN111825445B (zh) 一种高介电常数微波介质陶瓷材料、制备及其应用
CN113072373A (zh) 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Medium-dielectric-constant microwave dielectric ceramic and preparation method thereof

Effective date of registration: 20190424

Granted publication date: 20180911

Pledgee: Bank of Jiangsu Limited by Share Ltd. Nanjing Pukou branch

Pledgor: NANJING PANSITE ELECTRONIC TECHNOLOGY Co.,Ltd.

Registration number: 2019320000195

PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20200311

Granted publication date: 20180911

Pledgee: Bank of Jiangsu Limited by Share Ltd. Nanjing Pukou branch

Pledgor: NANJING PANSITE ELECTRONIC TECHNOLOGY Co.,Ltd.

Registration number: 2019320000195

PC01 Cancellation of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Medium-dielectric-constant microwave dielectric ceramic and preparation method thereof

Effective date of registration: 20200313

Granted publication date: 20180911

Pledgee: Bank of Jiangsu Limited by Share Ltd. Nanjing Pukou branch

Pledgor: NANJING PANSITE ELECTRONIC TECHNOLOGY Co.,Ltd.

Registration number: Y2020980000682

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220613

Address after: 211086 Qiaolin Industrial Park 80-8, Pukou District, Nanjing City, Jiangsu Province

Patentee after: NANJING PANSITE ELECTRONIC TECHNOLOGY Co.,Ltd.

Patentee after: Zibo Kesong Electronic Information Technology Co.,Ltd.

Patentee after: Zibo Shengchang Chemical Technology Co.,Ltd.

Patentee after: Liu Guanghui

Patentee after: ZIBO HIGH-TECH INDUSTRIAL DEVELOPMENT ZONE ADVANCED CERAMICS Research Institute

Address before: No. 80-8, Qiaolin Industrial Park, Pukou District, Nanjing, Jiangsu 211800

Patentee before: NANJING PANSITE ELECTRONIC TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220727

Address after: Room 1016-01, building a, advanced ceramic industry innovation park, No. 125, Liuquan Road, high tech Zone, Zibo City, Shandong Province, 255035

Patentee after: ZIBO HONGRONG ELECTRONIC TECHNOLOGY Co.,Ltd.

Address before: 211086 Qiaolin Industrial Park 80-8, Pukou District, Nanjing City, Jiangsu Province

Patentee before: NANJING PANSITE ELECTRONIC TECHNOLOGY Co.,Ltd.

Patentee before: Zibo Kesong Electronic Information Technology Co.,Ltd.

Patentee before: Zibo Shengchang Chemical Technology Co.,Ltd.

Patentee before: Liu Guanghui

Patentee before: ZIBO HIGH-TECH INDUSTRIAL DEVELOPMENT ZONE ADVANCED CERAMICS Research Institute

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220817

Address after: Room 1013, Block A, Advanced Ceramics Industry Innovation Park, No. 125, Liuquan Road, High-tech Zone, Zibo City, Shandong Province, 255035

Patentee after: Shandong Yuhui Electronic Technology Co., Ltd.

Address before: Room 1016-01, building a, advanced ceramic industry innovation park, No. 125, Liuquan Road, high tech Zone, Zibo City, Shandong Province, 255035

Patentee before: ZIBO HONGRONG ELECTRONIC TECHNOLOGY Co.,Ltd.