CN105583396B - 一种制造半固态轻合金铸件的低压铸造一步法 - Google Patents

一种制造半固态轻合金铸件的低压铸造一步法 Download PDF

Info

Publication number
CN105583396B
CN105583396B CN201610149552.8A CN201610149552A CN105583396B CN 105583396 B CN105583396 B CN 105583396B CN 201610149552 A CN201610149552 A CN 201610149552A CN 105583396 B CN105583396 B CN 105583396B
Authority
CN
China
Prior art keywords
alloy
casting
semi
low pressure
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610149552.8A
Other languages
English (en)
Other versions
CN105583396A (zh
Inventor
冯志军
阮明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Foundry Research Institute Co Ltd Of China National Machinery Research Institute Group
Original Assignee
Shenyang Research Institute of Foundry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Research Institute of Foundry Co Ltd filed Critical Shenyang Research Institute of Foundry Co Ltd
Priority to CN201610149552.8A priority Critical patent/CN105583396B/zh
Publication of CN105583396A publication Critical patent/CN105583396A/zh
Application granted granted Critical
Publication of CN105583396B publication Critical patent/CN105583396B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

本发明公开了一种制造半固态轻合金铸件的低压铸造一步法,属于半固态金属加工领域。所用装置包括坩埚电阻炉、升液管、低压密封平台、轻合金引晶通道、密封筒、联接底座、模具固定平台和金属模具。所述低压铸造一步法是将高于液相线15‑35℃的合金熔体,在气体压力作用下流经具有强烈激冷能力的轻合金引晶通道,然后在气体压力作用下被带到铸型中,最终得到细小球状半固态组织的铸件。本发明轻合金半固态浆料的制备在充型、浇注过程中一步直接实现,节省了专门运输、制备轻合金半固态浆料的装置,解决了传统制造半固态轻合金铸件浆料运输过程中浆料氧化、浆料制备过程中浆料温度难以控制等问题。

Description

一种制造半固态轻合金铸件的低压铸造一步法
技术领域
本发明涉及半固态金属加工技术领域,具体涉及一种制造半固态轻合金铸件的低压铸造一步法。
背景技术
采用在线、一步法快速制备具有球状初生相的半固态金属浆料是半固态金属成形技术的核心内容。如何高质、高效在线制备半固态金属浆料并直接流变成形成为半固态金属加工技术产业化研究和关注的焦点。
生产实践证明,低压铸造有许多优点,归纳如下:(1)液态金属是自下而上地平稳充填型腔,型腔中液流方向与气体的方向一致,故可避免金属液对型腔的冲刷,同时还可以减少金属液流卷入气体和金属液二次氧化的可能性,防止铸件产生气孔和非金属夹杂物的缺陷。(2)铸件凝固补缩的过程是在气体压力的作用下进行的,所以补缩效果较好,铸件的致密度高、力学性能优良。所以此法用于生产耐高压、防渗漏铸件时效果更好。(3)液体金属是在外加压力作用下充填型腔的,提高了熔体的充填能力,所以在生产复杂或者是散热面积较大的薄壁铸件时,此法在使铸件成型方面特别有效。(4)金属熔体的利用率很高。低压铸造铸型的浇注系统较为简单,可以省去浇冒口系统,并且升液管内还未凝固的熔体可回流至柑祸内,所以生产铸件所消耗的金属液相对较少,提高了工艺收得率。(5)可以极大地降低浇注工艺中的劳动强度,整个铸造过程易于实现机械化、自动化、生产效率高。(6)低压铸造工艺对合金材料有较大适应性,轻合金、镁合金、铜合金等都适合采用低压铸造工艺。而半固态金属成形,被称为21世纪最有发展前途的金属材料加工技术之一。该工艺也具有许多独特的优点:铸件凝固收缩减少,成形不易裹气,因此铸件致密,可以热处理强化;铸件晶粒细小,不存在宏观偏析,性能更均匀;半固态金属成形易于近净成形,机加工量减少;半固态金属成形浆料温度低,对模具热冲击小,模具寿命长。若能将半固态成形技术与低压铸造良好结合,发挥两者的技术优势,低成本、绿色近净成形优异性能、优质合金铸件,将促进我国金属加工制造技术快速发展。
目前国内制造半固态轻合金铸件,主要依靠触变成形工艺即先通过专门的工艺和设备如电磁搅拌、机械搅拌、喷射成形等制备半固态轻合金坯料,然后对坯料进行重熔,最后挤压或压铸成形半固态铸件。但是该种制造工艺工序复杂,成本高、而且坯料重熔时温度较难控制,浆料固相率高难以成形复杂薄壁铸件,导致触变成形技术工业化应用受到限制被逐渐淘汰。后期美国MIT的Flemings等人提出半固态金属的流变压铸工艺,它是将制备出的半固态金属浆料直接送往压铸机的压室,进行流变压铸。目前我国在半固态流变成形技术的研究处于实验研究阶段,国外已经开发了多种流变成形技术,例如麻省理工学院的SSRTM(Semi-solid rheocasting)流变成形技术、加拿大Alcan轻业公司的SEED(Swirledenthalpy equilibration device)流变成形技术、日本UBE公司开发的NRC(Newrheocasting process)流变成形技术、南非科学与工业研究委员会开发的CSIR(councilfor scientific and industrial research)流变成形技术、瑞典延雪平大学(JonkopingUniversity)开发的RSF(rapid slurry forming)流变成形技术等,并且部分已经小批量工业化生产。虽然国外开发了多种流变成形技术,但是仍有一些缺点例如SSRTM流变成形技术制备的半固态浆料存在卷气、氧化、夹杂缺陷,制备的半固态浆料组织较大等缺点;加拿大Alcan轻业公司的SEED流变成形技术其制备的半固态浆料存在量小、浆料固相率高难以成形薄壁件等缺点。另外,国外几种典型流变成形技术均在大压力的挤压机或压铸机上流变成形,对设备的要求较高,导致生产成本较高。总之,国外的流变成形技术仍存在一定的不足,特别是需要额外专门设备提前制备半固态金属浆料,浆料制备过程温度变化灵敏、可控性差;而且在浆料的运输过程中容易导致浆料氧化,浆料温度损失固相率难以控制等问题。
发明内容
为了解决现有制造半固态轻合金铸件过程中存在的制备半固态金属浆料质量差、操作过程复杂、不可控、成本较高等问题,本发明的目的是提供一种制造半固态轻合金铸件的低压铸造一步法。
本发明采用的技术方案是:
一种制造半固态轻合金铸件的低压铸造一步法,该方法是利用半固态轻合金铸件制备装置进行,该装置包括坩埚电阻炉、升液管、低压密封平台、轻合金引晶通道、密封筒、联接底座、模具固定平台和金属模具;其中:所述坩埚电阻炉用于熔炼合金熔体,坩埚电阻炉的顶端开口处设置低压密封平台;所述升液管穿过低压密封平台并伸入坩埚电阻炉内,其上端固定于连接底座上,连接底座4与低压密封平台为可拆卸连接;所述密封筒套装于轻合金引晶通道外侧,密封筒的下部安装于连接底座上,且密封筒在连接底座上的安装位置与升液管相对应,密封筒的上部穿过模具固定平台并与所述金属模具相连接;所述模具固定平台的上部承载金属模具,其底部固定在所述连接底座上。
所述金属模具通过锁紧装置固定在模具固定平台,所述金属模具的外表面喷涂有保温涂料。
所述轻合金引晶通道具有多个通道。
本发明所提供的利用上述装置制造半固态轻合金铸件的低压铸造一步法,该方法包括如下步骤:
(1)熔炼合金熔体:
在坩埚电阻炉1进行合金熔炼,在熔炼时,将轻合金熔体的温度控制在合金液相线以上50~80℃范围内;然后对合金熔体进行精炼、细化变质,并进行扒渣处理,最后将合金熔体的温度控制在液相线以上15~35℃范围内;
(2)半固态浆料一步法在线制备:将步骤(1)获得的高于液相线15~35℃的轻合金金属液,在密闭坩埚内合金熔体表面上施加0.01~0.05MPa的空气压力或惰性气体压力,合金液通过浸放在坩埚里的升液管上升;合金熔体通过升液管之后首先经过连接底座,然后进入装有轻合金引晶通道的密封筒中,最后合金熔体在气体压力作用下被带到铸型(金属模具)中,并在铸型(金属模具)的强烈激冷作用下形成细小球状组织的半固态浆料;
(3)半固态浆料流变低压成形:步骤(2)形成的半固态浆料直接在气体压力的作用下在预热的金属模具中快速凝固成形半固态轻合金铸件。
上述步骤(2)中半固态浆料的制备、运输及成形在密闭的环境中进行。
上述步骤(2)中,所述轻合金引晶通道进行预热处理,预热温度为70~90℃。
上述步骤(3)中,所用的金属模具的预热温度为180~200℃。
本发明所述半固态轻合金为半固态铝、半固态铝合金、半固态镁或半固镁合金。
本发明设计原理如下:
本发明利用特定结构的装置并采用低压铸造一步法制造半固态轻合金铸件,该方法中,将处理好高于液相线15~35℃的轻合金金属液,在密闭坩埚合金熔体表面上施加0.01~0.05MPa的空气压力或惰性气体压力,合金液通过浸放在坩埚里的升液管上升。合金熔体通过升液管之后首先经过连接底座然后进入装有具有多个通道的轻合金引晶通道的密封筒中,当合金熔体在气体压力作用下流经温度较低的轻合金引晶通道时,部分熔体接触到引晶的通道内、外壁,由于引晶通道的强烈激冷作用,在通道壁附近形成一个过冷度较大的温度边界层,较大的过冷度大大降低了形核功,合金熔体在通道壁的表面和附近产生大量晶核;后续合金熔体在气体压力作用下快速流动,对通道壁表面及其附近形成的晶核产生较大的冲刷和剪切作用,使晶粒游离形成自由晶抑制了凝固壳在早期形成,延长晶粒游离的时间,同时也为产生更多的晶核创造了条件。合金熔体中的晶核在气体压力作用下被带到铸型中并在整个熔体中分布均匀,减弱了结晶前沿的温度梯度和成分过冷,使得一部分晶核以类球状形态在熔体中继续长大;由于铸型的强烈激冷作用使得熔体整体温度趋于均匀,一部分晶核直接演变成椭圆状或球状晶;另外,剩余的液相在大的过冷度下,以液相中杂质作为衬底或结晶核心,依靠能量起伏和结构起伏来形核大量增殖形成高密度的晶核,相互碰撞抑制晶核呈树枝形态生长并逐渐球化,最终得到细小球状半固态组织的浆料。形成的半固态浆料直接在气体压力的作用下在预热的金属模具中快速凝固成形半固态轻合金铸件。
进一步,步骤(2)中的轻合金半固态浆料的制备不需要专门制浆装置,直接在浇注、充型的过程中一步实现,装置结构紧凑重量轻、占地小,成本低。
进一步,步骤(2)中的轻合金半固态浆料的制备不需要实时监控半固态浆料的温度,只需要控制合金熔体的浇注温度(即熔体的过热度),解决传统制造半固态轻合金铸件由于制备半固态浆料时浆料温度难以控制问题。
本发明制备的轻合金浆料直接在气体压力作用下直接进入型腔一步成形半固态金属铸件,不需要专门的装置运输半固态浆料,解决传统制造半固态轻合金铸件由于浆料运输过程中浆料氧化及温度损失固相率难以控制等问题。
本发明轻合金浆料的制备、运输及成形在一个密闭的环境中进行,可以减少或避免了浆料在此三个过程中产生氧化、夹杂缺陷。
本发明所制备的轻合金半固态浆料为半固态铝浆料、半固态铝合金浆料、半固态镁浆料和半固镁合金浆料中的一种。
本发明的有益效果体现在:
本发明中的半固态金属制浆装置与成形装置直接相连,结构紧凑,占用空间小;轻合金半固态浆料的制备在充型、浇注的过程中一步直接实现,节省了专门制备轻合金半固态浆料的装置,解决了传统制造半固态轻合金铸件半固态浆料制备过程中温度难以控制,运输过程中浆料氧化、浆料温度损失导致固相率难以控制等问题。
在制备浆料时,主要通过多通道的轻合金引晶通道进行熔体强制冷却和冲刷,每次铸件成形之后,可以快捷、方便更换新的轻合金引晶,从而可以保证设备连续生产。每次更换的轻合金引晶通道温度较低而且一致,金属熔体在引晶通道内能够形成大量的初生晶核,从而提高了金属熔体内部的晶核密度,减小初生晶粒尺寸,铸件的力学性能从而得到提高。
制备的半固态轻合金浆料在气体压力作用下以层流状充型,充型过程中浆料卷气少,成形的轻合金铸件组织致密。
使用完之后的轻合金引晶通道可以进行回炉回收,合金材料循环利用,降低生产成本;
轻合金引晶通道其通道的高度、尺寸大小,可以根据铸件重量大小,灵活设计、制造,适合不同重量大小铸件的要求;
对成形设备无任何特殊要求,常规低压铸造设备即可满足要求,具有投资少、生产效率高、容易实现自动化或人机一体化生产。
附图说明
图1是制造半固态轻合金铸件的低压铸造一步法装置各组件结构示意图;其中:(a)金属模具;(b)模具固定平台;(c)密封筒;(d)轻合金引晶通道;(e)连接底座;(f)低压密封平台;(g)升液管;(h)坩埚电阻炉。
图2是制造半固态轻合金铸件的低压铸造一步法装置系统结构示意图。
图3是制造半固态轻合金铸件的低压铸造一步法装置系统A-A剖面结构示意图。
图4是低压铸造一步法制造的半固态轻合金铸件非枝晶显微组织示意图。
图中:1-坩埚电阻炉;2-升液管;3-低压密封平台;4-连接底座;5-轻合金引晶通道;6-密封筒;7-模具固定平台;8-金属模具。
具体实施方式
下面结合实施例对本发明的方案及实施效果做进一步说明:
如图1-3所示,本发明制造半固态轻合金铸件的装置包括坩埚电阻炉1、升液管2、低压密封平台3、轻合金引晶通道5、密封筒6、联接底座4、模具固定平台7和金属模具8;其中:所述坩埚电阻炉1用于熔炼合金熔体,坩埚电阻炉1的顶端开口处设置低压密封平台3;所述升液管2穿过低压密封平台3并伸入坩埚电阻炉1内,其上端固定于连接底座4上,连接底座4与低压密封平台3为可拆卸连接;所述密封筒6套装于轻合金引晶通道5外侧,密封筒6的下部安装于连接底座4上,且密封筒在连接底座4上的安装位置与升液管2相对应,密封筒6的上部穿过模具固定平台7并与所述金属模具8相连接;所述模具固定平台7的上部承载金属模具8,其底部固定在所述连接底座4上。
所述金属模具通过锁紧装置固定在模具固定平台7。
所述金属模具8的外表面喷涂有保温涂料。
实施例1:
本实施实例为半固态低压流变成形ZL101A合金铸件,合金材料的成分为(重量百分比)Si:6.96%,Mg:0.35%,Ti:0.15%,Fe:0.1%,Ni:0.01%,Zn:0.01%,Cu:0.01%,Mn:0.01%,Sn:0.01%,其余为Al。ZL101A合金的液相线和固相线温度分别为615℃和560℃。
具体过程如下:
1)将ZL101A铝合金在坩埚电阻炉1内熔化,使合金温度达到680℃左右时,加入变质剂,变质完成后再加入氩气进行精炼(加入量为合金液总重量的0.5%),氩气用钟罩压入轻合金液底部并轻轻摆动,使ZL101A铝合金液彻底沸腾起来。待到钟罩内不再有气泡冒出,用撇渣勺清渣干净,最后将合金液温度降至635℃;
2)将联接底座4与低压密封平台3相联接,然后将装有轻合金引晶通道5的密封筒6和模具固定平台7安装到连接底座上,其中轻合金引晶通道5需要进行低温预热,预热温度控制在70~90℃范围内;最后将预热好并喷涂保温涂料的金属模具8固定在模具固定平台7上,并将金属模具8用锁紧装置进行锁紧,金属模具的预热温度控制在180~200℃;
3)设置主要的低压铸造参数,充型压力设置为20KPa,充型速度为70mm/s,然后开始进行半固态流变低压成形铸件,最终获得半固态流变低压ZL101铝合金铸件,该铝合金铸件的平均晶粒尺寸小于120μm(图4)。
实施例2:
本实施实例为半固态低压流变成形ZL114A合金铸件,合金材料的成分为(重量百分比)Si:6.96%,Mg:0.55%,Ti:0.15%,Fe:0.1%,Ni:0.01%,Zn:0.01%,Cu:0.01%,Mn:0.01%,Sn:0.01%,其余为Al。ZL114A合金的液相线和固相线温度分别为615℃和560℃。
具体过程如下:
1)将ZL114A铝合金在坩埚电阻炉1内熔化,符合金温度达到685℃左右时,加入变质剂,变质完成后再加入氩气进行精炼(加入量为合金液总重量的0.5%),氩气用钟罩压入轻合金液底部并轻轻摆动,使铝合金液彻底沸腾起来。待到钟罩内不再有气泡冒出,用撇渣勺清渣干净,最后将合金液温度降至635℃;
2)将联接底座4与低压密封平台3相联接,然后将装有多通道轻合金引晶通道5的密封筒6和模具固定平台安7装到连接底座上,其中轻合金引晶通道需要进行低温预热,预热温度控制在70~90℃范围内;最后将预热好并喷涂保温涂料的金属模具8固定在模具固定平台7上,并将金属模具8用锁紧装置进行锁紧,金属模具的预热温度控制在180~200℃;
3)设置主要的低压铸造参数,充型压力设置为22KPa,充型速度为75mm/s,然后开始进行半固态流变低压成形铸件,最终获得半固态流变低压ZL114A铝合金铸件,该铝合金铸件的平均晶粒尺寸小于120μm。
尽管这里己详细列出并说明了优选实施实例,但是本领域技术人员可知,可在不脱离本发明精髓的情况下进行各种结构调整和控制参数搭配,这些内容都被认为处于权利要求所限定的本发明的范围之内。

Claims (8)

1.一种制造半固态轻合金铸件的低压铸造一步法,其特征在于:所述低压铸造一步法利用半固态轻合金铸件制造装置进行,该装置包括坩埚电阻炉、升液管、低压密封平台、轻合金引晶通道、密封筒、连 接底座、模具固定平台和金属模具;其中:所述坩埚电阻炉用于熔炼合金熔体,坩埚电阻炉的顶端开口处设置低压密封平台;所述升液管穿过低压密封平台并伸入坩埚电阻炉内,其上端固定于连接底座上,连接底座与低压密封平台为可拆卸连接;所述密封筒套装于轻合金引晶通道外侧,密封筒的下部安装于连接底座上,且密封筒在连接底座上的安装位置与升液管相对应,密封筒的上部穿过模具固定平台并与所述金属模具相连接;所述模具固定平台的上部承载金属模具,其底部固定在所述连接底座上。
2.根据权利要求1所述的制造半固态轻合金铸件的低压铸造一步法,其特征在于:所述金属模具通过锁紧装置固定在模具固定平台;所述轻合金引晶通道具有多个通道。
3.根据权利要求1所述的制造半固态轻合金铸件的低压铸造一步法,其特征在于:所述金属模具的外表面喷涂有保温涂料。
4.根据权利要求1所述的制造半固态轻合金铸件的低压铸造一步法,其特征在于:所述低压铸造一步法包括如下步骤:
(1)熔炼合金熔体:
在坩埚电阻炉进行合金熔炼,在熔炼时,将合金熔体的温度控制在合金液相线以上50~80℃范围内;然后对合金熔体进行精炼、细化变质,并进行扒渣处理,最后将合金熔体的温度控制在液相线以上15~35℃范围内;
(2)半固态浆料一步法在线制备:在坩埚电阻炉内,在步骤(1)获得的高于液相线15~35℃的合金熔体表面上施加0.01~0.05MPa的空气压力或惰性气体压力,合金熔体通过浸放在坩埚电阻炉里的升液管上升;合金熔体通过升液管之后首先经过连接底座,然后进入装有轻合金引晶通道的密封筒中,最后合金熔体在气体压力作用下被带到金属模具中,并在金属模具的激冷作用下形成细小球状组织的半固态浆料;
(3)半固态浆料流变低压成形:步骤(2)形成的半固态浆料直接在气体压力的作用下在预热的金属模具中凝固成形半固态轻合金铸件。
5.根据权利要求4所述的制造半固态轻合金铸件的低压铸造一步法,其特征在于:步骤(2)中半固态浆料的制备在密闭的环境中进行。
6.根据权利要求4所述的制造半固态轻合金铸件的低压铸造一步法,其特征在于:步骤(2)中,所述轻合金引晶通道进行预热处理,预热温度为70~90℃。
7.根据权利要求4所述的制造半固态轻合金铸件的低压铸造一步法,其特征在于:步骤(3)中,所用的金属模具的预热温度为180~200℃。
8.根据权利要求4所述的制造半固态轻合金铸件的低压铸造一步法,其特征在于:所述半固态轻合金为半固态铝、半固态铝合金、半固态镁或半固态 镁合金。
CN201610149552.8A 2016-03-16 2016-03-16 一种制造半固态轻合金铸件的低压铸造一步法 Active CN105583396B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610149552.8A CN105583396B (zh) 2016-03-16 2016-03-16 一种制造半固态轻合金铸件的低压铸造一步法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610149552.8A CN105583396B (zh) 2016-03-16 2016-03-16 一种制造半固态轻合金铸件的低压铸造一步法

Publications (2)

Publication Number Publication Date
CN105583396A CN105583396A (zh) 2016-05-18
CN105583396B true CN105583396B (zh) 2017-09-26

Family

ID=55923509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610149552.8A Active CN105583396B (zh) 2016-03-16 2016-03-16 一种制造半固态轻合金铸件的低压铸造一步法

Country Status (1)

Country Link
CN (1) CN105583396B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108067600A (zh) * 2016-11-17 2018-05-25 机械科学研究总院(将乐)半固态技术研究所有限公司 一种高效低成本制造半固态Al-Si系铝合金铸件的流变成形方法
CN108262455A (zh) * 2016-12-30 2018-07-10 沈阳铸造研究所 一种制造高品质半固态轻合金铸件的一体化流变成形方法
CN107400791B (zh) * 2017-06-19 2019-07-05 沈阳铸造研究所 一种高质、高效制备半固态铝合金浆料的装置及方法
CN107385263B (zh) * 2017-06-19 2019-09-24 沈阳铸造研究所 高质、高效制备SiC颗粒增强铝基复合材料的装置及方法
CN107350453B (zh) * 2017-07-05 2019-03-05 中北大学 一种镁合金铸件半固态复合挤压铸造成型方法
CN107321957A (zh) * 2017-07-27 2017-11-07 福建省瑞奥麦特轻金属有限责任公司 打结炉式铝合金薄壁铸件半固态成型机
CN108580845A (zh) * 2018-04-04 2018-09-28 湖南博途工业技术有限公司 低压铸造坩埚
CN109909478B (zh) * 2019-02-25 2020-12-22 镇江市吉玛铸造科技有限公司 一种梯度复合材料刹车盘的制作方法
CN110831713A (zh) * 2019-07-05 2020-02-21 苏州明志科技股份有限公司 一种采用电磁搅拌技术的低压充型方法及装置
CN112045164B (zh) * 2020-08-14 2021-11-23 江苏大学 一种大型复杂镁合金构件近液相线差压铸造方法及装置
CN113579203A (zh) * 2021-06-08 2021-11-02 苏州明志科技股份有限公司 一种微固态成型工艺及装置
CN115007839B (zh) * 2022-06-13 2023-07-18 浙江大学 一种半固态流变成形低压铸造方法
CN116000265A (zh) * 2022-11-07 2023-04-25 中国机械总院集团江苏分院有限公司 一种基于半固态成形技术的冷冻砂型铸造成形方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101497118A (zh) * 2008-02-02 2009-08-05 沈阳铸造研究所 低压铸造方法及其设备
CN101585079A (zh) * 2008-05-21 2009-11-25 沈阳铸造研究所 低压铸造充型方法及其所使用的低压铸造充型设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050126737A1 (en) * 2003-12-04 2005-06-16 Yurko James A. Process for casting a semi-solid metal alloy
KR100968780B1 (ko) * 2007-12-28 2010-07-08 한국생산기술연구원 반응고 저압주조용 금형 및 이를 이용한 저압주조 장치
JP5437648B2 (ja) * 2009-01-21 2014-03-12 アイ・イー・ソリューション株式会社 縦型鋳造装置及び鋳造方法
JP2010240732A (ja) * 2009-03-31 2010-10-28 Ie Solution Kk 鋳造装置および鋳造方法
JP2010247220A (ja) * 2009-04-13 2010-11-04 Ie Solution Kk 鋳造における溶湯供給装置および溶湯供給法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101497118A (zh) * 2008-02-02 2009-08-05 沈阳铸造研究所 低压铸造方法及其设备
CN101585079A (zh) * 2008-05-21 2009-11-25 沈阳铸造研究所 低压铸造充型方法及其所使用的低压铸造充型设备

Also Published As

Publication number Publication date
CN105583396A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
CN105583396B (zh) 一种制造半固态轻合金铸件的低压铸造一步法
CN111057890B (zh) 一种镁合金及镁锂合金高纯净化高均质化熔铸方法
CN103170600B (zh) 一种铝硅合金分闸件半固态流变压铸成形工艺
CN102069172A (zh) 一种铝冷却板的复合铸造方法
CN101817064A (zh) 用于制备金属半固态浆料的装置及浆料的制备方法
EP1259348B1 (en) Casting system and method for forming highly pure and fine grain metal castings
CN103170588B (zh) 一种温型铸造方法
CN104561705A (zh) 一种含稀土元素Er的喷射成形7xxx系铝合金及其制备方法
CN102994784A (zh) 强磁场复合变质剂细化过共晶铝硅合金中相组织的方法
CN101537480A (zh) 一种铝镁合金锅半固态成形压铸工艺
CN102699081A (zh) 一种铝硅铁合金发动机缸套的半固态触变挤压成形方法
CN106636787B (zh) 一种高韧性压铸铝合金及其制备方法
CN108097854B (zh) 一种大型金属构件高均匀性短流程成形方法
CN109201982A (zh) 一种基于真空感应加热的成形装置及成形方法
CN104942271A (zh) 一种铍铝合金板材及其制备方法
CN108262455A (zh) 一种制造高品质半固态轻合金铸件的一体化流变成形方法
CN101003863A (zh) 半固态合金浆料的制备和流变成型方法
CN106636794A (zh) 一种汽车配件的压铸工艺
CN104264015A (zh) 一种高强防锈铝合金扁锭的制造方法
CN105665657A (zh) 一种制备均质化铸锭的离散铸造方法
CN104550888B (zh) 一种可连续生产金属半固态浆体的方法
CN101628328B (zh) AgMgNi合金导电环制备方法
CN101130207A (zh) 一种半固态金属浆料的制备和流变成型的设备
CN105268940A (zh) 一种汽车零件半固态流变成型工艺
CN107790652A (zh) 一种铝/镁复合材料连续铸造制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 110000 Yunfeng South Street, Tiexi District, Shenyang, Liaoning Province, No. 17

Patentee after: SHENYANG RESEARCH INSTITUTE OF FOUNDRY Co.,Ltd.

Address before: 110021 No. 17 Yunfeng Street South, Tiexi District, Liaoning, Shenyang

Patentee before: Shenyang Research Institute OF Foundry

CP03 Change of name, title or address
CP01 Change in the name or title of a patent holder

Address after: 110000 No.17, Yunfeng South Street, Tiexi District, Shenyang City, Liaoning Province

Patentee after: Shenyang Foundry Research Institute Co., Ltd. of China National Machinery Research Institute Group

Address before: 110000 No.17, Yunfeng South Street, Tiexi District, Shenyang City, Liaoning Province

Patentee before: SHENYANG RESEARCH INSTITUTE OF FOUNDRY Co.,Ltd.

CP01 Change in the name or title of a patent holder