CN105597660A - 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用 - Google Patents

一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用 Download PDF

Info

Publication number
CN105597660A
CN105597660A CN201511021523.5A CN201511021523A CN105597660A CN 105597660 A CN105597660 A CN 105597660A CN 201511021523 A CN201511021523 A CN 201511021523A CN 105597660 A CN105597660 A CN 105597660A
Authority
CN
China
Prior art keywords
silica gel
adsorbent
salt
ferrocyanide
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201511021523.5A
Other languages
English (en)
Inventor
赵璇
尉继英
成徐州
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201511021523.5A priority Critical patent/CN105597660A/zh
Publication of CN105597660A publication Critical patent/CN105597660A/zh
Priority to CN201610518400.0A priority patent/CN105944658B/zh
Priority to PCT/CN2016/112082 priority patent/WO2017114354A1/zh
Priority to EP16881143.8A priority patent/EP3412361A4/en
Priority to JP2017560545A priority patent/JP2018524149A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • B01J20/0244Compounds of Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明的具体步骤是:首先依据盐类在氧化物载体表面单层分散原理,采用X射线衍射方法测定Mn+离子盐在硅胶表面的单层分散阈值,以该值为最优的Mn+离子盐负载量。在吸附剂制备中,先用一定浓度的Mn+离子盐充分浸渍硅胶颗粒,使Mn+离子负载在硅胶表面形成分散单层,并使Mn+离子与硅胶之间有较强的结合力;之后用亚铁氰化钾溶液充分浸泡中间体M/SiO2,使亚铁氰化钾与表面的Mn+离子反应,在硅胶表面生成一层结合力较强的M离子稳定的亚铁氰化物。经过静态Cs+吸附性能测定、固定床反应器冷实验测定以及固定床反应器137Cs放射性示踪试验的验证,以该法制备的硅胶负载型亚铁氰化物吸附剂对Cs+具有良好的吸附性能。

Description

一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用
技术领域
本发明涉及一种用于放射性废液处理中去除134Cs/137Cs离子的颗粒态无机离子吸附剂及其工业化制备方法,特别涉及一种复合吸附材料的制备方法。该材料以硅胶为载体,利用表面单层分散技术负载了一系列金属离子稳定型亚铁氰化物活性组分,其中稳定金属离子包括Fe3+、Co2+、Cu2+、Zn2+和Zr4+等。形成的颗粒态吸附剂适合填装于固定床吸附反应器,应用于核电站及其他核设施的废液处理工艺。本发明属于材料制备及放射性废水处理技术领域。
背景技术
核电作为一种重要的清洁能源,正在逐渐成为我国能源结构中的重要组成部分。日本福岛核事故后,核安全已经成为核能发展中需要重点关注的问题,建立核电站事故应急机制、开展应急技术研究,是非常重要和紧迫的。而放射性废液能否快速高效及时处理,是核电站事故中需要重点关注的问题。在这方面,日本福岛核事故是一个严重的警示,核事故条件下大量的放射性废液排入海域,造成污染。
低放废液水质复杂,并且通常含有裂变产物(I、Cs、Sr、Te、Ru、Mo、Ag及稀土元素等),结构材料活化产物(Cr、Mn、Fe、Co、Ni),以及放射性锕系元素(U、Pu、Am、Cm等)。其中裂变产物134Cs/137Cs是核事故下释放的主要核素,被视为监测核燃料破损的指针。在福岛核事故中,从反应堆泄漏出来的大量放射性废水中,铯就是主要的辐射来源(Hijikataetal.,2014;Tsukadaetal.,2014)。有研究表明,一次放射性铯的污染能够在生物系统中循环很多年(Avery,1996)。由于含量高、半衰期长、高溶解性和生物相容性等特点,134Cs/137Cs是低放废液中需要去除的主要目标。
核电站事故应急条件下,低放废液处理技术必须满足快速、高效、可靠的要求。福岛事故的处理也是集世界多个国家之力,对核应急条件下放射性废液处理技术进行了一次实践优选和评估,最终形成的有效处理工艺包括了以下几个技术段:首先是预过滤和油水分离技术,去除废液中主要的固体残留物和水中含有的柴油等有机物;其次是无机离子吸附技术,重点是采用选择性无机吸附剂去除134Cs/137Cs和129I/131I,使核素快速富集到固体吸附剂表面,有效地降低废液中的放射性活度水平;接下来是膜技术精处理单元,将多种核素和其他非放射性金属离子进行浓缩分离,使排放出的水中放射性活度进一步降低并达到排放的要求。在这套核事故应急工艺中,除铯吸附剂起到了重要的作用。
核电站正常运行中,普遍采用“离子交换+蒸发浓缩”工艺进行放射性废液处理,有机离子交换树脂是常规的应用材料。从原理上说,废液中的金属离子都具有与树脂上的阳离子或阴离子进行交换的可能性,因此树脂是一种广谱性的处理技术,对核素离子的选择性低。由于低放废液中一般含盐量高,核素浓度极低,要达到较高的核素去除率所需的树脂量很大,这将最终形成大量的固体放射性废弃物。与有机树脂材料相比,无机离子吸附剂的热稳定性和化学稳定性好、耐辐照性能强,吸附饱和的无机材料在长期地质储存中具有高度的稳定性,易于现场辐射防护以及废物终端处理处置;更重要的是无机离子吸附剂对主要核素如34Cs/137Cs、90Sr和60Co的选择性高,适用于处理高盐量、强酸性/碱性的低放废液,能快速大幅度降低废液的放射性活度,降低固体废物量,满足核废物减量化的原则。此外无机离子吸附剂可以方便地制成可移动式小型净化设备,尤其适合于在核应急事故下灵活处理不同形式的分散性污染源。
在过去的几十年间,用无机吸附剂去除溶液中铯离子的研究有很多,吸附剂的种类也各异,其中亚铁氰化物型吸附剂在很宽的pH范围内皆能保持对铯离子良好的吸附效果。例如,赫尔辛基大学研制的亚铁氰化物型吸附剂Cs-treat,每千克材料可处理某核电站低放废液(含盐量240g/L)10吨左右,对Cs的去污系数达到了2000,是传统的蒸发-离子交换方法的2倍,这是除Cs方面国际上的最好研究成果。
金属离子Ti、Co、Cu、Zn、Ni和Zr等稳定的亚铁氰化物可以从pH=1~13范围的高盐度低放废液中高效吸附Cs+,Cs+的分配系数可以达到104~106,在Na+存在下Cs的选择性系数kCs/Na可达1500000(NuclearScienceandEngineering,137,206-214,2001)。但在实际应用中,亚铁氰化物一般颗粒度小、水力学特性差,不能进行柱上操作,且固液相的分离非常困难;此外亚铁氰化物颗粒内部传质条件差,内层吸附剂往往不能完全利用(核化学与放射化学,23,108-113,2001)。针对此问题,国内外同行通常采用固载化技术,一种是将亚铁氰化物负载到二氧化硅等载体表面(SeparationandPurificationTechnology16,147–158,1999),其缺点在于:活性组分的负载量低;利用过渡金属离子固定亚铁氰化物的过程很难完全进行,活性亚铁氰化物组分在使用中容易流失。另一种是将吸附剂与PAN结合制成无机/有机杂化小球(中国专利CN1319849A),存在的问题是粘结剂易于堵塞吸附剂表面积孔道,降低吸附剂性能。
本研究组前期针对除铯吸附剂的固载化,采用了两种技术路线,有效地避免了单独使用亚铁氰化钛钾粒子导致的床层水阻过大的问题。第一种是采用硅溶胶原位固定技术制备了亚铁氰化钴钾与多孔SiO2的杂化材料,对Cs+的吸附容量可达0.335meqCs/g-adsorbent(中国专利CN200710064453.0);第二种是以成型的硅胶小球与钛酸四丁酯反应形成表面包覆TiO2的复合载体,再将该载体浸泡于亚铁氰化钾的盐酸溶液中,获得球形亚铁氰化钛钾/小球硅胶杂化材料(中国专利200710122085.0)。在原位固定技术中,SiO2作为粘结剂,易于将活性吸附剂亚铁氰化物包裹在内层,不易发挥其吸附作用;将吸附剂包覆在硅胶球的外表面可以使吸附剂易于与Cs+接触,但由于硅胶球的颗粒度较大(3ˉ4mm),影响了吸附剂对Cs+离子的吸附效率和吸附容量。
发明内容
本发明在前期工作的基础上,选择以颗粒度较小的大孔硅胶为载体,采用单层分散原理在硅胶表面上负载单层亚铁氰化物,制成由多种过渡金属离子Mn+稳定的颗粒态亚铁氰化物吸附剂,其中Mn+=Fe3+、Co2+、Cu2+、Zn2+和Zr4+等。
本发明研制开发一种由多种过渡金属离子Mn+稳定的颗粒态亚铁氰化物吸附剂,并提供一种工业化制备负载型亚铁氰化物复合吸附材料的方法,包括如下的具体步骤:
(1)确定Mn+盐在硅胶表面的单层分散阈值
采用等体积浸渍法将一系列浓度不同的含有Mn+离子的盐溶液浸渍在硅胶表面,浸渍后的固体物料在烘箱内干燥,获得表面负载有不同量M盐的硅胶中间体M/SiO2。依据金属盐在载体表面单层分散的原理,采用X射线衍射方法确定不同种Mn+离子盐在硅胶表面的单层分散阈值,该值为不同种盐在硅胶载体表面的单层负载量。
(2)在硅胶表面负载单层Mn+离子盐
在鼓风烘房设备内的不锈钢托盘中分装等量硅胶,在溶解罐中加热溶解Mn+离子盐,搅拌使溶质完全溶解,形成一定浓度的溶液A。将一定体积的溶液A加入每个托盘中,浸没全部的硅胶颗粒,将托盘放置在物料车上,摇动20-30min,之后推入鼓风烘房内,先静置4-5小时,之后烘干,获得批量的硅胶中间体M/SiO2
(3)利用表面反应制备亚铁氰化物吸附剂
在溶解罐中加热溶解亚铁氰化钾,使之形成均匀的溶液B。将一定体积的溶液B加入每个托盘中,浸没全部的硅胶中间体M/SiO2,摇动20-30min,之后推入鼓风烘房内,先静置4-5小时,之后烘干,获得批量的硅胶负载型亚铁氰化物型吸附剂K2M[Fe(CN)6]/SiO2
(4)吸附剂的清洗
将第3)步获得的吸附剂过筛,选取颗粒度完整的吸附剂,并用自来水清洗,去掉颗粒表面粘附的可溶性物质和细粉末,直到清洗液变得澄清。将清洗后的吸附剂再一次烘干,获得可以直接使用的硅胶负载型亚铁氰化物型吸附剂K2M[Fe(CN)6]/SiO2
进一步,所述所有步骤(1)—(4)中,选择大孔硅胶为载体,平均孔径在10-15nm,比表面积在900-1200m2/g,硅胶颗粒度在0.4-2mm。
进一步,所述步骤(1)—(2)中,Mn+=Fe3+、Co2+、Cu2+、Zn2+或Zr4+等,选择的盐分别为:含Fe3+盐为FeCl3或Fe(NO3)3;含Co2+盐Co(NO3)2或CoCl2;含Cu2+盐Cu(NO3)2或CuSO4;含Zn2+盐为Zn(NO3)2、ZnCl2或Zn(AC)2;含Zr4+的盐为ZrOCl2或ZrO(NO3)2
进一步,所述步骤(1)中,首先需要测定Mn+离子盐在硅胶表面的单层分散阈值,具体方法为:采用溶液浸渍法将一系列不同含量的Mn+离子盐负载到硅胶表面,烘干后得到待测样品。
硅胶质量为5-10g,Mn+离子盐在硅胶上的负载量为每克硅胶分别负载0.02g、0.05g、0.1g、0.5g、1.0g、2.0g、3.0g、4.0g、5.0g、6.0g;Mn+离子溶液体积与硅胶体积比为0.5-2。
将获得的系列样品进行X射线衍射(XRD)测定,采用最强的衍射峰强度(y轴)与对应Mn+离子盐负载量(x轴)做线性关系图,图中x轴上的截距即为单层分散阈值。
进一步,所述步骤(1)中,浸渍过程在温度为90℃的水浴锅中进行,过程中不断搅拌,直到液体全部蒸发,溶质Mn+离子盐全部负载到硅胶表面。
进一步,所述步骤(1)中,硅胶中间体M/SiO2在烘箱内干燥10h,温度为120℃。
进一步,采用步骤(1)中所述的X射线衍射方法测定出不同Mn+离子盐在硅胶上的单层分散阈值分别为:Zn(AC)2阈值0.18g/g;Co(NO3)2阈值0.63g/g;CuSO4阈值0.79g/g;ZrO(NO3)2阈值1.02g/g;FeCl3阈值0.43g/g。
进一步,所述步骤(2)中,每个托盘中加入1-2kg的硅胶颗粒,浸渍溶液体积与硅胶颗粒体积比为1-4,依据Mn+离子盐的单层分散阈值获得相应的溶质质量,可计算获得对应的A溶液浓度,溶解温度在30-60℃。
进一步,所述步骤(3)中,亚铁氰化钾与Mn+离子盐的摩尔数比为0.5-1.5,浸渍溶液体积与硅胶中间体M/SiO2颗粒体积比为1-4,溶解温度为在30-60℃。
进一步,所述步骤(2)和(3)中,溶液浸渍时间为3-5小时,之后在120℃的鼓风烘房内干燥5-10h。
由上述制备方法制备所得的含有亚铁氰化物K2M[Fe(CN)6]的吸附剂,也在本发明的保护范围之内。
上述所述的含有亚铁氰化物K2M[Fe(CN)6]的硅胶负载型吸附剂在去除放射性同位素Cs离子和去除稳定同位素Cs离子的应用,也在本发明的保护范围之内。
本发明提供了一种工业化制备硅胶负载型亚铁氰化物K2M[Fe(CN)6]吸附剂的有效方法,该材料可以应用于核电站放射性废液中Cs离子的高效去除,也可以应用于所有去除稳定同位素Cs的工况下。本发明以大孔硅胶为载体,以Mn+离子盐和亚铁氰化钾为原料,采用两步浸渍法制备硅胶负载型的亚铁氰化物K2M[Fe(CN)6]吸附剂。过程中首先将Mn+离子盐分散在硅胶表面,形成密致单层,并通过本发明中所述的方法获得Mn+离子盐的分散阈值,也就是Mn+离子盐的最优负载量;其次采用表面反应方法,使亚铁氰化物K2M[Fe(CN)6]在硅胶表面沉积,获得结构稳定、吸附性能高的除铯吸附剂。
附图说明
附图1为实施例1中所得五种硅胶负载型亚铁氰化物吸附剂的照片;
附图2为实施例1中所得五种硅胶负载型亚铁氰化物吸附剂的XRD图;
附图3为实施例1中所得五种硅胶负载型亚铁氰化物吸附剂的FT-IR图;
附图4(a-e)为实施例1中所得五种硅胶负载型亚铁氰化物吸附剂的SEM图;
附图5为实施例1中所得五种硅胶负载型亚铁氰化物吸附剂对Cs+离子的平衡吸附等温线;
附图6为实施例1中所得吸附剂KZnHCF-S和KCuHCF-S对Cs+离子的固定床填充柱穿透曲线;
附图7为实施例3中所得的吸附剂KZnHCF-S的固定床Cs+吸附冷实验去污系数与水处理量关系;
附表1为实施例1中所得五种硅胶负载型亚铁氰化物吸附剂的比表面积测定结果以及静态Cs+吸附容量。
具体实施方式
下面结合具体实施方式对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法,所述原材料及检测所用标准化学试剂如无特别说明均能从公开商业途径而得。
在所述的实施例中,采用稳定同位素Cs进行测定的实验称为冷实验,其中吸附剂的性能分别采用了静态吸附法和固定床反应器动态吸附两种方法,吸附前后Cs+离子的浓度采用等离子体质谱(ICP-MS)来测定。采用放射性同位素137Cs进行测定的实验称为同位素示踪实验,也称为热实验,吸附剂装填于固定床反应器中测定其动态吸附性能,其中吸附前后示踪剂137Cs的放射性活度采用γ能谱分析。
静态吸附测定中,一定量的吸附剂加入到50mL的离心管中,置于恒温摇床上摇动48h-72h,测定吸附前后的Cs+离子浓度,吸附剂性能采用分配系数Kd和去污系数DF来表示。吸附分配系数Kd(mL/g)如下式1所示,其中C0和Ct分别为被吸附离子的初始浓度以及达到吸附平衡后浓度,F为被处理溶液体积(mL)与吸附剂质量(mg)之比。去污系数如下式2所示,为被吸附离子的初始浓度与达到吸附平衡后浓度的比值。一般吸附分配系数说明了吸附材料本身的特性,Kd值在105以上的说明吸附剂的性能良好;去污系数的大小不仅与材料本身的吸附特性相关,也与吸附剂的用量相关,该值越大说明污染物去除得越干净。
Kd=(Co–Ct)×F×1000/Ct(1)
DF=Co/Ct(2)
固定床反应器动态吸附性能测定中,吸附剂装填于一级或两级吸附柱中,含Cs+溶液以固定流速流过吸附床层,测定其流出液中Cs+的质量浓度(冷实验)或放射性活度(热试验),流量设定为每小时8个床体积,即8BV/h,吸附反应器的性能采用如2式所示的去污系数DF来表示。
对比例1
在8个小烧杯中分别加入0.1g、0.5g、1.0g、2.0g、3.0g、4.0g、5.0g、6.0g的硝酸钴Co(NO3)2·6H2O,加入20mL水使之完全溶解。之后在每个烧杯中加入1g的硅胶颗粒,将烧杯放入水浴锅内,温度为90℃。在水分挥发的过程中一直用玻璃棒搅拌均匀,直到水分全部蒸发,颗粒基本上干燥。将烧杯转入120℃烘箱内干燥10h,之后将1g粉红色的负载有硝酸钴的硅胶颗粒与0.2g氯化钠(NaCl)混合研磨,用XRD测定其衍射峰,利用XRD衍射峰强度外推的方法测定硝酸钴在硅胶表面的单层分散阈值,测定值为0.63g/g。
对比例2
在8个小烧杯中分别加入0.1g、0.5g、1.0g、2.0g、3.0g、4.0g、5.0g、6.0g的硫酸铜(CuSO4·5H2O),加入20mL水使之完全溶解。之后在每个烧杯中加入1g的硅胶颗粒,将烧杯放入水浴锅内,温度为90℃。在水分挥发的过程中一直用玻璃棒搅拌均匀,直到水分全部蒸发,颗粒基本上干燥。将烧杯转入120℃烘箱内干燥10h,之后将1g蓝色的负载有硫酸铜的硅胶颗粒与0.2g氯化钠(NaCl)混合研磨,用XRD测定其衍射峰,利用XRD衍射峰强度外推的方法测定硫酸铜在硅胶表面的单层分散阈值,测定值为0.79g/g。
对比例3
在8个小烧杯中分别加入0.1g、0.5g、1.0g、2.0g、3.0g、4.0g、5.0g、6.0g的醋酸锌((CH3COO)2Zn·2H2O),加入20mL水使之完全溶解。之后在每个烧杯中加入1g的硅胶颗粒,将烧杯放入水浴锅内,温度为90℃。在水分挥发的过程中一直用玻璃棒搅拌均匀,直到水分全部蒸发,颗粒基本上干燥。将烧杯转入120℃烘箱内干燥10h,之后将1g白色的负载有醋酸锌的硅胶颗粒与0.2g氯化钠(NaCl)混合研磨,用XRD测定其衍射峰,利用XRD衍射峰强度外推的方法测定醋酸锌在硅胶表面的单层分散阈值,测定值为0.18g/g。
对比例4
在8个小烧杯中分别加入0.1g、0.5g、1.0g、2.0g、3.0g、4.0g、5.0g、6.0g的硝酸氧锆(ZrO(NO3)2),加入20mL水使之完全溶解。之后在每个烧杯中加入1g的硅胶颗粒,将烧杯放入水浴锅内,温度为90℃。在水分挥发的过程中一直用玻璃棒搅拌均匀,直到水分全部蒸发,颗粒基本上干燥。将烧杯转入120℃烘箱内干燥10h,之后将1g白色的负载有ZrO(NO3)2的硅胶颗粒与0.2g氯化钠(NaCl)混合研磨,用XRD测定其衍射峰,利用XRD衍射峰强度外推的方法测定硝酸氧锆在硅胶表面的单层分散阈值,测定值为1.02g/g。
对比例5
在8个小烧杯中分别加入0.1g、0.5g、1.0g、2.0g、3.0g、4.0g、5.0g、6.0g的三氯化铁(FeCl3·6H2O),加入20mL水使之完全溶解。之后在每个烧杯中加入1g的硅胶颗粒,将烧杯放入水浴锅内,温度为90℃。在水分挥发的过程中一直用玻璃棒搅拌均匀,直到水分全部蒸发,颗粒基本上干燥。将烧杯转入120℃烘箱内干燥10h,之后将1g黄色的负载有FeCl3的硅胶颗粒与0.2g氯化钠(NaCl)混合研磨,用XRD测定其衍射峰,利用XRD衍射峰强度外推的方法测定三氯化铁在硅胶表面的单层分散阈值,测定值为0.43g/g。
实施例1:五种硅胶负载型吸附剂的实验室制备
两步浸渍法制备硅胶负载型吸附剂:
1)在5个10L的大烧杯中分别加入4L去离子水,分别加入:A—630g的Co(NO3)2·6H2O;B—790g的CuSO4·5H2O;C—180g的(CH3COO)2Zn·2H2O;D—1020g的ZrO(NO3)2;E—430g的FeCl3·6H2O。加热搅拌至完全溶解,之后将五种溶液分别倒入五个均盛有1kg硅胶颗粒的搪瓷托盘中,溶液基本上浸没全部的硅胶,静置3h,过程中经常搅拌使颗粒浸渍均匀。之后将5个托盘放置在恒温烘箱内,120℃下烘干10h,之后取出自然降温,获得浸渍不同离子的硅胶中间体。
2)在A、B、C、D、E这5个10L的大烧杯中各加入5L去离子水,分别加入一定量的亚铁氰化钾,加热至60-80℃下使之全部溶解。每个烧杯中加入的亚铁氰化钾与所对应的Co(A)、Cu(B)、Zn(C)、Zr(D)、Fe(E)离子的摩尔数比为1.05。将准备好的溶液分别加入上一步中对应的托盘内,使溶液没过固体颗粒,静置3h,过程中经常搅拌使浸渍过程和表面反应均匀。之后将5个托盘放置在恒温烘箱内,120℃下烘干10h,之后取出自然降温,获得五种硅胶负载型亚铁氰化物型吸附剂,命名为KMHCF-S,其中M=Co、Cu、Zn、Fe、Zr。
附图1给出五种吸附剂的外观照片,图2和图3分别给出五种吸附剂的XRD图谱和傅里叶变换红外(FT-IR)光谱,附图4给出了五种吸附剂的扫描电子显微镜照片。从附图1和附图4中可见,不同的金属离子制备获得的吸附剂具有不同的颜色,扫描电镜下可见均为球形,表面的粗糙度不同;从XRD图和FT-IR谱图中可见属于亚铁氰化物的特征衍射峰和特征红外吸收峰(2080cm-1处),说明在硅胶表面确实形成了金属离子M稳定的亚铁氰化物活性组份。附表1中给出了采用氮气低温吸附法测定的物种吸附剂的比表面积值。
采用静态吸附方法测定了五种吸附剂对Cs离子的吸附平衡等温线,参见附图4,从中可见KCoHCF-S、KCuHCF-S和KZnHCF-S对Cs的吸附性能较好,而KZrHCF-S和KFeHCF-S较差。利用Langmuir拟合获得材料对Cs的吸附容量,列于附表1中。
附表1:五种硅胶负载型亚铁氰化物吸附剂比表面积分析结果
样品 比表面积(m2/g) 吸附容量(mg/mg)
KFeHCF-S 137.947
KCoHCF-S 66.537 0.022
KCuHCF-S 389.429 0.061
KZnHCF-S 49.627 0.059
KZrHCF-S 90.728
附图6给出了KCuHCF-S和KZnHCF-S两种材料装填于单级固定床反应器中进行的动态穿透曲线测定结果。吸附柱直径1.5cm,装填高度10cm。穿透曲线能够较好地符合Thomas模型,拟合所得KCuHCF-S和KZnHCF-S的床层最大吸附容量分别为0.022mg/mg和0.023mg/mg。
实施例2:单批次500kg量级KCuHCF-S试制
在1吨的反应箱内加入500L水,加入395kg的CuSO4·5H2O,加热至80℃条件下连续搅拌使之完全溶解。之后加入500kg硅胶载体,在80℃条件下浸渍12h,过程中经常搅拌使吸附过程均匀。之后将物料过滤,放置在托盘中,置于120℃的电热鼓风烘房内烘干24h。收集滤出液,通过体积测定第一次浸渍的吸水量。将滤出液重新倒入反应箱内,并在其中补水,使溶液体积等于第一次吸水量。将烘干的物料再一次加入反应箱内,重复第一次的浸渍过程和操作条件,直到溶液基本上吸附干净。再一次将物料放置在托盘中,置于120℃的电热鼓风烘房内烘干24h,获得Cu/SiO2吸附剂中间体。
在1吨的反应箱内加入500L水,加入与CuSO4·5H2O等摩尔数的亚铁氰化钾,加热至60℃条件下连续搅拌使之完全溶解。之后加入上一步获得的Cu/SiO2吸附剂中间体,在60℃条件下浸渍反应12h,过程中经常搅拌使吸附与反应过程均匀。之后将物料过滤,放置在托盘中,置于120℃的电热鼓风烘房内烘干24h。收集滤出液,测定首次浸渍的吸水量。将滤出液重新倒入反应箱内,补水使溶液体积等于第一次吸水量。将烘干的物料第二次加入反应箱内,重复第一次的浸渍反应过程和操作条件,直到溶液基本上吸附干净。再一次将物料放置在托盘中,置于120℃的电热鼓风烘房内烘干24h,获得KCuHCF-S吸附剂。
将材料过筛,用清水洗涤,直到溶液澄清。将湿物料装填于两级串联固定床吸附反应器中,柱子高度为1m,直径为100cm。实验中Cs溶液初始浓度为1.5mg/L,流量为100L/h(8BV/h),分别在吸附床入口、一级出口和二级出口设置采样点,用0.22μm的微孔过滤器过滤采样,测定吸附反应器的去污系数。测定结果表明,当处理水量达到7000床体积时去污系数仍然大于1000。
实施例3:单批次500kg量级KZnHCF-S试制
在1吨的反应箱内加入500L水,加入92kg的(CH3COO)2Zn·2H2O,加热至40℃条件下连续搅拌使之完全溶解。之后加入500kg硅胶载体,在40℃条件下浸渍12h,过程中经常搅拌使吸附过程均匀。之后将物料过滤,放置在托盘中,置于120℃的电热鼓风烘房内烘干24h。收集滤出液,通过体积减少量测定第一次浸渍的吸水量。将滤出液重新倒入反应箱内,补水使溶液体积等于第一次吸水量。将烘干的物料再一次加入反应箱内,重复第一次的浸渍过程和操作条件,直到溶液基本上吸附干净。再一次将物料放置在托盘中,置于120℃的电热鼓风烘房内烘干24h,获得Zn/SiO2吸附剂中间体。
在1吨的反应箱内加入500L水,加入与(CH3COO)2Zn·2H2O等摩尔数的亚铁氰化钾,加热至50℃条件下连续搅拌使之完全溶解。之后加入上一步获得的Zn/SiO2吸附剂中间体,在60℃条件下浸渍反应12h,过程中经常搅拌使吸附与反应过程均匀。之后将物料过滤,放置在托盘中,置于120℃的电热鼓风烘房内烘干24h。收集滤出液,测定首次浸渍的吸水量。将滤出液重新倒入反应箱内,补水使溶液体积等于第一次吸水量。将烘干的物料第二次加入反应箱内,重复第一次的浸渍反应过程和操作条件,直到溶液基本上吸附干净。再一次将物料放置在托盘中,置于120℃的电热鼓风烘房内烘干24h,获得KZnHCF-S吸附剂。
将材料过筛,用清水洗涤,直到溶液澄清。将湿物料装填于两级串联固定床吸附反应器中,柱子高度为1m,直径为100cm。实验中Cs溶液初始浓度约为1.5mg/L,流量为100L/h(8BV/h),分别在吸附床入口、一级出口和二级出口设置采样点,用0.22μm的微孔过滤器过滤采样,测定吸附反应器的去污系数。采用固定床吸附实验,附图7为吸附反应器去污系数对数值与液体处理量关系曲线。可见,吸附剂对Cs具有很好的去除效果,去污系数高、吸附容量大、性能稳定时间长,在保证去污系数为1000的前提下,废液处理量与吸附剂用量的比达到7000。
实施例4:KZnHCF-S吸附剂的稳定工业化制备
在鼓风烘房设备内的不锈钢托盘中分装1-5kg硅胶,在溶解罐中加热溶解醋酸锌(CH3COO)2Zn·2H2O,搅拌使溶质完全溶解,形成溶液浓度为5-15wt%。在每个托盘中加入溶液,溶液与硅胶的体积比为1-4,使溶液浸没全部的硅胶颗粒。将托盘放置在物料车上,摇动20-30min,之后推入鼓风烘房内,先静置4-5小时,之后在100-120℃下烘干,获得批量的硅胶中间体Zn/SiO2
在溶解罐中加热溶解亚铁氰化钾,使之形成均匀的溶液。亚铁氰化钾与醋酸锌的摩尔比为0.8-1.2。在每个托盘中加入溶液,溶液与硅胶的体积比为1-4,使溶液浸没全部的硅胶中间体Zn/SiO2。将托盘放置在物料车上,摇动20-30min,之后推入鼓风烘房内,先静置4-5小时,之后烘干,获得批量的硅胶负载型亚铁氰化物型吸附剂KZnHCF-S。
将获得的吸附剂过筛,选取颗粒度完整的吸附剂,并用自来水清洗,去掉颗粒表面粘附的可溶性物质和细粉末,直到清洗液变得澄清。将清洗后的吸附剂再一次烘干,获得可以直接使用的硅胶负载型亚铁氰化物型吸附剂KZnHCF-S。
将吸附剂用湿法装入两级串联固定床吸附反应器中,单个固定床反应器的内径为36cm,吸附剂装填高度为80cm。采用137Cs示踪实验,其中要求的处理量为1.2t/h,进水浓度为1.7mg/L,137Cs的初始活度为5.7×103Bq/L。分别在吸附床入口、一级出口和二级出口设置采样点,用γ能谱仪测定吸附反应器的去污系数,要求出水满足去污因子大于1000。实际测定去污系数为1.2×104
实施例5:KCuHCF-S吸附剂的稳定工业化制备
在鼓风烘房设备内的不锈钢托盘中分装1-5kg硅胶,在溶解罐中加热溶解硫酸铜CuSO4·5H2O,搅拌使溶质完全溶解,形成溶液浓度为15-40wt%。在每个托盘中加入溶液,溶液与硅胶的体积比为1-4,使溶液浸没全部的硅胶颗粒。将托盘放置在物料车上,摇动20-30min,之后推入鼓风烘房内,先静置4-5小时,之后在100-120℃下烘干,获得批量的硅胶中间体Cu/SiO2
在溶解罐中加热溶解亚铁氰化钾,使之形成均匀的溶液。亚铁氰化钾与硫酸铜的摩尔比为0.8-1.2。在每个托盘中加入溶液,溶液与硅胶的体积比为1-4,使溶液浸没全部的硅胶中间体Cu/SiO2。将托盘放置在物料车上,摇动20-30min,之后推入鼓风烘房内,先静置4-5小时,之后烘干,获得批量的硅胶负载型亚铁氰化物型吸附剂KCuHCF-S。
将获得的吸附剂过筛,选取颗粒度完整的吸附剂,并用自来水清洗,去掉颗粒表面粘附的可溶性物质和棕红色细粉末,直到清洗液变得澄清。将清洗后的吸附剂再一次烘干,获得可以直接使用的硅胶负载型亚铁氰化物型吸附剂KCuHCF-S。
实施例6:KCoHCF-S吸附剂的稳定工业化制备
在鼓风烘房设备内的不锈钢托盘中分装1-5kg硅胶,在溶解罐中加热溶解硝酸钴Co(NO3)2·6H2O,搅拌使溶质完全溶解,形成溶液浓度为15-30%。在每个托盘中加入溶液,溶液与硅胶的体积比为1-4,使溶液浸没全部的硅胶颗粒。将托盘放置在物料车上,摇动20-30min,之后推入鼓风烘房内,先静置4-5小时,之后在100-120℃下烘干,获得批量的硅胶中间体Co/SiO2
在溶解罐中加热溶解亚铁氰化钾,使之形成均匀的溶液。亚铁氰化钾与醋酸锌的摩尔比为0.8-1.2。在每个托盘中加入溶液,溶液与硅胶的体积比为1-4,使溶液浸没全部的硅胶中间体Co/SiO2。将托盘放置在物料车上,摇动20-30min,之后推入鼓风烘房内,先静置4-5小时,之后烘干,获得批量的硅胶负载型亚铁氰化物型吸附剂KCoHCF-S。
将获得的吸附剂过筛,选取颗粒度完整的吸附剂,并用自来水清洗,去掉颗粒表面粘附的可溶性物质和深灰色细粉末,直到清洗液变得澄清。将清洗后的吸附剂再一次烘干,获得可以直接使用的硅胶负载型亚铁氰化物型吸附剂KCoHCF-S。

Claims (10)

1.一种颗粒态除铯无机离子吸附剂的制备方法,其特征在于,所述方法包括以下步骤:
(1)选择采用大孔硅胶为载体;
(2)依据单层分散原理,采用X射线衍射方法测定不同的金属离子Mn+离子盐在硅胶表面的单层分散阈值,获得最优的Mn+离子盐负载量;
(3)用Mn+离子盐溶液浸泡硅胶颗粒,之后烘干,获得中间体M/SiO2
(4)将中间体M/SiO2浸泡在亚铁氰化钾溶液中,在SiO2表面生成M离子稳定的亚铁氰化物,静置一定时间后烘干,所获材料经过筛和清洗,获得硅胶负载型亚铁氰化物吸附剂。
2.如权利要求1所述的制备方法,其特征在于,所述步骤(1)中,硅胶孔径10-15nm,比表面积在900-1200m2/g,硅胶颗粒度在0.4-2mm。
3.如权利要求1所述的制备方法,其特征在于,所述步骤(2)和(3)中,金属离子Mn+=Fe3+、Co2+、Cu2+、Zn2+或Zr4+
选择的盐分别为:含Fe2+盐为FeCl3或Fe(NO3)3;含Co2+盐为Co(NO3)2或CoCl2;含Cu2+盐为Cu(NO3)2或CuSO4;含Zn2+盐为Zn(NO3)2、ZnCl2或Zn(AC)2;含Zr4+盐为ZrOCl2或ZrO(NO3)2
4.如权利要求1所述的制备方法,其特征在于,首先需要测定Mn+离子盐在硅胶表面的单层分散阈值,具体方法为:采用溶液浸渍法将一系列不同含量的Mn+离子盐负载到硅胶表面,烘干后得到待测样品;
硅胶质量为5-10g,Mn+离子盐在硅胶上的负载量为每克硅胶分别负载0.02g、0.05g、0.1g、0.5g、1.0g、2.0g、3.0g、4.0g、5.0g、6.0g;
Mn+离子溶液体积与硅胶体积比为0.5-2;
将获得的系列样品进行X射线衍射测定获得单层分散阈值。
5.如权利要求3所述的制备方法,其特征在于,所述步骤(2)所测定的硅胶表面不同盐的单层分散阈值为:Co(NO3)2为0.4-0.7g/g;CuSO4为0.6-0.9g/g;Zn(AC)2为0.1-0.4g/g;ZrO(NO3)2为0.9-1.2g/g;FeCl3为0.3-0.5g/g。
6.如权利要求1所述的制备方法,其特征在于,所述步骤(3)和(4)中,浸渍溶液与硅胶颗粒的体积比为1-4,溶解温度为30-60oC。
7.如权利要求1所述的制备方法,其特征在于,所述步骤(4)中,亚铁氰化钾与Mn+离子盐的摩尔比为0.5-1.5。
8.如权利要求1所述的制备方法,其特征在于,所述步骤(3)和(4)中,溶液浸渍时间为3-5小时,之后在120℃的鼓风烘房内干燥5-10h。
9.一种由权利要求1-8任一项所述制备方法制备所得的硅胶负载型亚铁氰化物吸附剂。
10.权利要求8所述的硅胶负载型亚铁氰化物吸附剂在去除放射性同位素Cs离子及去除稳定同位素Cs离子的应用。
CN201511021523.5A 2015-12-30 2015-12-30 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用 Withdrawn CN105597660A (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201511021523.5A CN105597660A (zh) 2015-12-30 2015-12-30 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用
CN201610518400.0A CN105944658B (zh) 2015-12-30 2016-07-04 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用
PCT/CN2016/112082 WO2017114354A1 (zh) 2015-12-30 2016-12-26 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用
EP16881143.8A EP3412361A4 (en) 2015-12-30 2016-12-26 PROCESS FOR THE PREPARATION OF A PARTICULATE FORM OF INORGANIC IONIC ADSORBENT WITH CÉSIUM REMOVAL AND ITS PRODUCT AND ITS APPLICATION
JP2017560545A JP2018524149A (ja) 2015-12-30 2016-12-26 顆粒状のセシウム除去用の無機イオン吸着剤の製造方法及び製品、並びに応用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511021523.5A CN105597660A (zh) 2015-12-30 2015-12-30 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用

Publications (1)

Publication Number Publication Date
CN105597660A true CN105597660A (zh) 2016-05-25

Family

ID=55978326

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201511021523.5A Withdrawn CN105597660A (zh) 2015-12-30 2015-12-30 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用
CN201610518400.0A Active CN105944658B (zh) 2015-12-30 2016-07-04 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201610518400.0A Active CN105944658B (zh) 2015-12-30 2016-07-04 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用

Country Status (4)

Country Link
EP (1) EP3412361A4 (zh)
JP (1) JP2018524149A (zh)
CN (2) CN105597660A (zh)
WO (1) WO2017114354A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105944658A (zh) * 2015-12-30 2016-09-21 清华大学 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用
CN108160048A (zh) * 2018-01-04 2018-06-15 清华大学 高稳定性除铯吸附剂的规模化制备方法及其产品与应用
CN116586029A (zh) * 2023-06-08 2023-08-15 兰州大学 一种改性MXene吸附材料及其制备方法与用途

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108671901B (zh) * 2018-05-25 2020-10-02 北京师范大学 一种水体除铯用表面改性膜的制备方法及应用
CN112742343A (zh) * 2020-11-13 2021-05-04 烟台大学 亚铁氰化铜镍/蒙脱土复合材料及其制备方法和吸附用途

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742106B2 (ja) * 1992-03-09 1995-05-10 工業技術院長 水溶液中のセシウムの回収方法
JP3749941B2 (ja) * 1997-09-04 2006-03-01 独立行政法人産業技術総合研究所 セシウム分離材の製造方法
CN1129922C (zh) 2001-02-27 2003-12-03 中国原子能科学研究院 用于去除放射性废液中137Cs的复合吸附剂及其制备方法
CN100551519C (zh) * 2007-09-21 2009-10-21 清华大学 以小球硅胶为载体的亚铁氰化钛钾的制备方法
CN101279249B (zh) * 2008-05-23 2010-04-07 清华大学 以小球硅胶为载体的亚铁氰化锆钾的制备方法
CN101618313B (zh) * 2008-06-30 2012-11-14 中国石油化工股份有限公司 一种脱硫吸附剂及其制备方法和应用
CN102794153B (zh) * 2012-07-12 2014-06-04 清华大学 一种复合亚铁氰化钛钾磁性球及其制备方法
CN102836693B (zh) * 2012-09-19 2014-05-14 清华大学 一种用于去除放射性废水中Cs离子的磁核包覆型无机离子吸附剂及其制备方法
FR2996149B1 (fr) * 2012-09-28 2014-10-31 Commissariat Energie Atomique Membrane supportee fonctionalisee par des hexa- et octacyanometallates, son procede de preparation et procede de separation la mettant en oeuvre.
KR101440215B1 (ko) * 2013-02-05 2014-09-15 경북대학교 산학협력단 페로시안이 고정된 메조포러스 실리카의 제조방법
CN105597660A (zh) * 2015-12-30 2016-05-25 清华大学 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105944658A (zh) * 2015-12-30 2016-09-21 清华大学 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用
WO2017114354A1 (zh) * 2015-12-30 2017-07-06 清华大学 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用
CN105944658B (zh) * 2015-12-30 2020-02-18 清华大学 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用
CN108160048A (zh) * 2018-01-04 2018-06-15 清华大学 高稳定性除铯吸附剂的规模化制备方法及其产品与应用
CN108160048B (zh) * 2018-01-04 2023-07-14 清华大学 高稳定性除铯吸附剂的规模化制备方法及其产品与应用
CN116586029A (zh) * 2023-06-08 2023-08-15 兰州大学 一种改性MXene吸附材料及其制备方法与用途
CN116586029B (zh) * 2023-06-08 2024-01-02 兰州大学 一种改性MXene吸附材料及其制备方法与用途

Also Published As

Publication number Publication date
EP3412361A4 (en) 2019-12-11
EP3412361A1 (en) 2018-12-12
CN105944658B (zh) 2020-02-18
CN105944658A (zh) 2016-09-21
WO2017114354A1 (zh) 2017-07-06
JP2018524149A (ja) 2018-08-30

Similar Documents

Publication Publication Date Title
Awual et al. Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents
CN105597660A (zh) 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用
Fan et al. Sorption of Eu (III) on attapulgite studied by batch, XPS, and EXAFS techniques
Teng et al. Activation energy for oxygen chemisorption on carbon at low temperatures
RU2541474C2 (ru) Нанокомпозитный твердый материал на основе гекса- и октацианометаллатов, способ его приготовления и способ фиксации минеральных загрязнителей с использованием упомянутого материала
CN108160048B (zh) 高稳定性除铯吸附剂的规模化制备方法及其产品与应用
JP6371936B2 (ja) トリチウム吸着材、水中からのトリチウムの分離方法及びトリチウム吸着材の再生方法
Metwally et al. Utilization of low-cost sorbent for removal and separation of 134 Cs, 60 Co and 152+ 154 Eu radionuclides from aqueous solution
El-Shazly et al. Kinetic and isotherm studies for the sorption of 134Cs and 60Co radionuclides onto supported titanium oxide
Moghimi et al. Adsorption behavior of Sb (III) in single and binary Sb (III)—Fe (II) systems on cationic ion exchange resin: Adsorption equilibrium, kinetic and thermodynamic aspects
Li et al. Sequestration of U (VI) from acidic, alkaline, and high ionic-strength aqueous media by functionalized magnetic mesoporous silica nanoparticles: capacity and binding mechanisms
CN103752259B (zh) 用于去除放射性锶的硅基钛酸盐复合吸附剂及其制备方法
Huang et al. Immersion grinding and in-situ polymerization synthesis of poly (ionic liquid) s incorporation into MOF composites as radioactive TcO4-scavenger
Khalil et al. Synthesis, characterization and γ-rays irradiation of cobalt-based metal-organic framework for adsorption of Ce (III) and Eu (III) from aqueous solution
Mimura et al. Selective removal of cesium from highly concentrated sodium nitrate neutral solutions by potassium nickel hexacyanoferrate (II)-loaded silica gels
Kim et al. Adsorption of radionuclides from aqueous solutions by inorganic adsorbents
Teutli-Sequeira et al. Behavior of fluoride removal by aluminum modified zeolitic tuff and hematite in column systems and the thermodynamic parameters of the process
Abdel Raouf et al. Kinetics and thermodynamics of the sorption of uranium and thorium ions from nitric acid solutions onto a TBP-impregnated sorbent
Abou-Mesalam et al. Metal doping silicates as inorganic ion exchange materials for environmental remediation
Soliman et al. Selective removal and immobilization of cesium from aqueous solution using sludge functionalized with potassium copper hexacyanoferrate: a low-cost adsorbent
Momen et al. Extraction chromatographic materials based on polysulfone microcapsules for the sorption of strontium from aqueous solution
Mishra et al. Ion-exchangers in radioactive waste management Part XIV: Removal behavior of hydrous titanium oxide and sodium titanate for Cs (I)
Sang et al. Selective separation and immobilization process of 137Cs from high-level liquid waste based on silicon-based heteropoly salt and natural minerals
Yadav et al. Phosphate removal from aqueous solutions by nano‐alumina for the effective remediation of eutrophication
Soliman et al. Selective removal of uranium from wastewater using sludge collected from refinery wastewater treatment: Equilibrium, thermodynamic and kinetics studies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C04 Withdrawal of patent application after publication (patent law 2001)
WW01 Invention patent application withdrawn after publication

Application publication date: 20160525