CN105579094A - 用于改进对心脏再同步治疗中左心室起搏相对于固有右心室激动的时间估算的方法及系统 - Google Patents

用于改进对心脏再同步治疗中左心室起搏相对于固有右心室激动的时间估算的方法及系统 Download PDF

Info

Publication number
CN105579094A
CN105579094A CN201480053127.8A CN201480053127A CN105579094A CN 105579094 A CN105579094 A CN 105579094A CN 201480053127 A CN201480053127 A CN 201480053127A CN 105579094 A CN105579094 A CN 105579094A
Authority
CN
China
Prior art keywords
electrode
event
heart
time
earliest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480053127.8A
Other languages
English (en)
Other versions
CN105579094B (zh
Inventor
S·戈什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of CN105579094A publication Critical patent/CN105579094A/zh
Application granted granted Critical
Publication of CN105579094B publication Critical patent/CN105579094B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3682Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions with a variable atrioventricular delay
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/025Digital circuitry features of electrotherapy devices, e.g. memory, clocks, processors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3627Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy

Abstract

公开了心脏起搏的方法和系统。获取基线心律,该基线心律包括来自植入的心脏引线或无引线设备的基线心房事件和基线右心室RV事件,从基线心房事件和基线RV事件确定的预激动间期以及从多个体表面电极确定的多个激动时间。关于从心房事件到RV事件所测得的时间间期是否与从心房事件到多个激动时间中的最早RV激动时间所测得的另一时间间期不同做出判断。响应于确定RV事件与最早RV激动时间不同而将校正因子应用于预激动间期以获得经校正的预激动间期。

Description

用于改进对心脏再同步治疗中左心室起搏相对于固有右心室激动的时间估算的方法及系统
技术领域
本公开涉及电生理学,且更具体地涉及响应于获得对最早固有右心室激动的客观(objective)估算而调节左心室起搏脉冲的递送的定时。
背景技术
心脏的跳动受窦房结、位于上腔静脉入口附近右心房内的一组传导细胞的控制。由窦房结生成的去极化信号激活房室结。房室结简要地延迟去极化信号的传播,在使去极化信号传递到心脏的心室之前允许心房进行引流。两个心室的协调的收缩驱动血液流动通过患者的身体。在特定情况下,去极化信号从房室结到左心室和右心室的传导可被中断或减慢。这可致使左心室和右心室的收缩不同步,而这可致使心力衰竭或死亡。
心脏再同步治疗(CRT)可通过经由医疗电引线向一个或两个心室或心房提供起搏治疗,来鼓励左心室或右心室的较早激动来纠正电不同步的症状。通过起搏心室的收缩,心室可被控制,使得心室同步收缩。CRT的一种形式为融合起搏。融合起搏通常涉及与固有右心室(RV)激动协调的利用LV医疗电引线上的电极的仅左心室(LV)起搏。有效的融合需要例如LV起搏的定时与RV腔室上的最早激动同步。融合起搏还可涉及利用RV医疗电引线上的电极与固有LV激动协调地起搏RV;然而,避免仅RV起搏,因为在一些患者中,仅RV起搏可以是致心律失常性的并且LV心力衰竭比RV心力衰竭更为普遍。
从CRT中实现积极的临床益处取决于若干治疗控制参数,这些治疗控制参数包括用于有效地夺获右心室或左心室的所递送的起搏脉冲的相对定时。目前,CRT算法依赖于预激动间期(例如,50-60毫秒(ms))。预激动间期是其中起搏脉冲被递送至LV的RV感测之前发生的时间间期。传统的CRT算法没有将医师可能未针对每个患者将RV引线一致地放置在相同或类似位置中这一事实考虑在内。因此,在一些情况中,RV感测时间可显著地不同于激动的开始的时间或最早激动的时间。例如,如果RV引线处于电学上迟发的区(例如,RVOT),则激动的开始的时间晚发生(例如,在去极化开始之后的70-80ms)。LV起搏的递送的定时被计算为70-80ms减去50-60ms,这意味着可在去极化开始之后的20-30ms递送起搏刺激。心电图或电描记图上的QRS波群表示通过心室的前进的去极化波前的总和。进入QRS波群或在QRS波群开始之后起搏对于有效的夺获不是理想的并且不能给患者提供CRT的全部益处。因此期望开发能够解决与传统的CRT算法相关联的限制的附加的方法或系统。
附图说明
图1是包括电极设备、成像设备、显示设备、和计算设备的示例性系统的示图。
图2是描绘了患者的心脏的一部分的机械运动数据的示例性图形用户界面。
图3A-3B是用于测量躯干表面电势的示例性外部电极设备的示图。
图4是映射至患者的心脏的植入部位区域的患者的示例性表面位置的示图。
图5是响应于确定从心房事件到RV感测时间所测得的时间间期(T心房-RV)与另一时间间期(T心房–最早RVAT)不同而将校正因子用于预激动间期的示例性方法的流程图。
图6是响应于确定显著大的偏移存在于从多个表面电极选择的电极的固有心律激动时间(T2)和固有心律中的最早RV激动时间(T1)之间而将校正因子用于预激动间期的示例性方法的流程图。
图7是包括示例性可植入医疗设备(IMD)的示例性系统的示图。
图8A是图7的示例性IMD的示图。
图8B是设置在图8A的左心室中的电引线的远端的放大视图的示图。
图9A是示例性IMD(例如,图7-9的IMD)的框图。
图9B是图7-9的系统中所采用的用于提供三个感测通道和相应的起搏通道的示例性IMD(例如,可植入脉冲发生器)电路和相关联的引线的另一框图。
具体实施方式
本公开针对优化被称为融合起搏的一种形式的心脏再同步治疗(CRT)的方法和系统。具体地,本公开响应于获得对最早固有右心室激动的客观估算来设置融合起搏的左心室起搏的递送的定时。一个或多个实施例以通过多个体表面电极确定基线心律开始。基线心律可构成仅RV起搏或心脏的固有心律。当获得基线心律时,不起搏左心室(LV)。通过一个或多个植入电极和/或表面电极来感测心脏活动。相对于远处的(distant)电极从单个植入电极获取或感测的信号产生单极电描记图(EGM)波形,而相对于像Wilson中心电端的中性电极或复合参考(compositereference)从单个表面电极获取或感测的信号产生单极心电图(ECG)。在没有左心室(LV)的起搏期间记录EGM信号和/或ECG信号。
基线心律包括各种数据。示例性数据可包括从植入的医疗引线或无引线设备获取的基线心房事件时间和基线右心室(RV)感测时间,从基线心房事件时间、基线RV感测时间确定的预激动间期以及从多个体表面电极确定的多个电激动时间。RV感测时间包括被感测的诸如RV起搏或固有RV事件之类的RV事件。关于从心房事件到RV感测时间所测得的时间间期(T心房-RV)是否与从心房事件到多个激动时间中的最早RV激动时间所测得的另一时间间期(T心房–最早RVAT)不同而做出判断。不同(Disparate)被定义成使得最早RV激动时间在最早RV感测时间之前大约40-300ms。响应于确定T心房-RV与T心房–最早RVAT不同,随后将校正因子应用于预激动间期以获得经校正的预激动间期并将其存储到存储器中。处理器随后被配置成用信号通知脉冲发生器以在RV感测时间之前使用经校正的预激动间期来向LV递送电刺激。本文中所描述的方法和系统通过相对于RV感测准确地且可靠地定时LV起搏的递送来改善患者对CRT的响应。
在以下实施例的详细描述中,对附图进行了参考,附图构成了实施例的一部分且在其中作为示例示出了可实践本发明的具体实施例。应当理解,可以采用其它实施例,并且在不背离本发明的范围的情况下(比如仍然落在本发明的范围之内)可以作出一些结构的改变。
将参照图1-9B描述示例性系统、设备和方法。对于本领域技术人员而言,很明显,来自一个实施例的元件或过程可被与其他实施例的元件或过程组合使用,且使用本文中所提出的特征的组合的这些方法、设备和系统的可能的实施例不限于附图中所示和/或本文中所描述的特定实施例。此外,将认识到,此处描述的实施例可包括并不一定按比例绘制的很多元件。此外,将理解的是,此处各个过程的时序以及各元件的大小和形状可被修改但仍落在本发明的范围内,虽然某些时序、一个或多个形状和/或大小、或元件类型可相比其他更有利。
根据单极心电图(ECG)记录,可在参考位置(例如,其可以是在植入期间左心室引线的所选位置)附近检测或估算电激动时间。这样的电激动时间可通过获取ECG信号并生成电激动(例如,q-LV)时间的度量的系统进行测量和显示或传送给植入者。
如本文所描述的,各种示例性系统、方法、和界面可被配置成使用包括外部电极的电极设备、成像设备、显示设备、和计算设备来非侵入地辅助用户(例如,医师)为一个或多个可植入电极选择接近患者心脏的一个或多个位置(例如,植入部位区域)和/或将一个或多个可植入电极导航至所选的位置(多个)。图1中描绘了包括电极设备110、成像设备120、显示设备130和计算设备140的示例性系统100。
如所示的电极设备110包括多个电极,该多个电极被合并到、或包括在缠绕在患者14的胸部或躯干周围的带内。电极设备110(例如,通过一个或多个有线电连接、无线地等)可操作地耦合至计算设备140以将来自电极中的每一个的电信号提供至计算设备140以供分析。将参考图3A-3B更详细地描述示例性电极设备110。
成像设备120可以是任何类型的成像设备,其被配置成以非侵入性的方式对患者的至少一部分成像、或提供患者的至少一部分的图像。例如,除了非侵入性工具(诸如,造影液),成像设备120可不使用可位于患者内的任何部件或零件来提供患者的至少一部分的图像。可理解的是,本文所描述的示例性系统、方法和界面可非侵入性地辅助用户(例如,医师)为可植入电极选择接近患者的心脏的位置,并且在示例性系统、方法和界面已提供非侵入性辅助之后,示例性系统、方法和界面随后可提供辅助以将可植入电极植入或导航到患者内,例如,接近患者的心脏。
例如,在示例性系统、方法和界面已提供非侵入性辅助之后,示例性系统、方法和界面随后可提供图像引导导航,该图像引导导航可被用于将包括电极的引线、无引线电极、无线电极、导管等导航在患者的体内。进一步,虽然本文中参照患者的心脏描述了示例性系统、方法和界面,但可以理解,示例性系统、方法和界面可适用于患者身体的任何其他部分。
成像设备120可被配置成捕捉或拍摄患者14的x射线图像(例如,二维x射线图像、三维x射线图像等)。成像设备120可以(例如,通过一个或有线电连接、无线地等)可操作地耦合至计算装置140,使得由成像装置120捕捉的图像可被传输至计算装置140。进一步,计算设备140可被配置成控制成像设备120,以例如将成像设备120配置成捕捉图像、改变成像设备120的一个或多个设置等。
将可以认识到,虽然如图1中所示的成像设备120可被配置成捕捉x射线图像,但本文所描述的示例性系统、方法、和界面还可使用任何其他替代的成像形态。例如,成像设备120可被配置成利用等中心荧光检查法、双平面荧光检查法、超声、计算机断层扫描(CT)、多层螺旋计算机断层扫描(MSCT)、磁共振成像(MRI)、高频超声(HIFU)、光学相干断层扫描(OCT)、血管内超声(IVUS)、二维(2D)超声、三维(3D)超声、四维(4D)超声、术中CT、术中MRI等来捕捉图像或图像数据。进一步,可以理解,成像设备120可被配置成(例如,连续地)捕捉多个连续图像以提供视频帧数据。换言之,利用成像设备120随时间拍摄的多个图像可提供运动图像数据。此外,还可在二维、三维、或四维中获得并显示图像。以更先进的形式,还可通过合并来自集地图(atlasmap)或来自由MRI、CT、或超声心电图形态捕捉的术前图像数据的心脏数据或其他软组织数据来实现心脏或身体的其他区域的四维表面绘制(rendering)。来自混合形态(诸如,与CT结合的正电子发射断层扫描(PET)、或与CT结合的单光子发射计算机断层显像(SPECT))的图像数据集还可提供叠加到解剖数据上的功能图像数据以被用于确信地到达心脏内的目标位置或其他感兴趣的区。
显示设备130和计算设备140可被配置成显示和分析数据(诸如,例如,使用电极设备110和成像设备120所聚集或收集的替代电激动数据、图像数据、机械运动数据等),以非侵入性地辅助用户进行可植入电极的位置选择。在至少一个实施例中,计算设备140可以是服务器、个人计算机或平板电脑。计算设备140可被配置成从输入设备142接收输入并将输出传输至显示设备130。进一步,计算设备140可包括数据存储,数据存储可允许访问处理程序或例程和/或一个或多个其它类型的数据,例如,以用于驱动配置成非侵入性地辅助用户进行可植入电极的位置选择等的图形用户界面。
计算设备140可以可操作地耦合至输入设备142和显示设备130以例如将数据传输至输入设备142和显示设备130中的每一个和从输入设备142和显示设备130中的每一个传输数据。例如,计算设备140可使用例如模拟电连接、数字电连接、无线连接、基于总线的连接、基于网络的连接、基于因特网的连接等来电耦合至输入设备142和显示设备130中的每一个。如本文进一步所描述的,用户可向输入设备142提供输入以操纵或修改显示设备130上所显示的一个或多个图形化描绘以查看和/或选择如本文进一步描述的患者心脏的部分的一个或多个目标或候选位置。
虽然如所描绘的,输入设备142是键盘,但可以理解,输入设备142可包括能够向计算设备140提供输入以执行本文所描述的功能、方法和/或逻辑的任何设备。例如,输入设备142可包括鼠标、轨迹球、触摸屏(例如,电容式触摸屏、电阻式触摸屏、多点触摸触摸屏等)等。同样地,显示设备130可包括能够向用户显示信息的任何设备,诸如,图形用户界面132,该图形用户界面132包括患者心脏的解剖的图形化描绘、患者心脏的图像、一个或多个电极的位置的图形化描绘、一个或多个目标或候选位置的图形化描绘、一个或多个值的字母数字表示、植入电极和/或引线的图形化描绘或实际图像等。例如,显示设备130可包括液晶显示器、有机发光二极管屏、触摸屏、阴极射线管显示器等。
由显示设备130所显示的图形用户界面132可包括或显示用于显示图形化描绘、用于显示图像、用于允许对此类图形化描绘和图像的一个或多个区域或区进行选择等的一个或多个区域。如本文所使用的,图形用户界面132的“区域(region)”可被定义为其内可显示信息或可执行功能的图形用户界面132的一部分。这些区域可存在于其他区域内,从而可被单独或同时显示。例如,较小的区域可位于较大的区域内,这些区域可并排设置等。此外,如本文所使用的,图形用户界面132的“区(area)”可被定义为图形用户界面132的位于小于其所位于的区域的区域内的一部分。
由计算设备140存储和/或执行的处理程序或例程可包括:用于计算数学、矩阵数学、分解算法、压缩算法(例如,数据压缩算法)、校准算法、图像构建算法、信号处理算法(例如,傅立叶变换、快速傅立叶变换等)、标准化算法、比较算法、向量数学、或实现本文所描述的一个或多个示例性方法和/或过程所需的任何其它处理的程序或例程。由计算设备140存储和/或使用的数据可包括,例如,来自成像设备120的图像数据、来自电极设备110的电信号数据、图形(例如,图形元素、图标、按钮、窗口、对话框、下拉菜单、图形区、图形区域、3D图形等)、图形用户界面、来自根据本文的公开内容所采用的一个或多个处理程序或例程的结果、或用于执行本文所描述的一个和/或多个过程或方法可能所必需的任何其他数据。
在一个或多个实施例中,示例性系统、方法和界面可利用在可编程计算机(诸如,包括例如处理能力、数据存储(例如,易失性或非易失性存储器和/或存储元件)、输入设备和输出设备的计算机)上执行的一个或多个计算机程序来实现。可应用本文所描述的程序代码和/或逻辑以输入数据以执行本文所描述的功能并生成期望的输出信息。该输出信息可被应用作为到本文所描述的一个或多个其他设备和/或方法的输入或将以已知的方式被应用。
可利用任何可编程语言(例如,适合于与计算机系统通信的高级程序和/或面向对象编程语言)来提供用于实现本文所描述的系统、方法和/或界面的一个或多个程序。任何此类程序可例如被存储在任何合适的设备上,例如,可由在计算机系统(例如,包括处理设备)上运行的通用或专用程序读取的存储介质,用于在该合适的设备被读取时配置和操作计算机系统以用于执行本文所描述的过程。换言之,至少在一个实施例中,示例性系统、方法和/或界面可利用配置有计算机程序的计算机可读存储介质实现,其中如此配置的存储介质使计算机以特定且预定义的方式进行操作以执行本文所描述的功能。进一步,在至少一个实施例中,示例性系统、方法和/或界面可被描述为通过在一个或多个非瞬态介质中编码的逻辑(例如,目标代码)来实现,该逻辑包括用于执行的代码并且当由处理器执行时,可操作以执行诸如本文所描述的方法、过程和/或功能之类的操作。
计算设备140可以是例如任何固定或移动计算机系统(例如,控制器、微控制器、个人计算机、迷你计算机、平板电脑等)。计算装置130的精确配置不是限制性的,并且本质上可使用能够提供合适计算能力和控制能力(例如,图形处理等)的任何设备。如本文所述,数字文件可以是包含可由本文所描述的计算设备140可读取和/或可写入的数字位(例如,以二进制、三进制等编码)的任何介质(例如,易失性或非易失性存储器、CD-ROM、穿孔卡、磁可记录磁带等)。而且,如本文所描述的,用户可读取格式的文件可以是可呈现在任何介质(例如,纸、显示器等)上的并且可由用户读取和/或理解的数据(例如,ASCII文本、二进制数、十六进制数、十进制数,图表表示)的任何表示。
鉴于上述内容,将显而易见的是,在根据本公开的一个或多个实施例中所描述的功能可以本领域技术人员已知的任何方式实现。由此,将要被用于实现本文所描述的过程的计算机语言、计算机系统、或任何其它软件/硬件不应当限于本文所描述的系统、过程或程序(例如,由此类系统、过程或程序提供的功能)的范围。
如本文所使用的,机械运动数据可被定义为与患者的心脏的一个或多个区域(诸如,患者的心脏的壁的部分)的机械运动有关的数据。可期望,患者的心脏中用于可植入电极布置的目标位置还具有迟发机械运动时序(例如,比患者的心脏的其他部分迟的运动、比所选阈值或时间迟的运动等)。可利用示例性成像设备120和计算设备140测量和确定机械运动数据。例如,图像数据的多个帧可使用成像设备120进行捕捉并通过计算设备进行分析以确定患者的心脏的一个或多个区域的机械运动信息或数据。
心脏壁的局部3D运动可被分解为两个分量(component):第一分量表达在相邻点之间的距离的变化并且被称为应变(例如,当距离减小时的收缩或当距离增加时的扩张等)并且第二非应变分量可不涉及在相邻点之间的距离的变化并且可涉及平移和/或旋转。应变可以是各向异性的。具体而言,在垂直于心脏腔室的长轴的截面(段)改变长度时的圆周应变可与在基本平行于长轴的线改变长度时的纵向应变区分开。本文中所描述的示例性成像设备120可被配置成提供图像数据以提供随着血管树的比例的变化,或换言之,随着在点之间距离的变化的收缩和扩张的图形化描绘,同时在没有距离的变化的情况下,旋转和平移是可视化的。
成像设备120(其可以是计算机化的X射线机器)可指向患者的心脏并被激活以产生视场处的心脏区的时间序列的X射线图像。为了暴露视野下的心脏区处的血管(诸如,冠状血管),可优选在血管造影过程中通过向患者注入造影剂来获得X射线图像。其中待检测的血管是冠状静脉的情况下,可在球囊被插入在静脉(冠状窦)内并被充气之后执行血管造影,以便防止在图像被拍摄之前血液流动使造影剂分散。
例如,时间序列的二维X射线投影图像可由图1的成像设备进行捕捉并由计算设备140进行存储。二维图像可以是在患者已被注射有造影剂之后拍摄的血管造影片。时间序列可包括在患者的心动周期的至少一部分期间在相同的投射角度下的冠状血管的“快照”(例如,血管造影电影运行(cine-runs))。进一步,投射方向可被选择成基本上正交于感兴趣的区域处的心脏的表面或基本上正交于心脏的主要速度分量。
可通过时间序列的图像来跟踪感兴趣的血管,以便标识血管通过心动周期的至少一部分的运动。可通过对从一帧到下一帧的局部区变换的计算,或通过跟踪所检测的血管中的所选的控制点来执行通过时间序列的图像对血管的跟踪。然而,根据一些实施例,可通过这两种方法的混合组合来执行跟踪血管。
配置成捕捉和确定机械运动信息的系统和/或成像设备的示例可在2005年1月13日公开的Evron等人的美国专利申请公开No.2005/0008210、2006年4月6日公开的Zarkh等人的美国专利申请公开No.2006/0074285、2011年5月12日公开的Zarkh等人的美国专利申请公开No.2011/0112398、2013年5月9日公开的Brada等人的美国专利申请公开No.2013/0116739、2005年12月27日授权的Evron等人的美国专利No.6,980,675、2007年10月23日授权的Okerlund等人的美国专利No.7,286,866、2011年12月11日授权的Reddy等人的美国专利No.7,308,297、2011年12月11日授权的Burrell等人的美国专利No.7,308,299、2008年1月22日授权的Evron等人的美国专利No.7,321,677、2008年3月18日授权的Okerlund等人的美国专利No.7,346,381、2008年11月18日授权的Burrell等人的美国专利No.7,454,248、2009年3月3日授权的Vass等人的美国专利No.7,499,743、2009年7月21日授权的Okerlund等人的美国专利No.7,565,190、2009年9月8日授权的Zarkh等人的美国专利No.7,587,074、2009年10月6日授权的Hunter等人的美国专利No.7,599,730、2009年11月3日授权的Vass等人的美国专利No.7,613,500、2010年6月22日授权的Zarkh等人的美国专利No.7,742,629、2010年6月29日授权的Okerlund等人的美国专利No.7,747,047、2010年8月17日授权的Evron等人的美国专利No.7,778,685、2010年8月17日授权的Vass等人的美国专利No.7,778,686、2010年10月12日授权的Okerlund等人的美国专利No.7,813,785、2011年8月9日授权的Vass等人的美国专利No.7,996,063、2011年11月15日授权的Hunter等人的美国专利No.8,060,185、和2013年3月19日授权的Verard等人的美国专利No.8,401,616中进行描述,这些专利中的每一个通过引用整体结合于此。配置成捕捉和确定机械运动信息的系统和/或成像设备的示例可在转让给本发明的受让人的2013年6月12日提交的美国专利申请S/N.13/916,353和2012年12月6日提交的美国专利申请S/N.13/707,391中进行描述,这些专利申请的公开内容通过引用整体结合于此。
机械运动数据、或信息可被提供给用户以辅助用户选择可植入电极的位置。在图2中示出了描绘患者的心脏的一部分的机械运动信息的示例性图形用户界面132。图形用户界面132被配置成描绘患者的心脏的血管解剖200的至少一部分以及相对于血管解剖200的机械运动信息。如所示的,血管解剖200是位于患者的左心室附近的冠状窦。血管解剖200进一步包括例如冠状窦的多个分支202。每个分支,以及每个分支内的多个位置可提供可植入电极的候选部位区域或位置。可植入电极可被植入在具有最迟的机械运动时间的位置中。如本文中所使用的,机械运动时间可以是收缩的开始和共同基准点(诸如,例如外部ECG引线上的特定心动周期的QRS去极化波群的开始)之间的时间。
如所示,可通过根据标度(scale)210对血管解剖200进行色彩/灰度标定、或编码来表示机械运动时间。如所示,标度210从深灰/深色(其对应于约40毫秒(ms))延伸至浅白/浅色(其对应于约240ms)。由此,用户可观察图形用户界面132以查看或确定心脏的不同区域(例如,血管解剖的不同区域)的机械运动时间。此外,图形用户界面132可字母数字地描绘在血管解剖200上标识的一个或多个区域204的机械运动时间206。使用图形用户界面132,用户可选择用于植入的目标、或候选位置208,该位置208可具有最迟的、或接近最迟的机械运动时间。如所示,目标位置208可具有240ms的机械运动时间。
可期望,除迟发机械运动时间之外,可植入电极布置的目标或候选部位区域或位置也具有迟发电激动时间。然而,所选的区域或位置(诸如区域208)可不具有迟发电激动时间(例如,指示该部位可能不是期望的,即使机械运动时间指示出其作为植入部位的合意性(desirability))。由此,具有关于与目标或候选部位区域相关联的电激动时间和机械运动时间的信息以确定其对于植入的适合性是有益的。
可使用如图1和图3A-3B中所示的电极设备110来确定患者的心脏的一个或多个区域的电激动数据。示例性电极设备110可被配置成测量患者14的体表面电势,并且更具体地测量患者14的躯干表面电势。如图3A中所示,示例性系统110包括:一组电极112或电极116的阵列、条带(strap)113、接口/放大器电路103和计算设备106。电极112可被附连至或耦合至条带113,并且条带113可被配置成缠绕在患者14的躯干周围,使得电极112围绕患者的心脏。如进一步所示,电极112可围绕患者14的周边(包括患者14的躯干的后位置、侧位置、后外侧位置和前位置)定位。
进一步,电极112可经由有线连接118电连接至接口/放大器电路116。接口/放大器电路116可被配置成放大来自电极112的信号并将这些信号提供至计算设备140。其他示例性系统可使用无线连接来将由电极112所感测的信号传输至接口/放大器电路116并且进而例如随着数据的通道传输至计算设备140。
尽管在图3A的示例中,电极设备110包括条带113,但在其它示例中,可采用例如带(tape)或粘合剂的各种机构中的任一个来辅助电极112的间距和布置。在某些示例中,条带113可包括弹性带、带条(stripoftape)或布。在其它示例中,电极112可被分别放置在患者14的躯干上。进一步,在其他示例中,电极112(例如,以阵列排列的)可以是补丁、背心和/或将电极112固定至患者14的躯干的其他装置的一部分,或可位于补丁、背心和/或将电极112固定至患者14的躯干的其他装置内。
电极112可被配置成围绕患者14的心脏并在信号已传播通过患者14的躯干之后记录或监测与心脏的去极化和复极化相关联的电信号。电极112中的每一个可被用在单极配置中来感测反映心脏信号的躯干表面电势。接口/放大器电路116还可被耦合到可与每一个电极112结合用于单极感测的返回或中性(indifferent)电极(未示出)。在某些示例中,可存在围绕患者的躯干空间地分布的大约12个至大约50个电极112。其他配置可具有更多或更少的电极112。
计算设备140可记录并分析由电极112感测的并由接口/放大器电路116放大/调节的躯干表面电势信号。计算设备140可被配置成分析来自电极112的信号以提供替代(surrogate)电激动数据,诸如,例如表示患者的心脏的一个或多个区域的实际或局部电激动时间的替代电激动时间,如将在本文中进一步描述的。可通过挑选合适的基准点(例如,近场EGM或远场EGM的峰值、最小值、最小斜率、最大斜率、零交叉、阈值交叉等)并测量心脏去极化的开始(例如,QRS波群的开始)和(例如,在电活动内)该合适的基准点之间的时间来执行对激动时间的测量。在QRS波群(或峰值Q波)的开始到基准点之间的激动时间可被称为q-LV时间。
此外,计算设备140可被配置成提供图形用户界面,该图形用户界面描绘使用电极设备110获得的替代电激动时间。示例性系统、方法、和/或界面可非侵入性地使用利用电极设备110收集的电信息来标识、选择、和/或确定患者的心脏的一个或多个区域对于可植入电极布置是否可以是最佳的、或期望的。
图3B示出了另一示例性电极设备110,该电极设备110包括多个电极112,该多个电极112被配置成围绕患者14的心脏并且在信号已传播通过患者14的躯干之后记录或监测与心脏的去极化和复极化相关联的电信号。电极系统110可包括其上附连多个电极的或耦合该多个电极的背心114。在至少一个实施例中,多个电极112或电极112的阵列可被用于收集电信息,诸如,例如,替代电激动时间。类似于图3A的电极设备110,图3B的电极设备110可包括接口/放大器电路116,该接口/放大器电路116通过有线连接118电耦合至电极112中的每一个并被配置成将来自电极112的信号传输至计算设备140。如所示的,电极112可被分布在患者的躯干上,包括例如患者的躯干的前表面、侧表面和后表面。
背心114可由织物形成,其中电极112附连至该织物。背心114可被配置成维持电极112在患者14的躯干上的位置和间距。进一步,可标记背心114以辅助确定电极112在患者14的躯干的表面上的位置。在某些示例中,可存在围绕患者14的躯干分布的大约25个至大约256个电极112,但其它配置可具有更多或更少的电极112。
如本文所描述的,电极设备110可被配置成测量表示患者的心脏的不同区域的电信息(例如,电信号)。更具体地,患者的心脏的不同区域的激动时间可从使用接近于与患者的心脏的不同区域对应的表面区处的表面电极所测得的表面心电图(ECG)激动时间逼近。
图4中示出了映射至待使用外部电极设备测量的患者的心脏12的区域的患者14的示例性表面位置的示图(也被称为体表面电势图(BSPM))。技术人员理解到诸如图4中所例示的示图之类的一系列示图可在进行方法300时向计算设备140的用户显示。如所示,左前表面位置220可对应于患者的心脏12的左前左心室区域230,左侧表面位置222可对应于患者的心脏12的左侧左心室区域232,左后外侧表面位置224可对应于患者的心脏12的后外侧左心室区域234,并且后表面位置226可对应于患者的心脏12的后左心室区域236。因此,在左前表面位置220处测得的电信号可以是左前左心室区域230的电信号的代表或替代、在左侧表面位置222处测得的电信号可以是左侧左心室区域232的电信号的代表或替代、在左后外侧表面位置224处测得的电信号可以是后外侧左心室区域234的电信号的代表或替代、并且在后表面位置226处测得的电信号可以是后左心室区域236的电信号的代表或替代。
从诸如例如在图3A-3B中所描绘的电极设备110收集的单极ECG数据可被用于推导心室激动的序列。可通过查看对应于特定解剖区域的激动时间来推断关于区域性的、或局部的心室激动的信息。
图5描绘了用于改进对心脏再同步治疗中左心室起搏相对于固有右心室激动的时间的估算的方法300。方法300用于优化被称为融合起搏(即,仅LV起搏,仅RV起搏)的一种形式的CRT。具体地,方法300被配置成基于响应于获得对最早固有右心室激动的客观估算而评估左心室起搏的递送的定时来确定是否针对CRT治疗优化预激动间期。为了本文中所描述的方法的目的,预激动间期为在其中感测RV事件的时间之前其中电刺激被递送至左心室(LV)的时间所限定的时间间期。RV事件包括感测的RV起搏或固有RV事件。
方法300以确定基线心律开始。可在仅RV起搏期间获得基线心律。替代地,仅仅从心脏的固有心律中获取基线心律。当获得基线心律时,不起搏LV。通过一个或多个植入电极和/或表面电极来感测心脏活动。相对于远处的电极从单个植入电极获取或感测的信号产生单极电描记图(EGM)波形,而相对于像Wilson中心电端的中性电极或复合参考从单个表面电极获取或感测的信号产生单极心电图(ECG)。在没有左心室(LV)的起搏期间记录EGM信号和/或ECG信号。
基线心律包括各种数据。示例性数据可包括从植入的医疗电引线或无引线设备感测的基线心房事件和基线右心室(RV)事件,基于像P-波的持续时间、固有房室(A-V)定时等的固有心律参数所确定的预激动间期以及从多个体表面电极确定的多个激动时间。心房事件包括从植入的心脏引线或无引线设备获取的心房起搏或固有心房事件(即,去极化)。此外或替代地,基线心律包括通过一个或多个表面ECG电极获取的去极化(QRS波群)的开始。
该多个激动时间由来自多个表面电极中的每一个的单极ECG信号上的最陡的负斜率的定时和共同基准点确定。共同基准点可以是从表面ECG电极测得的去极化(Q-点)的开始或如由IMD16感测的心房事件的定时。根据从多个体表面电极112获取的多个信号,体表面电势图(BSPM)可被生成并被显示在图形用户界面上。用户能够查阅在设定时间周期上的多个BSPM。BSPM可图形地显示该多个电极112的最早体表面激动时间。例如,可在CRT患者中的短的AV延迟下的仅RV起搏期间显示最早体表面激动时间。图形用户界面上的图像还可显示来自多个体表面电极112中的对应于仅RV起搏心律中的最早激动的电极。
在一个或多个实施例中,通过在从躯干表面上的多个ECG电极112测得的多个激动时间之中的位于右侧电极上的最早激动时间来限定最早RV激动时间。在一个或多个实施例中,最早RV激动时间是从设备16测得的远场RV电描记图的开始的定时。
随后在框304处关于从心房事件(T心房)到RV感测时间所测得的时间间期(T心房-RV)是否与从心房事件到多个激动时间中的最早RV激动时间所测得的另一时间间期(T心房–最早RVAT)不同做出判断。不同被定义成使得最早RV激动时间在如由植入的RV电极感测的RV感测时间之前大约40-300ms。如果时间间期被视为不同,则可另外确定RV引线被定位在在激动方面为电学上迟发的区中。电学上迟发的区在去极化开始之后晚40-60ms激动。
响应于确定T心房-RV与T心房–最早RVAT不同,随后将校正因子应用于预激动间期以获得经校正的预激动间期并将其存储到IMD16的存储器82(图9A-9B所示)中。校正因子是基于RV感测时间(即,RV事件)和最早RV激动时间之间的差。校正因子的优选范围可以是0-10ms、0-20ms、0-30ms、0-40ms、0-50ms、0-60ms、0-70ms、0-80ms、0-90ms、0-100ms、0-110ms、0-120ms、0-130ms、0-140ms、0-150ms。如果通过早前描述的标准发现最早RV激动和RV感测时间不同,则可通过添加至最早RV激动和RV感测时间之间的时间差的从0ms到80ms的范围的特定时间延迟来确定新的预激动间期。例如,如果此添加的延迟的值为20ms、最早RV激动和RV感测时间之间的差刚好为100ms并且最初确定的预激动间期为60ms,则在校正之后的新的预激动间期将是60+(100-60)+20ms=120ms。在此情况中,校正因子为60ms,意味着附加的60ms被添加至60ms的最初确定的预激动间期,使得在校正之后的新的预激动间期为120ms。因此,在此示例中,在校正之后,LV将在RV感测时间之前120ms起搏。
处理器80随后被配置成用信号通知脉冲发生器以在RV感测时间之前使用经校正的预激动间期来向左心室(LV)递送电刺激。在一个或多个实施例中,LV起搏脉冲的递送典型地被定时成在RV感测时间之前50-60ms发生。在一个或多个其它实施例中,LV起搏脉冲的递送被定时成在RV感测时间之前40-70ms发生。虽然相对于仅LV起搏描述方法300,但技术人员理解到融合起搏可被应用于RV。
本公开的另一实施例涉及图6中所描绘的方法400。框402,以及框406到框408与图3的框302,以及框306到框308类似或相同。对图3的框302,以及框306到框308的描述并入此处。参照框404,确定偏移存在。
偏移被定义为来自多个表面电极112的电极的固有心律激动时间(T2)与固有心律(即,基线心律)中的最早RV激动时间(T1)之间的差。可从根据施加在覆盖前躯干和后躯干的上部区和/或中间区的体表面上的多个ECG电极所确定的激动时间中确定最早固有RV激动时间(T1)。激动时间可以参考像ECG引线上的QRS波群的开始的共同时间原点。在躯干的右前区上的最早激动时间将是最早RV激动时间。可从以同一时间原点为基准的由电极所记录的近场或远场RVEGM确定植入的感测RV电极的固有心律激动时间(T2)。偏移等同于T2-T1。当偏移大于从20ms到50ms的范围的值时,该偏移被视为显著大的。当偏移被视为显著大的时,随后在框406处基于T2-T1的偏移将校正因子应用于预激动间期以获得经校正的预激动间期以用于仅LV起搏。基于偏移T2-T1的相对于RV感测电极的LV起搏的定时可导致LV起搏被递送。方法300和400连同执行本文中所描述的方法的系统通过相对于RV感测准确地且可靠地定时LV起搏的递送来改善患者对CRT的响应。
图7为示出了可被用于向患者14递送起搏治疗的示例性治疗系统10的概念图。患者14可以是但并不一定是人类。治疗系统10可包括可植入医疗设备16(IMD),该可植入医疗设备16可被耦合至引线18、20、22。IMD16可以是例如可植入起搏器、复律器、和/或除颤器,其经由耦合至引线18、20、22中的一个或多个的电极(例如,可根据本文中的描述(诸如,借助于植入部位区域的非侵入性选择)植入的电极)将电信号提供至患者14的心脏12。
引线18、20、22延伸到患者14的心脏12中,以感测心脏12的电活动和/或向心脏12递送电刺激。在图7所示的示例中,右心室(RV)引线18延伸通过一条或多条静脉(未示出)、上腔静脉(未示出)、和右心房26并进入右心室28。左心室(LV)冠状窦引线20延伸通过一条或多条静脉、腔静脉、右心房26,并进入冠状窦30以到达与心脏12的左心室32的游离壁相邻的区域。右心房(RA)引线22延伸通过一条或多条静脉和腔静脉,并进入心脏12的右心房26。
IMD16可经由耦合至引线18、20、22中的至少一个的电极来感测,除其他方面之外,伴随于心脏12的去极化和复极化的电信号。IMD16可被配置成利用本文所描述的示例性方法和过程来确定或标识位于引线18、20、22上的有效电极。在一些示例中,IMD16基于在心脏12内感测到的电信号来将起搏治疗(例如,起搏脉冲)提供至心脏12。IMD16可操作以调节与起搏治疗相关联的一个或多个参数,诸如,例如,AV延迟和其它各种时序、脉冲宽、幅度、电压、脉冲串长度等。进一步,IMD16可操作以使用各种电极配置来递送起搏治疗,这些电极配置可以是单极的、双极的、四极的、或进一步多级的。例如,多极引线可包括可被用于递送起搏治疗的若干电极。因此,多极引线系统可提供或供应从中起搏的多个电向量。起搏向量可包括至少一个阴极和至少一个阳极,该至少一个阴极可以是位于至少一个引线上的至少一个电极,该至少一个阳极可以是位于至少一个引线(例如,同一引线,或不同引线)上和/或IMD的套管(casing)或罐(can)上的至少一个电极。虽然作为起搏治疗的结果的心脏功能的改善可主要取决于阴极,但如阻抗、起搏阈值电压、漏电流、寿命等的电参数可更依赖于包括阴极和阳极两者的起搏向量。IMD16还可经由位于引线18、20、22中的至少一个引线上的电极来提供除颤治疗和/或心脏复律治疗。进一步,IMD16可检测心脏12的心律失常,诸如心室28、32的纤颤,并以电脉冲的方式将除颤治疗递送至心脏12。在一些示例中,IMD16可被编程成递送进阶的治疗(例如,具有增加的能量级的脉冲)直到心脏12的纤颤停止为止。
图8A-8B是更详细地示出了图15的治疗系统10的IMD16以及引线18、20、22的概念图。引线18、20、22可经由连接器块34电耦合至治疗递送模块(例如,用于递送起搏治疗)、感测模块(例如,用于感测来自一个或多个电极的一个或多个信号)、和/或IMD16的任何其他模块。在一些示例中,引线18、20、22的近端可包括电触头,这些电触头电耦合至IMD16的连接器块34内的相应的电触头。此外,在一些示例中,引线18、20、22可借助于定位螺丝、连接销、或另一合适的机械耦合机构机械地耦合至连接器块34。
引线18、20、22中的每一个包括细长绝缘引线体,该细长绝缘引线体可携带通过绝缘(例如,管状绝缘护套)彼此分开的多个导体(例如,同心盘绕(coiled)导体,直导体等)。在所示的示例中,双极电极40和42位于紧邻引线18的远端处。此外,双极电极44、45、46、47位于紧邻引线20的远端处,且双极电极48、50位于紧邻引线22的远端处。
电极40、44、44、45、46、47、48可采用环形电极的形式,并且电极42、50可采用分别可伸缩地安装在绝缘电极头52、54、56内的可延伸螺旋尖端电极的形式。电极40、42、44、45、46、47、48、50中的每一个可电耦合至其相关联的引线18、20、22的引线体内的导体(例如,盘绕的和/或直的)中的相应一个,并藉此耦合至引线18、20、22的近端上的电触头中的相应一个。
此外,电极44、45、46和47可具有大约5.3mm2至大约5.8mm2的电极表面积。电极44、45、46和47还可分别被称为LV1、LV2、LV3和LV4。引线20上的LV电极(即,左心室电极1(LV1)44、左心室电极2(LV2)45、左心室电极3(LV3)46、和左心室4(LV4)47等)可以可变的距离间隔开。例如,电极44可远离电极45例如,大约21毫米(mm)的距离,电极45和46可彼此远离间隔例如,大约1.3mm至大约1.5mm的距离,并且电极46和47可彼此远离间隔例如,20mm至大约21mm的距离。
电极40、42、44、45、46、47、48、50可进一步被用于感测伴随于心脏12的去极化和复极化的电信号(例如,电描记图(EGM)内的形态波形)。所感测的电信号可被用于确定电极40、42、44、45、46、47、48、50中的哪些电极在改善心脏功能方面是最有效的。这些电信号经由相应的引线18、20、22被传导至IMD16。在一些示例中,IMD16还可以经由电极40、42、44、45、46、47、48、50递送起搏脉冲,以引起患者的心脏12的心脏组织的去极化。在一些示例中,如图8A中所示,IMD16包括一个或多个外壳电极,诸如外壳电极58,其可与IMD16的外壳60(例如,气密密封的外壳)的外表面一体地形成或以其他方式耦合至该外壳60。电极40、42、44、45、46、47、48、和50中的任一个可与外壳电极58相组合用于单极感测或起搏。换言之,电极40、42、44、45、46、47、48、50、58中的任一个可结合用于形成感测向量,例如,可被用于评估和/或分析起搏治疗的有效性的感测向量。本领域技术人员一般可理解,其他电极也可被选择来定义,或也可被用于起搏和感测向量。进一步,不被用于递送起搏治疗的电极40、42、44、45、46、47、48、50、58中的任一个可被用于在起搏治疗期间感测电活动。
如参照图8A更详细地描述的,外壳60可封围治疗递送模块以及用于监测患者的心律的感测模块,该治疗递送模块可包括用于生成心脏起搏脉冲和除颤或心脏复律电击的刺激发生器。引线18、20、22还可分别包括细长电极62、64、66,它们可采取线圈的形式。IMD16可经由细长电极62、64、66和外壳电极58的任意组合来将除颤电击递送至心脏12。电极58、62、64、66还可被用于将心脏复律脉冲递送至心脏12。进一步,电极62、64、66可由任何合适的导电材料制成,诸如但不限于,铂、铂合金、和/或已知可用于可植入除颤电极中的其他材料。由于电极62、64、66一般不被配置成递送起搏治疗,因而电极62、64、66中的任一个可被用于感测电活动(例如,用在确定电极有效性中,用在分析起搏治疗有效性中等)并且可与电极40、42、44、45、46、47、48、50、58中的任一个结合使用。在至少一个实施例中,RV细长电极62可被用于在起搏治疗的递送期间感测患者的心脏的电活动(例如,与外壳电极58结合,形成RV细长线圈、或除颤电极至外壳电极的向量)。
图7-9中所示的示例性治疗系统10的配置仅是一个示例。在其他示例中,代替图7中所示的经静脉引线18、20、22或除了图1中所示的经静脉引线18、20、22外,治疗系统可包括心外膜引线和/或贴片电极。进一步,在一个或多个实施例中,IMD16不需要被植入在患者14体内。例如,IMD16可经由经皮肤的引线将各种心脏治疗递送到心脏12,这些经皮肤的引线穿透患者14的皮肤延伸至心脏12内或外的各种位置。在一个或多个实施例中,系统10可利用无线起搏(例如,使用经由超声、感应耦合、RF等的到心内的起搏部件(多个)的能量传输)并使用在罐/外壳和/或皮下的引线上的电极来感测心脏激动。
在将电刺激治疗提供至心脏12的治疗系统的其他示例中,这样的治疗系统可包括耦合至IMD16的任何合适数量的引线,且每一个引线可延伸至心脏12内或紧邻心脏12的任何位置。例如,治疗系统的其他示例可包括如图15-17中所示定位的三个经静脉的引线。又进一步,其他治疗系统可包括从IMD16延伸至右心房26或右心室28中的单条引线、或延伸至右心房26和右心室28中的相应的一个中的两条引线。
图9A是IMD16的一个示例性配置的功能框图。如图所示,IMD16可包括控制模块81、治疗递送模块84(例如,其可包括刺激发生器)、感测模块86、以及电源90。
控制模块81可包括处理器80、存储器82以及遥测模块88。存储器82可包括计算机可读指令,当例如由处理器80执行这些计算机可读指令时,使IMD16和/或控制模块81执行归属于本文所描述的IMD16和/或控制模块81的各种功能。进一步,存储器82可包括任何易失性、非易失性、磁、光、和/或电介质,诸如,随机存取存储器(RAM)、只读存储器(ROM)、非易失性RAM(NVRAM)、电可擦除可编程ROM(EEPROM)、闪存、和/或任何其他数字介质。示例性夺获管理模块可以是在题为“LVTHRESHOLDMEASUREMENTANDCAPTUREMANAGEMENT(LV阈值测量和夺获管理)”且2010年3月23日授权的美国专利No.7,684,863中描述的左心室夺获管理(LVCM)模块,该专利通过引用整体结合于此。
控制模块81的处理器80可包括微处理器、控制器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、和/或等效的分立或集成逻辑电路中的任意一个或多个。在一些示例中,处理器80可包括多个部件,诸如一个或多个微处理器、一个或多个控制器、一个或多个DSP、一个或多个ASIC、和/或一个或多个FPGA、以及其他分立或集成逻辑电路的任何组合。归属于本文中的处理器80的功能可体现为软件、固件、硬件、或它们的任意组合。
控制模块81可被用于根据所选的一个或多个程序使用本文所描述的示例性方法和/或过程来确定电极40、42、44、45、46、47、48、50、58、62、64、66的有效性,该一个或多个程序可被存储在存储器82中。进一步,控制模块81可控制治疗递送模块84根据可被存储在存储器82中的所选择的一个或多个治疗程序来向心脏12递送治疗(比如,诸如起搏之类的电刺激治疗)。更具体地,控制模块81(例如,处理器80)可控制由治疗递送模块84所递送的电刺激的各种参数,诸如,例如,AV延迟、具有可由一个或多个所选择的治疗程序(例如,AV延迟调节程序、起搏治疗程序、起搏恢复程序、夺获管理程序等等)指定的幅度、脉冲宽度、频率、或电极极性的起搏脉冲。如所示的,治疗递送模块84例如经由相应的引线18、20、22的导体或者在外壳电极58的情况中经由设置在IMD16的外壳60内的电导体,电耦合至电极40、42、44、45、46、47、48、50、58、62、64、66。治疗递送模块84可被配置成使用电极40、42、44、45、46、47、48、50、58、62、64、66中的一个或多个电极生成并向心脏12递送诸如起搏治疗之类的电刺激治疗。
例如,治疗递送模块84可经由分别耦合至引线18、20和22的环形电极40、44、45、46、47、48,和/或引线18和22的螺旋形尖端电极42和50,来递送起搏刺激(例如,起搏脉冲)。进一步,例如,治疗递送模块84可经由电极58、62、64、66中的至少两个电极来将除颤电击递送至心脏12。在一些示例中,治疗递送模块84可被配置成以电脉冲的形式递送起搏、心脏复律、或除颤刺激。在其他示例中,治疗递送模块84可被配置成以其他信号(诸如,正弦波、方波、和/或其他基本上连续的时间信号)的形式来递送这些类型的刺激中的一种或多种。
IMD16可进一步包括开关模块85,且控制模块81(例如,处理器80)可使用该开关模块85来例如,经由数据/地址总线来选择可用电极中的哪些被用于递送治疗(诸如,用于起搏治疗的起搏脉冲)、或可用电极中的哪些被用于感测。开关模块85可包括开关阵列、开关矩阵、复用器、或适合于选择性地将感测模块86和/或治疗递送模块84耦合至一个或多个所选择的电极的任何其他类型的开关设备。更具体地,治疗递送模块84可包括多个起搏输出电路。该多个起搏输出电路中的每一个起搏输出电路可,例如,使用开关模块85,来选择性地耦合至电极40、42、44、45、46、47、48、50、58、62、64、66中的一个或多个(例如,用于将治疗递送至起搏向量的一对电极)。换言之,每个电极可使用开关模块85选择性地耦合至治疗递送模块的起搏输出电路中的一个。
感测模块86被耦合(例如,电耦合)至感测设备,感测设备可包括,除附加的感测设备外,电极40、42、44、45、46、47、48、50、58、62、64、66,来监测心脏12的电活动,例如,心电图(ECG)/电描记图(EGM)信号等。ECG/EGM信号可被用于测量或监测激动时间(例如,心室激动时间等)、心率(HR)、心率变异性(HRV)、心率震荡(HRT)、减速/加速能力、减速序列发生率、T波交替(TWA)、P波到P波间期(也被称为P-P间期或A-A间期)、R波到R波间期(也被称为R-R间期或V-V间期)、P波到QRS波群间期(也被称为P-R间期、A-V间期、或P-Q间期)、QRS波群形态、ST段(即,连接QRS波群和T波的段)、T波变化、QT间期、电向量等。
开关模块85还可与感测模块86一起使用以选择可用电极中的哪些被使用或启用以例如感测患者的心脏的电活动(例如,使用电极40、42、44、45、46、47、48、50、58、62、64、66的任意组合的患者心脏的一个或多个电向量)。同样地,开关模块85还可与感测模块86一起使用以选择可用电极中的哪些不被用于(例如,被禁用)例如感测患者的心脏的电活动(例如,使用电极40、42、44、45、46、47、48、50、58、62、64、66的任意组合的患者心脏的一个或多个电向量)。在一些示例中,控制模块81可,例如,通过经由数据/地址总线提供信号,来经由感测模块86内的开关模块来选择用作感测电极的电极。
在一些示例中,感测模块86包括通道,该通道包括具有比R波或P波放大器相对更宽的通带的放大器。来自所选的感测电极的信号可被提供至复用器,并且之后通过模数转换器被转换成多位数字信号以存储在存储器82中,例如,作为电描记图(EGM)。在一些示例中,这样的EGM在存储器82中的存储可处于直接存储器存取电路的控制下。
在一些示例中,控制模块81可作为中断驱动设备而运行,并且可对来自起搏器定时和控制模块的中断作出响应,其中中断可对应于所感测的P波和R波的发生和心脏起搏脉冲的生成。可通过处理器80执行任何必要的数学计算,且由起搏器定时和控制模块所控制的值或间期的任何更新可跟随此类中断而发生。存储器82的一部分可被配置作为多个再循环的缓冲器,其能够保持一个或多个系列的测得的间期,可例如通过处理器80响应于起搏或感测中断的发生来分析这些间期以确定患者的心脏12当前是否表现出心房或心室快速性心律失常。
控制模块81的遥测模块88可包括用于与另一设备编程器(诸如在通过引用整体结合的可在http://manuals.medtronic.com/manuals/main/as/en/manual处获得的美敦力Vitatron参考手册CARELINKENCORETM(2013)中描述的编程器)通信的任何合适的硬件、固件、软件、或它们的任何组合。例如,在处理器80的控制下,遥测模块88可借助于天线(可以是内部天线和/或外部天线)接收来自编程器的下行链路遥测以及将上行链路遥测发送至编程器。例如,经由地址/数据总线,处理器80可提供要被上行链路传输至编程器的数据以及用于遥测模块88内的遥测电路的控制信号。在一些示例中,遥测模块88可经由复用器将所接收的数据提供至处理器80。
IMD16的各种部件被进一步耦合至电源90,电源90可包括可再充电电池和非可再充电电池。可选择用以维持达数年的非可再充电电池,而可再充电电池可例如,每天或每周感应地从外部设备充电。
图9B是IMD16的功能框图的另一实施例。图17B描绘了没有LACS起搏/感测电极且与可植入脉冲发生器(IPG)电路31耦合的双极RA引线22、双极RV引线18、和双极LVCS引线20,该IPG电路31具有可编程模式和起搏领域已知的双心室DDD/R类型的参数。进而,传感器信号处理电路91间接耦合至定时电路83并经由数据和控制总线间接耦合至微计算机电路33。IPG电路31以一般分成微计算机电路33和起搏电路21的功能框图示出。起搏电路21包括数字控制器/定时器电路83、输出放大器电路51、感测放大器电路55、RF遥测收发器41、活动传感器电路35以及以下描述的多个其他电路和部件。
晶体振荡器电路89为起搏电路21提供基础定时时钟,而电池29提供功率。上电复位电路87响应于电路到电池的初始连接以用于定义初始操作条件,并且类似地响应于低电池条件的检测而重置设备的操作状态。参考模式电路37为起搏电路21内的模拟电路生成稳定的电压参考和电流,而模数转换器ADC和复用器电路39(如果有心脏信号来自感测放大器55的话)数字化模拟信号和电压以为经由RF发射机和接收机电路41的上行链路传输提供实时遥测。电压参考和偏置电路37、ADC和复用器39、上电复位电路87和晶体振荡器电路89可对应于目前在当前销售的可植入心脏起搏器中使用的那些中的任一个。
如果IPG被编程为速率响应(rateresponsive)模式,则由一个或多个生理传感器输出的信号被用作速率控制参数(RCP)以推导出生理逸搏(escape)间期。例如,与在所描绘的示例性IPG电路31中的患者活动传感器(PAS)电路35中获得的患者的活动水平成比例地调节逸搏间期。患者活动传感器27耦合至IPG外壳并且可采取本领域所公知的压电晶体换能器的形式,并且其输出信号被处理并用作RCP。响应于由活动电路35处理并被提供至数字控制器/定时器电路83的所感测的身体活动,传感器27生成电信号。活动电路35和相关联的传感器27可对应于在题为“METHODANDAPPARATUSFORIMPLEMENTINGACTIVITYSENSINGINAPULSEGENERATOR(用于在脉冲发生器中执行活动感测的方法和设备)”且1991年10月1日授权的美国专利No.5,052,388和题为“RATEADAPTIVEPACER(速率自适应起搏器)”且1984年1月31授权的美国专利No.4,428,378中公开的电路,这些专利中的每一个通过引用整体结合于此。类似地,可结合替代类型的传感器(诸如,氧合传感器、压力传感器、pH传感器和呼吸传感器)来实践本文所描述的示例性系统、设备和方法,所有这些传感器都公知地用于提供速率响应起搏能力。替代地,QT时间可被用作速率指示参数,在这种情况下,不需要额外的传感器。类似地,还可在非速率响应起搏器中实践本文所描述的示例性实施例。
借助于遥测天线57和相关联的RF收发器41完成去往和来自外部编程器的数据传输,该RF收发器41用于解调所接收的下行链路遥测和传输上行链路遥测两者。如起搏领域所公知的,上行链路遥测能力将通常包括用于传输所存储的数字信息(例如,操作模式和参数、EGM直方图、和其他事件、以及指示心房和心室中的所感测和被起搏的去极化的发生的心房和/或心室电活动的实时EGM和标记通道脉冲)的能力。
微计算机33分别包含微处理器80和相关联的系统时钟和处理器上RAM和ROM芯片82A和82B。此外,微计算机电路33包括单独的RAM/ROM芯片82C以提供附加的存储器容量。微处理器80通常以降低的功耗模式进行操作并且是中断驱动的。响应于所定义的中断事件,微处理器80被唤醒,所定义的中断事件可包括由数字定时器/控制器电路83中的定时器生成的A-触发(-TRIG)、RV-触发、LV-触发信号,和由感测放大器电路55生成的A-事件(-EVENT)、RV-事件和LV-事件信号,及其他信号。通过微计算机电路33借助于数据和控制总线根据所编程(programmed-in)的参数值和操作模式来控制由数字控制器/定时器电路83超时(timeout)的间期和延迟的特定值。此外,如果被编程成作为速率响应起搏器进行操作,则可提供例如,每周期或每两秒的定时的中断以允许微处理器分析活动传感器数据并更新基础A-A、V-A、或V-V逸搏间期(如果适用)。此外,微处理器80还可用于定义可变的(variable)、起作用的(operative)AV延迟间期和递送至每个心室的能量。
在一个实施例中,微处理器80是适配成以常规方式获取并执行存储在RAM/ROM单元82中的指令的定制微处理器。然而,可以构想,其他实现可适合于实践本发明。例如,现成的、市售的微处理器或微控制器,或定制专用的、硬连线逻辑、或状态机类型电路可执行微处理器80的功能。
数字控制器/定时器电路83在微计算机33的通用控制下运行以控制起搏电路320内的定时和其他功能,并且包括一组定时和相关联的逻辑电路,这些电路中与本发明有关的某些被予以描绘。所描绘的定时电路包括URI/LRI定时器83A、V-V延迟定时器83B、用于计时所过去的V-事件到V-事件间期或V-事件到A-事件间期或V-V传导间期的固有间期定时器83C、用于计时A-A、V-A、和/或V-V起搏逸搏间期的逸搏间期定时器83D、用于计时从在前的A-事件或A-触发开始的A-LVp延迟(或A-RVp延迟)的AV延迟间期定时器83E、用于计时心室后时间周期的心室后定时器83F、和日期/时间时钟83G。
AV延迟间期定时器83E被加载有用于一个心室腔的适当延迟间期(例如,如使用已知方法所确定的A-RVp延迟或A-LVp延迟),以使从在前的A-起搏(-PACE)或A-事件开始超时。间期定时器83E触发起搏刺激递送,并且可基于一个或多个在前的心动周期(或是根据针对给定患者经验地推导的数据集)。
事件后定时器83F使跟随RV-事件或LV-事件或RV-触发或LV-触发的心室后时间周期或跟随A-事件或A-触发的心房后时间周期超时。事件后时间周期的持续时间还可被选择作为存储在微计算机33中的可编程参数。心室后时间周期包括PVARP、心房后心室消隐周期(PAVBP)、心室消隐周期(VBP)、心室心房后消隐周期(PVARP)和心室不应期(VRP),尽管还可至少部分地取决于起搏引擎中使用的操作电路而适当地定义其他周期。心房后时间周期包括其间为了重置任意AV延迟而忽略A-事件的心房不应期(ARP),和其间心房感测被禁用的心房消隐期间(ABP)。应当注意,心房后时间周期和AV延迟的开始可与每个A-事件或A-TRIG的开始或结束基本同时地开始,或在后一种情况下,在可跟随A-触发的A-起搏结束时开始。类似地,心室后时间周期和V-A逸搏间期的开始可与V-事件或V-触发的开始或结束基本同时地开始,或在后一种情况下,在可跟随V-触发的V-起搏结束时开始。微处理器80还任选地计算AV延迟、心室后时间周期和心房后时间周期,它们随着响应于RCP(多个)建立的基于传感器的逸搏间期而变化,和/或随着固有心房速率而变化。
输出放大器电路51包含RA起搏脉冲发生器(和LA起搏脉冲发生器(如果提供LA起搏的话))、RV起搏脉冲发生器、和LV起搏脉冲发生器或对应于提供心房和心室起搏的商业上销售的心脏起搏器中目前采用的那些中的任一个。为了触发RV-起搏或LV-起搏脉冲的生成,数字控制器/定时器电路83在A-RVp延迟(在RV预激的情况下)超时(time-out)时生成RV-触发信号,或在由AV延迟间期定时器83E(或V-V延迟定时器83B)提供的A-LVp延迟(在LV预激的情况下)超时时生成LV-触发。类似地,数字控制器/定时器电路83在由逸搏间期定时器83D计时的V-A逸搏间期结束时生成触发RA-起搏脉冲的输出的RA-触发信号(或触发LA-起搏脉冲的输出的LA-触发信号(如果LA-起搏脉冲被提供的话))。
输出放大器电路51包括开关电路,用于将来自引线导体之中的所选择的起搏电极对和IND_CAN电极20耦合至RA起搏脉冲发生器(和LA起搏脉冲发生器(如果提供的话))、RV起搏脉冲发生器和LV起搏脉冲发生器。起搏/感测电极对选择和控制电路53选择要与输出放大器电路51内的心房和心室输出放大器相耦合的引线导体和相关联的起搏电极对,以用于完成RA、LA、RV和LV起搏。
感测放大器电路55包含感测放大器,其对应于用于心房和心室起搏和感测的当代心脏起搏器中目前使用的那些感测放大器中的任一个。高阻抗P波和R波感测放大器可被用于放大由心脏去极化波前的通过而在感测电极对之间生成的电压差信号。高阻抗感测放大器使用高增益来放大低幅度信号并且依靠带通滤波器、时域滤波和幅度阈值比较以将P波或R波与背景电噪声区分。数字控制器/定时器电路83控制心房和心室感测放大器55的灵敏度设置。
感测放大器通常在将起搏脉冲递送至起搏系统的起搏电极中的任意电极之前、期间和之后的消隐周期期间从感测电极解耦,以避免感测放大器的饱和。感测放大器电路55包括消隐电路,用于在ABP、PVABP和VBP期间将所选择的引线导体对和IND-CAN电极20从RA感测放大器(和LA感测放大器(如果提供的话))、RV感测放大器和LV感测放大器的输入解耦。感测放大器电路55还包括用于将所选择的感测电极引线导体和IND-CAN电极20耦合至RA感测放大器(和LA感测放大器(如果提供的话))、RV感测放大器和LV感测放大器的开关电路。再次,感测电极选择和控制电路53选择要与输出放大器电路51和感测放大器电路55内的心房和心室感测放大器相耦合的导体和相关联的感测电极对,以用于沿着期望的单极和双极感测向量完成RA、LA、RV和LV感测。
由RA感测放大器所感测的RA-感测(-SENSE)信号中的右心房去极化或P波产生被传递至数字控制器/定时器电路83的RA-事件信号。类似地,由LA感测放大器(如果提供的话)所感测的LA-感测信号中的左心房去极化或P波产生被传递至数字控制器/定时器电路83的LA-事件信号。由心室感测放大器所感测的RV-感测信号中的心室去极化或R波产生被传递至数字控制器/定时器电路83的RV-事件信号。类似地,由心室感测放大器所感测的LV-感测信号中的心室去极化或R波产生被传递至数字控制器/定时器电路83的LV-事件信号。RV-事件、LV-事件和RA-事件、LA-感测信号可以是不应的(refractory)或非不应的,并且可通过电噪声信号或异常传导的去极化波而不是真实的R波或P波来无意地触发。
本公开中所描述的技术(包括归属于IMD16、计算设备140、和/或各构成部件的那些技术)可至少部分地以硬件、软件、固件或它们的任意组合来实现。例如,这些技术的各方面可在一个或多个处理器(包括一个或多个微处理器、DSP、ASIC、FPGA),或任何其他等效的集成或分立逻辑电路,以及这些组件的任意组合中实现,其具体化在编程器(诸如医生或患者的编程器)、刺激器、图像处理设备或其他设备中。术语“模块”、“处理器”或“处理电路”一般可指独立的或结合其他逻辑电路的任何前述逻辑电路、或任何其他等效电路。
这些硬件、软件、和/或固件可在同一设备内实现,或在单独的设备内实现,以支持本公开中所描述的各种操作和功能。另外,所述单元、模块或部件中的任意可一起实现,或作为分立但可互操作的逻辑设备单独地实现。将不同的特征描绘为模块或单元是为了凸显不同的功能方面,而不一定暗示这样的模块或单元必须通过单独的硬件或软件组件来实现。相反,与一个或多个模块或单元相关联的功能可由单独的硬件或软件组件来执行,或集成在共同或单独的硬件或软件组件之内。
当以软件实现时,归属于本公开中描述的系统、设备和技术的功能可具体化为计算机可读介质(诸如RAM、ROM、NVRAM、EEPROM、闪存存储器、磁数据存储介质、光数据存储介质等等)上的指令。可由一个或多个处理器执行这些指令以支持本公开中所描述的功能的一个或多个方面。
技术人员将理解,可在医疗设备的植入器件或植入后(诸如随访时)执行本文中所描述的方法以确保IMD16正常运行。此外,可在患者休息(例如,睡觉)时执行本文中所描述的方法。已经参照说明性实施例提供了本公开,并且本公开不旨在以限制的意思进行解释。如先前所述,本领域技术人员将会认识到,其他各种说明性应用都可以使用本文所描述的技术以利用本文所描述的装置和方法的有益特性。说明性实施例的各种修改以及本公开的附加实施例在参照本说明书时将会是显而易见的。

Claims (14)

1.一种心脏起搏的系统,包括:
a)用于确定基线心律的处理装置,所述基线心律包括来自植入的心脏引线或无引线设备的基线心房事件和基线右心室(RV)事件,从所述基线心房事件和基线RV事件确定的预激动间期以及从多个体表面电极确定的多个激动时间;
b)用于确定从心房事件到RV事件所测得的时间间期是否与从所述心房事件到所述多个激动时间中的最早RV激动时间所测得的另一时间间期不同的处理装置;
c)用于响应于确定所述RV事件与所述最早RV激动时间不同而将校正因子应用于所述预激动间期以获得经校正的预激动间期的处理装置;以及
d)用于配置处理器以用信号通知脉冲发生器来在RV感测时间之前使用经校正的预激动间期来向左心室(LV)递送电刺激的处理装置。
2.如权利要求1所述的系统,其特征在于,所述心房事件是从植入的心脏引线或无引线设备中的一个获取的,从心房起搏或固有心房事件感测所述心房事件。
2.如权利要求1-2中任一项所述的系统,其特征在于,所述心房事件包括通过表面ECG电极获取的去极化的开始。
3.如权利要求1-3中任一项所述的系统,其特征在于,所述校正因子基于所述RV事件和所述最早RV激动时间之间的差。
4.如权利要求3所述的系统,其特征在于,所述预激动间期是由在感测所述RV事件之前递送至所述左心室(LV)的电刺激所限定的时间间期。
5.如权利要求1-4中任一项所述的系统,其特征在于,进一步包括:
用于确定RV引线是否被定位在在激动方面为电学上迟发的区中的处理装置。
6.如权利要求5所述的系统,其特征在于,所述电学上迟发的区在去极化开始之后晚40-60ms激动。
7.如权利要求5所述的系统,其特征在于,左心室起搏脉冲的递送被定时成在RV事件之前50-60ms发生。
8.如权利要求5所述的系统,其特征在于,左心室起搏脉冲的递送被定时成在RV事件之前40-70ms发生。
9.如权利要求1-8中任一项所述的系统,其特征在于,不同被定义为在最早感测的RV事件之前大约40-300ms的所述最早RV激动时间。
10.如权利要求9所述的系统,其特征在于,通过在从躯干表面上的多个ECG电极测得的多个激动时间之中的位于右侧电极上的最早激动时间来限定所述最早RV激动时间。
11.如权利要求9-10中任一项所述的系统,其特征在于,通过从所述设备测得的远场RV电描记图的开始的定时来限定所述最早RV激动时间。
12.如权利要求10-11中任一项所述的系统,其特征在于,所述多个激动时间中的每一个由来自多个表面电极中的每一个的单极ECG信号上的最陡的负斜率的定时和共同基准点确定。
13.如权利要求12所述的系统,其特征在于,所述共同基准点是从表面ECG电极测得的去极化(Q-点)的开始或如由可植入医疗设备感测的心房事件的定时。
CN201480053127.8A 2013-07-26 2014-07-24 用于改进对心脏再同步治疗中左心室起搏相对于固有右心室激动的时间估算的方法及系统 Active CN105579094B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/952,043 US9265954B2 (en) 2013-07-26 2013-07-26 Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US13/952,043 2013-07-26
PCT/US2014/047971 WO2015013493A1 (en) 2013-07-26 2014-07-24 Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy

Publications (2)

Publication Number Publication Date
CN105579094A true CN105579094A (zh) 2016-05-11
CN105579094B CN105579094B (zh) 2018-02-02

Family

ID=51300880

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480053127.8A Active CN105579094B (zh) 2013-07-26 2014-07-24 用于改进对心脏再同步治疗中左心室起搏相对于固有右心室激动的时间估算的方法及系统

Country Status (4)

Country Link
US (1) US9265954B2 (zh)
EP (1) EP3024543B1 (zh)
CN (1) CN105579094B (zh)
WO (1) WO2015013493A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108175941A (zh) * 2017-12-29 2018-06-19 创领心律管理医疗器械(上海)有限公司 一种无心室起搏的双腔起搏模式实现方法及医疗设备
CN110769893A (zh) * 2017-06-16 2020-02-07 心脏起搏器股份公司 心力衰竭治疗的动态控制
CN110996784A (zh) * 2017-07-28 2020-04-10 美敦力公司 生成激动时间
CN111432875A (zh) * 2017-12-01 2020-07-17 心脏起搏器股份公司 从心室植入式无引线心脏起搏器检测心房收缩定时基准并确定心脏间隔的方法和系统
CN111789590A (zh) * 2019-04-08 2020-10-20 四川锦江电子科技有限公司 一种人体心腔内刺激与电生理记录同步记录的方法和系统
CN111867506A (zh) * 2018-02-05 2020-10-30 梅奥医学教育与研究基金会 用于标测和调制复极化的系统和方法
CN112972898A (zh) * 2019-12-17 2021-06-18 百多力两合公司 配置为提供心脏内起搏的无引线心脏起搏器装置
CN111432875B (zh) * 2017-12-01 2024-04-30 心脏起搏器股份公司 从心室植入式无引线心脏起搏器检测心房收缩定时基准并确定心脏间隔的方法和系统

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099992A1 (en) 2010-02-12 2011-08-18 Brigham And Women's Hospital, Inc. System and method for automated adjustment of cardiac resynchronization therapy control parameters
US9510763B2 (en) 2011-05-03 2016-12-06 Medtronic, Inc. Assessing intra-cardiac activation patterns and electrical dyssynchrony
US9278219B2 (en) 2013-03-15 2016-03-08 Medtronic, Inc. Closed loop optimization of control parameters during cardiac pacing
US10064567B2 (en) 2013-04-30 2018-09-04 Medtronic, Inc. Systems, methods, and interfaces for identifying optimal electrical vectors
US9931048B2 (en) 2013-04-30 2018-04-03 Medtronic, Inc. Systems, methods, and interfaces for identifying effective electrodes
US10251555B2 (en) 2013-06-12 2019-04-09 Medtronic, Inc. Implantable electrode location selection
US9877789B2 (en) 2013-06-12 2018-01-30 Medtronic, Inc. Implantable electrode location selection
US9486151B2 (en) 2013-06-12 2016-11-08 Medtronic, Inc. Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
US9282907B2 (en) 2013-07-23 2016-03-15 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9278220B2 (en) 2013-07-23 2016-03-08 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9265955B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9265954B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US10206601B2 (en) 2013-12-09 2019-02-19 Medtronic, Inc. Noninvasive cardiac therapy evaluation
US9320446B2 (en) 2013-12-09 2016-04-26 Medtronic, Inc. Bioelectric sensor device and methods
US9776009B2 (en) 2014-03-20 2017-10-03 Medtronic, Inc. Non-invasive detection of phrenic nerve stimulation
US9591982B2 (en) 2014-07-31 2017-03-14 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9764143B2 (en) 2014-08-15 2017-09-19 Medtronic, Inc. Systems and methods for configuration of interventricular interval
US9707400B2 (en) 2014-08-15 2017-07-18 Medtronic, Inc. Systems, methods, and interfaces for configuring cardiac therapy
US9586050B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for configuration of atrioventricular interval
US9586052B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US11253178B2 (en) 2015-01-29 2022-02-22 Medtronic, Inc. Noninvasive assessment of cardiac resynchronization therapy
US9737223B2 (en) 2015-05-13 2017-08-22 Medtronic, Inc. Determining onset of cardiac depolarization and repolarization waves for signal processing
US9782094B2 (en) 2015-07-31 2017-10-10 Medtronic, Inc. Identifying ambiguous cardiac signals for electrophysiologic mapping
US9610045B2 (en) 2015-07-31 2017-04-04 Medtronic, Inc. Detection of valid signals versus artifacts in a multichannel mapping system
US11219769B2 (en) 2016-02-26 2022-01-11 Medtronic, Inc. Noninvasive methods and systems of determining the extent of tissue capture from cardiac pacing
US10780279B2 (en) * 2016-02-26 2020-09-22 Medtronic, Inc. Methods and systems of optimizing right ventricular only pacing for patients with respect to an atrial event and left ventricular event
US11147965B2 (en) 2016-07-20 2021-10-19 Cardiac Pacemakers, Inc. Method and system for determining pace timing in a leadless cardiac pacemaker system
US10918858B2 (en) 2016-07-20 2021-02-16 Cardiac Pacemakers, Inc. Cardiac volume sensing via an implantable medical device in support of cardiac resynchronization therapy
US10874860B2 (en) 2016-07-20 2020-12-29 Cardiac Pacemakers, Inc. Method and system for determining a cardiac cycle pace time in accordance with metabolic demand in a leadless cardiac pacemaker system
AU2017350759B2 (en) 2016-10-27 2019-10-17 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10532213B2 (en) 2017-03-03 2020-01-14 Medtronic, Inc. Criteria for determination of local tissue latency near pacing electrode
US10987517B2 (en) 2017-03-15 2021-04-27 Medtronic, Inc. Detection of noise signals in cardiac signals
WO2019023478A1 (en) 2017-07-28 2019-01-31 Medtronic, Inc. SELECTION OF CARDIAC REVOLUTION
US11065459B2 (en) 2017-08-18 2021-07-20 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10799703B2 (en) 2017-12-22 2020-10-13 Medtronic, Inc. Evaluation of his bundle pacing therapy
US11419539B2 (en) 2017-12-22 2022-08-23 Regents Of The University Of Minnesota QRS onset and offset times and cycle selection using anterior and posterior electrode signals
US10433746B2 (en) 2017-12-22 2019-10-08 Regents Of The University Of Minnesota Systems and methods for anterior and posterior electrode signal analysis
US10492705B2 (en) 2017-12-22 2019-12-03 Regents Of The University Of Minnesota Anterior and posterior electrode signals
US10786167B2 (en) 2017-12-22 2020-09-29 Medtronic, Inc. Ectopic beat-compensated electrical heterogeneity information
US10617318B2 (en) 2018-02-27 2020-04-14 Medtronic, Inc. Mapping electrical activity on a model heart
US10668290B2 (en) 2018-03-01 2020-06-02 Medtronic, Inc. Delivery of pacing therapy by a cardiac pacing device
US10918870B2 (en) 2018-03-07 2021-02-16 Medtronic, Inc. Atrial lead placement for treatment of atrial dyssynchrony
US10780281B2 (en) 2018-03-23 2020-09-22 Medtronic, Inc. Evaluation of ventricle from atrium pacing therapy
WO2019191602A1 (en) 2018-03-29 2019-10-03 Medtronic, Inc. Left ventricular assist device adjustment and evaluation
US10940321B2 (en) 2018-06-01 2021-03-09 Medtronic, Inc. Systems, methods, and interfaces for use in cardiac evaluation
US11304641B2 (en) * 2018-06-01 2022-04-19 Medtronic, Inc. Systems, methods, and interfaces for use in cardiac evaluation
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11547858B2 (en) 2019-03-29 2023-01-10 Medtronic, Inc. Systems, methods, and devices for adaptive cardiac therapy
US11497431B2 (en) 2019-10-09 2022-11-15 Medtronic, Inc. Systems and methods for configuring cardiac therapy
US11642533B2 (en) 2019-11-04 2023-05-09 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1504713A1 (en) * 2003-07-14 2005-02-09 Surgical Navigation Technologies, Inc. Navigation system for cardiac therapies
US20080269823A1 (en) * 2007-04-30 2008-10-30 Burnes John E Apparatus and Methods for Automatic Determination of a Fusion Pacing Pre-Excitation Interval
CN102300603A (zh) * 2009-01-30 2011-12-28 麦德托尼克公司 基于心房心室延时的起搏治疗调节

Family Cites Families (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233987A (en) 1978-08-18 1980-11-18 Alfred Feingold Curvilinear electrocardiograph electrode strip
US4674511A (en) 1979-04-30 1987-06-23 American Hospital Supply Corporation Medical electrode
US4497326A (en) 1981-04-06 1985-02-05 Curry Paul V L Heart pacing lead
US4428378A (en) 1981-11-19 1984-01-31 Medtronic, Inc. Rate adaptive pacer
US4566456A (en) 1984-10-18 1986-01-28 Cordis Corporation Apparatus and method for adjusting heart/pacer rate relative to right ventricular systolic pressure to obtain a required cardiac output
US5054496A (en) 1988-07-15 1991-10-08 China-Japan Friendship Hospital Method and apparatus for recording and analyzing body surface electrocardiographic peak maps
US5052388A (en) 1989-12-22 1991-10-01 Medtronic, Inc. Method and apparatus for implementing activity sensing in a pulse generator
US5311873A (en) 1992-08-28 1994-05-17 Ecole Polytechnique Comparative analysis of body surface potential distribution during cardiac pacing
US5443492A (en) 1994-02-02 1995-08-22 Medtronic, Inc. Medical electrical lead and introducer system for implantable pulse generator
US6055448A (en) 1994-11-07 2000-04-25 Anderson; John Mccune Sensor device
US5628778A (en) 1994-11-21 1997-05-13 Medtronic Inc. Single pass medical electrical lead
US5671752A (en) 1995-03-31 1997-09-30 Universite De Montreal/The Royal Insitution For The Advancement Of Learning (Mcgill University) Diaphragm electromyography analysis method and system
WO1997017893A1 (en) 1995-11-13 1997-05-22 Heart Rhythm Technologies, Inc. System and method for analyzing electrogram waveforms
US5683432A (en) 1996-01-11 1997-11-04 Medtronic, Inc. Adaptive, performance-optimizing communication system for communicating with an implanted medical device
US6311089B1 (en) 1996-05-14 2001-10-30 Pacesetter, Inc. Implantable stimulation device and method for determining ventricular and atrial sensitivity thresholds
EP0912137A4 (en) 1996-07-17 2001-04-11 Cambridge Heart Inc GENERATION OF LOCAL CARDIAL INTERVENTIONS
US6721593B2 (en) 1996-12-18 2004-04-13 Anderson John Mccune Apparatus for body surface mapping
US7016719B2 (en) 1997-07-31 2006-03-21 Case Western Reserve University System and methods for noninvasive electrocardiographic imaging (ECGI) using generalized minimum residual (GMRes)
US6975900B2 (en) 1997-07-31 2005-12-13 Case Western Reserve University Systems and methods for determining a surface geometry
WO1999005962A1 (en) 1997-07-31 1999-02-11 Case Western Reserve University A system and method for non-invasive electrocardiographic imaging
US5922014A (en) 1997-09-02 1999-07-13 Medtronic, Inc. Single pass lead and method of use
JP4208275B2 (ja) 1997-10-30 2009-01-14 株式会社東芝 心臓内電気現象の診断装置およびその現象の表示方法
US7313444B2 (en) 1998-11-20 2007-12-25 Pacesetter, Inc. Self-anchoring coronary sinus lead
US6236883B1 (en) 1999-02-03 2001-05-22 The Trustees Of Columbia University In The City Of New York Methods and systems for localizing reentrant circuits from electrogram features
US6115628A (en) 1999-03-29 2000-09-05 Medtronic, Inc. Method and apparatus for filtering electrocardiogram (ECG) signals to remove bad cycle information and for use of physiologic signals determined from said filtered ECG signals
EP1178855B1 (en) 1999-05-12 2006-08-02 Medtronic, Inc. Monitoring apparatus using wavelet transforms for the analysis of heart rhythms
US6539259B1 (en) 1999-07-15 2003-03-25 Pacesetter, Inc. System and method of automatically adjusting sensitivity in an implantable cardiac stimulation device
US6442433B1 (en) 1999-10-26 2002-08-27 Medtronic, Inc. Apparatus and method for remote troubleshooting, maintenance and upgrade of implantable device systems
US6418346B1 (en) 1999-12-14 2002-07-09 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US6480745B2 (en) 1999-12-24 2002-11-12 Medtronic, Inc. Information network interrogation of an implanted device
US6473638B2 (en) 1999-12-24 2002-10-29 Medtronic, Inc. Medical device GUI for cardiac electrophysiology display and data communication
US6584343B1 (en) 2000-03-15 2003-06-24 Resolution Medical, Inc. Multi-electrode panel system for sensing electrical activity of the heart
US6556860B1 (en) 2000-03-15 2003-04-29 The Regents Of The University Of California System and method for developing a database of body surface ECG flutter wave data maps for classification of atrial flutter
WO2001070103A2 (en) 2000-03-17 2001-09-27 Medtronic, Inc. Heart failure monitor quick look summary for patient management systems
US6507756B1 (en) 2000-04-03 2003-01-14 Medtronic, Inc. Dual chamber pacing system having time-adaptive AV delay
DE60134223D1 (de) 2000-05-09 2008-07-10 Paieon Inc System und verfahren für drei-dimentionale rekonstruktion von einer arterie
US6980675B2 (en) 2000-10-18 2005-12-27 Paieon, Inc. Method for processing images of coronary arteries
US7778685B2 (en) 2000-10-18 2010-08-17 Paieon Inc. Method and system for positioning a device in a tubular organ
US6993389B2 (en) 2001-03-30 2006-01-31 Cardiac Pacemakers, Inc. Identifying heart failure patients suitable for resynchronization therapy using QRS complex width from an intracardiac electrogram
US6766189B2 (en) 2001-03-30 2004-07-20 Cardiac Pacemakers, Inc. Method and apparatus for predicting acute response to cardiac resynchronization therapy
US6804555B2 (en) 2001-06-29 2004-10-12 Medtronic, Inc. Multi-site ventricular pacing system measuring QRS duration
US6856830B2 (en) 2001-07-19 2005-02-15 Bin He Method and apparatus of three dimension electrocardiographic imaging
US6640136B1 (en) 2001-09-12 2003-10-28 Pacesetters, Inc. Implantable cardiac stimulation device with automatic electrode selection for avoiding cross-chamber stimulation
US7113823B2 (en) 2001-10-26 2006-09-26 Cardiac Pacemakers, Inc. Morphology-based optimization of cardiac resynchronization therapy
US7286866B2 (en) 2001-11-05 2007-10-23 Ge Medical Systems Global Technology Company, Llc Method, system and computer product for cardiac interventional procedure planning
US7346381B2 (en) 2002-11-01 2008-03-18 Ge Medical Systems Global Technology Company Llc Method and apparatus for medical intervention procedure planning
US7499743B2 (en) 2002-03-15 2009-03-03 General Electric Company Method and system for registration of 3D images within an interventional system
US6882882B2 (en) 2002-04-22 2005-04-19 Medtronic, Inc. Atrioventricular delay adjustment
US6968237B2 (en) 2002-05-22 2005-11-22 Pacesetter, Inc. Implantable coronary sinus lead and lead system
US7778686B2 (en) 2002-06-04 2010-08-17 General Electric Company Method and apparatus for medical intervention procedure planning and location and navigation of an intervention tool
US7041061B2 (en) 2002-07-19 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for quantification of cardiac wall motion asynchrony
US6978184B1 (en) 2002-07-29 2005-12-20 Marcus Frank I Optimization method for cardiac resynchronization therapy
US7123954B2 (en) 2002-09-19 2006-10-17 Sanjiv Mathur Narayan Method for classifying and localizing heart arrhythmias
US7031777B2 (en) 2002-09-27 2006-04-18 Medtronic, Inc. Cardiac vein lead with flexible anode and method for forming same
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7142922B2 (en) 2002-12-20 2006-11-28 Cardiac Pacemakers, Inc. Method and apparatus for predicting acute response to cardiac resynchronization therapy at a given stimulation site
US7215998B2 (en) 2003-01-06 2007-05-08 Medtronic, Inc. Synchronous pacemaker with AV interval optimization
US7013176B2 (en) 2003-01-28 2006-03-14 Cardiac Pacemakers, Inc. Method and apparatus for setting pacing parameters in cardiac resynchronization therapy
US6885889B2 (en) 2003-02-28 2005-04-26 Medtronic, Inc. Method and apparatus for optimizing cardiac resynchronization therapy based on left ventricular acceleration
US7610088B2 (en) 2003-02-28 2009-10-27 Medtronic, Inc. Method and apparatus for assessing left ventricular function and optimizing cardiac pacing intervals based on left ventricular wall motion
US7079895B2 (en) 2003-04-25 2006-07-18 Medtronic, Inc. Cardiac pacing for optimal intra-left ventricular resynchronization
US7107093B2 (en) 2003-04-29 2006-09-12 Medtronic, Inc. Use of activation and recovery times and dispersions to monitor heart failure status and arrhythmia risk
US7747047B2 (en) 2003-05-07 2010-06-29 Ge Medical Systems Global Technology Company, Llc Cardiac CT system and method for planning left atrial appendage isolation
US7565190B2 (en) 2003-05-09 2009-07-21 Ge Medical Systems Global Technology Company, Llc Cardiac CT system and method for planning atrial fibrillation intervention
US7142911B2 (en) 2003-06-26 2006-11-28 Pacesetter, Inc. Method and apparatus for monitoring drug effects on cardiac electrical signals using an implantable cardiac stimulation device
US7813785B2 (en) 2003-07-01 2010-10-12 General Electric Company Cardiac imaging system and method for planning minimally invasive direct coronary artery bypass surgery
EP1654704A2 (en) 2003-07-21 2006-05-10 Paieon Inc. Method and system for identifying an optimal image within a series of images that depict a moving organ
US7092759B2 (en) 2003-07-30 2006-08-15 Medtronic, Inc. Method of optimizing cardiac resynchronization therapy using sensor signals of septal wall motion
US7818040B2 (en) 2003-09-05 2010-10-19 Medtronic, Inc. Deflectable medical therapy delivery device having common lumen profile
EP1665130A4 (en) 2003-09-25 2009-11-18 Paieon Inc SYSTEM FOR THREE-DIMENSIONAL RECONSTRUCTION OF A TUBULAR ORGAN
US7308299B2 (en) 2003-10-22 2007-12-11 General Electric Company Method, apparatus and product for acquiring cardiac images
US7308297B2 (en) 2003-11-05 2007-12-11 Ge Medical Systems Global Technology Company, Llc Cardiac imaging system and method for quantification of desynchrony of ventricles for biventricular pacing
EP1703946A2 (en) 2003-12-03 2006-09-27 Medtronic, Inc. Method and apparatus for determining an efficacious atrioventricular delay interval
US7184835B2 (en) 2003-12-12 2007-02-27 Cardiac Pacemakers, Inc. Method and apparatus for adjustable AVD programming using a table
US20050149138A1 (en) 2003-12-24 2005-07-07 Xiaoyi Min System and method for determining optimal pacing sites based on myocardial activation times
US7486991B2 (en) 2003-12-24 2009-02-03 Cardiac Pacemakers, Inc. Baroreflex modulation to gradually decrease blood pressure
US7787951B1 (en) 2003-12-24 2010-08-31 Pacesetter, Inc. System and method for determining optimal stimulation sites based on ECG information
RS49856B (sr) 2004-01-16 2008-08-07 Boško Bojović Uređaj i postupak za vizuelnu trodimenzionalnu prezentaciju ecg podataka
US7454248B2 (en) 2004-01-30 2008-11-18 Ge Medical Systems Global Technology, Llc Method, apparatus and product for acquiring cardiac images
US7792572B1 (en) 2004-05-17 2010-09-07 Pacesetter, Inc. Ischemia detection using intra-cardiac signals
CA2481631A1 (en) 2004-09-15 2006-03-15 Dspfactory Ltd. Method and system for physiological signal processing
US20060074285A1 (en) 2004-09-24 2006-04-06 Paieon Inc. Apparatus and method for fusion and in-operating-room presentation of volumetric data and 3-D angiographic data
US7457664B2 (en) 2005-05-09 2008-11-25 Cardiac Pacemakers, Inc. Closed loop cardiac resynchronization therapy using cardiac activation sequence information
US7509170B2 (en) 2005-05-09 2009-03-24 Cardiac Pacemakers, Inc. Automatic capture verification using electrocardiograms sensed from multiple implanted electrodes
US20080058656A1 (en) 2004-10-08 2008-03-06 Costello Benedict J Electric tomography
US7426412B1 (en) 2004-10-13 2008-09-16 Pacesetter, Inc. Evoked potential and impedance based determination of diaphragmatic stimulation
US7664550B2 (en) 2004-11-30 2010-02-16 Medtronic, Inc. Method and apparatus for detecting left ventricular lead displacement based upon EGM change
US7684863B2 (en) 2004-12-20 2010-03-23 Medtronic, Inc. LV threshold measurement and capture management
US8050756B2 (en) 2004-12-20 2011-11-01 Cardiac Pacemakers, Inc. Circuit-based devices and methods for pulse control of endocardial pacing in cardiac rhythm management
EP1835852A4 (en) 2004-12-21 2010-10-20 Sydney West Area Health Service AUTOMATED PROCESSING OF ELECTROPHYSIOLOGICAL DATA
US20080021336A1 (en) 2006-04-24 2008-01-24 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac synchrony and dyssynchrony
US20060178586A1 (en) 2005-02-07 2006-08-10 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac function and identification of LV target pacing zones
US7515959B2 (en) 2005-03-31 2009-04-07 Medtronic, Inc. Delivery of CRT therapy during AT/AF termination
EP1871470A4 (en) 2005-03-31 2011-06-01 Proteus Biomedical Inc AUTOMATIC OPTIMIZATION OF MULTIELECTROPIC PACING FOR CARDIAL RESYNCHRONIZATION
US7555340B2 (en) 2005-04-01 2009-06-30 Cardiac Pacemakers, Inc. Electrogram morphology-based CRT optimization
US8214041B2 (en) 2005-04-19 2012-07-03 Medtronic, Inc. Optimization of AV intervals in single ventricle fusion pacing through electrogram morphology
US7769451B2 (en) 2005-04-28 2010-08-03 Medtronic, Inc. Method and apparatus for optimizing cardiac resynchronization therapy
JP2008539857A (ja) 2005-05-03 2008-11-20 パイエオン インコーポレイテッド 両心室ペースメーカーのリードおよび電極を配置するための方法および装置
EP2436309B1 (en) 2005-07-22 2021-03-17 Case Western Reserve University Noninvasive eletrocardiographic image
US10406366B2 (en) 2006-11-17 2019-09-10 Respicardia, Inc. Transvenous phrenic nerve stimulation system
US7570999B2 (en) 2005-12-20 2009-08-04 Cardiac Pacemakers, Inc. Implantable device for treating epilepsy and cardiac rhythm disorders
US7751882B1 (en) 2005-12-21 2010-07-06 Pacesetter, Inc. Method and system for determining lead position for optimized cardiac resynchronization therapy hemodynamics
US7848807B2 (en) 2005-12-30 2010-12-07 Medtronic, Inc. Closed loop optimization of A-V and V-V timing
US8175703B2 (en) 2006-01-25 2012-05-08 Cardiac Pacemakers, Inc. Cardiac resynchronization therapy parameter optimization
US7567836B2 (en) 2006-01-30 2009-07-28 Cardiac Pacemakers, Inc. ECG signal power vector detection of ischemia or infarction
US7860580B2 (en) 2006-04-24 2010-12-28 Medtronic, Inc. Active fixation medical electrical lead
US7792584B2 (en) 2006-04-25 2010-09-07 Medtronic, Inc. System and method for characterization of atrial wall using digital signal processing
WO2007139456A1 (en) 2006-05-31 2007-12-06 St. Jude Medical Ab A method in an imd system
US7505810B2 (en) 2006-06-13 2009-03-17 Rhythmia Medical, Inc. Non-contact cardiac mapping, including preprocessing
US8725255B2 (en) 2006-11-17 2014-05-13 Cardiac Pacemakers, Inc. Cardiac resynchronization therapy optimization using cardiac activation sequence information
US7616993B2 (en) 2006-11-27 2009-11-10 Biotronik Crm Patent Ag Heart stimulator using a Bezier function to define AV-delay values
US7765002B2 (en) 2006-12-08 2010-07-27 Cardiac Pacemakers, Inc. Rate aberrant beat selection and template formation
US7941213B2 (en) 2006-12-28 2011-05-10 Medtronic, Inc. System and method to evaluate electrode position and spacing
US8155756B2 (en) 2007-02-16 2012-04-10 Pacesetter, Inc. Motion-based optimization for placement of cardiac stimulation electrodes
US8195292B2 (en) 2007-02-16 2012-06-05 Pacestter, Inc. Cardiac resynchronization therapy optimization using parameter estimation from realtime electrode motion tracking
US20080242976A1 (en) 2007-03-30 2008-10-02 Proteus Biomedical, Inc. Electric field tomography
US7912544B1 (en) 2007-04-20 2011-03-22 Pacesetter, Inc. CRT responder model using EGM information
US7957799B2 (en) 2007-04-30 2011-06-07 Medtronic, Inc. Non-invasive cardiac potentiation therapy
US7769464B2 (en) 2007-04-30 2010-08-03 Medtronic, Inc. Therapy adjustment
US20080281195A1 (en) 2007-05-09 2008-11-13 General Electric Company System and method for planning LV lead placement for cardiac resynchronization therapy
US8160700B1 (en) 2007-05-16 2012-04-17 Pacesetter, Inc. Adaptive single site and multi-site ventricular pacing
WO2008151077A2 (en) 2007-06-01 2008-12-11 Cdl Nuclear Technologies, Inc. Method, apparatus and protocol for screening appropriate patient candidates and for cardiac resychronization therapy (crt), determining cardiac functional response to adjustments of ventricular pacing devices and follow-up of crt patient outcomes
US8301246B2 (en) 2007-06-07 2012-10-30 Pacesetter, Inc. System and method for improving CRT response and identifying potential non-responders to CRT therapy
US20090048528A1 (en) 2007-08-16 2009-02-19 Bruce Hopenfeld System and methods for detecting ischemia with a limited extracardiac lead set
US8295943B2 (en) 2007-08-20 2012-10-23 Medtronic, Inc. Implantable medical lead with biased electrode
EP2190528B1 (en) 2007-08-20 2014-10-08 Medtronic, Inc. Evaluating therapeutic stimulation electrode configurations based on physiological responses
US20090054941A1 (en) 2007-08-20 2009-02-26 Medtronic, Inc. Stimulation field management
WO2009027812A2 (en) 2007-08-31 2009-03-05 Medicalgorithmics Sp. Zo.O Reconstruction of geometry of a body component and analysis of spatial distribution of electrophysiological values
US7917214B1 (en) 2007-09-06 2011-03-29 Pacesetter, Inc. Methods and systems for identifying a preferred pacing configuration for a multi-electrode implantable cardiac electrotherapy device
US8527036B2 (en) 2007-09-28 2013-09-03 Maquet Critical Care Ab Catheter positioning method and computerized control unit for implementing the method
US8180428B2 (en) 2007-10-03 2012-05-15 Medtronic, Inc. Methods and systems for use in selecting cardiac pacing sites
US8145306B2 (en) 2007-10-15 2012-03-27 Lessmeier Timothy J Method for optimizing CRT therapy
DE602008004206D1 (de) 2007-12-13 2011-02-10 Ela Medical Sa Medizinische Vorrichtung zur Bestimmung des Herzzustands eines Patienten, dem ein aktives Implantat zur biventrikulären Stimulation eingesetzt wurde
US20100280355A1 (en) 2007-12-14 2010-11-04 Grimm Richard A System and method to characterize cardiac function
US20090232448A1 (en) 2008-03-14 2009-09-17 Eci Technology, Inc. Fiber optic multiplexer
US8814798B2 (en) 2008-04-25 2014-08-26 Medtronic, Inc. Implantable device and method for monitoring venous diameter
EP2296542A4 (en) 2008-05-16 2013-06-05 Heartscape Technologies Inc ELECTRODE PADS MONITOR
WO2009148429A1 (en) 2008-06-02 2009-12-10 Medtronic, Inc. Electrogram storage for suspected non-physiological episodes
US9037240B2 (en) 2008-06-02 2015-05-19 Medtronic, Inc. Electrode lead integrity reports
US20090299423A1 (en) 2008-06-03 2009-12-03 Pacesetter, Inc. Systems and methods for determining inter-atrial conduction delays using multi-pole left ventricular pacing/sensing leads
US8019409B2 (en) 2008-06-09 2011-09-13 Pacesetter, Inc. Cardiac resynchronization therapy optimization using electromechanical delay from realtime electrode motion tracking
US8155739B2 (en) 2008-06-20 2012-04-10 Pacesetter, Inc. Cardiac resynchronization therapy optimization using mechanical dyssynchrony and shortening parameters from realtime electrode motion tracking
US9259166B2 (en) 2008-08-11 2016-02-16 Washington University In St. Louis Systems and methods for on-site and real-time electrocardiographic imaging (ECGI)
US8090443B2 (en) 2008-09-15 2012-01-03 Xiaoyi Min Monitoring HF exacerbation and cardiac resynchronization therapy performance
JP5662326B2 (ja) 2008-10-23 2015-01-28 コーニンクレッカ フィリップス エヌ ヴェ インターベンション・ラジオ波焼灼療法またはペースメーカー設置手順における、仮想的な解剖学的構造を豊かにしたリアルタイム2d撮像のための、心臓および/または呼吸同期画像取得システム
US8554314B2 (en) 2008-10-31 2013-10-08 Medtronic, Inc. Device and method to detect the severity of ischemia and heart attack risk
US9446246B2 (en) 2008-11-07 2016-09-20 Pacesetter, Inc. Identification of electro-mechanical dysynchrony with a non-cardiac resynchronization therapeutic device
WO2010054409A1 (en) 2008-11-10 2010-05-14 Cardioinsight Technologies, Inc. Visualization of electrophysiology data
WO2010071520A1 (en) 2008-12-18 2010-06-24 Maquet Critical Care Ab A method of determining a position of an oesophageal catheter, a control unit and a computer program product
US20100174137A1 (en) 2009-01-06 2010-07-08 Youngtack Shim Adaptive stimulation systems and methods
US8204590B2 (en) 2009-01-30 2012-06-19 Medtronic, Inc. Fusion pacing interval determination
US20100198292A1 (en) 2009-01-30 2010-08-05 Medtronic, Inc. Evaluating electrode configurations for delivering cardiac pacing therapy
US8219186B2 (en) 2009-03-05 2012-07-10 Chen Guangren Non-invasive system and method for scanning the heart
US8010194B2 (en) 2009-04-01 2011-08-30 David Muller Determining site-to-site pacing delay for multi-site anti-tachycardia pacing
US8478388B2 (en) 2009-04-07 2013-07-02 Pacesetter, Inc. Cardiac coordinate system for motion analysis
EP2659931B1 (en) 2009-05-27 2017-07-19 Cardiac Pacemakers, Inc. Phrenic nerve activation detection
US8886313B2 (en) 2009-07-02 2014-11-11 Cardiac Pacemakers Inc. Systems and methods for ranking and selection of pacing vectors
US9387329B2 (en) 2009-07-22 2016-07-12 Pacesetter, Inc. Systems and methods for determining ventricular pacing sites for use with multi-pole leads
US8626260B2 (en) 2009-08-27 2014-01-07 William Crosby Expandable electrode pad
US8285377B2 (en) 2009-09-03 2012-10-09 Pacesetter, Inc. Pacing, sensing and other parameter maps based on localization system data
US20110054560A1 (en) 2009-09-03 2011-03-03 Pacesetter, Inc. Pacing, sensing and other parameter maps based on localization system data
US8731642B2 (en) 2009-11-08 2014-05-20 Paieon Inc. Apparatus and method for locating a device tip within a volume
US8412327B2 (en) 2009-11-18 2013-04-02 Pacesetter, Inc. Cardiac resynchronization therapy optimization using vector measurements obtained from realtime electrode position tracking
US9381363B2 (en) 2009-12-07 2016-07-05 Pacesetter, Inc. Optimal pacing configuration via ventricular conduction delays
SE534636C2 (sv) 2009-12-12 2011-11-01 Anna Bjaellmark Ett system för kvantifiering och visualisering av hjärtats rotationsmönster
US20110144510A1 (en) 2009-12-16 2011-06-16 Pacesetter, Inc. Methods to identify damaged or scarred tissue based on position information and physiological information
US8983619B2 (en) 2009-12-30 2015-03-17 Medtronic, Inc. Testing communication during implantation
WO2011099992A1 (en) 2010-02-12 2011-08-18 Brigham And Women's Hospital, Inc. System and method for automated adjustment of cardiac resynchronization therapy control parameters
US20110213260A1 (en) 2010-02-26 2011-09-01 Pacesetter, Inc. Crt lead placement based on optimal branch selection and optimal site selection
WO2012003122A1 (en) 2010-07-01 2012-01-05 Cardiac Pacemakers, Inc. Rhythm correlation diagnostic measurement
JP5632539B2 (ja) 2010-09-17 2014-11-26 カーディオインサイト テクノロジーズ インコーポレイテッド 興奮伝播図を計算するためのシステムおよび方法
US8401646B2 (en) 2010-10-21 2013-03-19 Medtronic, Inc. Method and apparatus to determine the relative energy expenditure for a plurality of pacing vectors
US8718770B2 (en) 2010-10-21 2014-05-06 Medtronic, Inc. Capture threshold measurement for selection of pacing vector
US8583230B2 (en) 2011-01-19 2013-11-12 Pacesetter, Inc. Systems and methods for selectively limiting multi-site ventricular pacing delays during optimization of cardiac resynchronization therapy parameters
US8805504B2 (en) 2011-02-01 2014-08-12 Brigham And Women's Hospital System and method for cardiac resynchronization therapy control parameter generation using ventricular activation simulation and surface ECG registration
EP2672889B1 (en) 2011-02-11 2021-04-07 The Johns Hopkins University System and method for planning a patient-specific cardiac procedure
CN103391744B (zh) 2011-02-17 2015-06-17 皇家飞利浦有限公司 用于提供电活动图的系统
US8380308B2 (en) 2011-03-29 2013-02-19 Pacesetter, Inc. Systems and methods for optimizing ventricular pacing based on left atrial electromechanical activation detected by an AV groove electrode
US9510763B2 (en) 2011-05-03 2016-12-06 Medtronic, Inc. Assessing intra-cardiac activation patterns and electrical dyssynchrony
US8617082B2 (en) 2011-05-19 2013-12-31 Medtronic, Inc. Heart sounds-based pacing optimization
US20120296387A1 (en) 2011-05-19 2012-11-22 Xusheng Zhang Phrenic nerve stimulation detection using heart sounds
US8718750B2 (en) 2011-05-26 2014-05-06 Biotronik Se & Co. Kg Heart stimulator and method for A-V delay optimization
US20120330179A1 (en) 2011-06-24 2012-12-27 Verathon, Inc. Electrode contact-quality evaluation
US9186515B2 (en) 2011-07-05 2015-11-17 Cardioinsight Technologies, Inc. System and methods to facilitate providing therapy to a patient
US9615790B2 (en) 2011-07-14 2017-04-11 Verathon Inc. Sensor device with flexible joints
US8897851B2 (en) 2011-07-14 2014-11-25 Verathon Inc. Releasable liner for sensor device
CN103796714B (zh) 2011-07-14 2016-03-09 布里格姆女子医院有限公司 用于自动调整心脏再同步治疗控制参数的系统与方法
US8527050B2 (en) 2011-07-28 2013-09-03 Medtronic, Inc. Method for discriminating anodal and cathodal capture
US8744576B2 (en) 2011-07-29 2014-06-03 Medtronic, Inc. Sampling intrinsic AV conduction time
US8954160B2 (en) 2011-09-02 2015-02-10 Medtronic, Inc. Detection of extracardiac stimulation by a cardiac rhythm management device
US20130072790A1 (en) 2011-09-19 2013-03-21 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Selection and optimization for cardiac resynchronization therapy
WO2013056050A1 (en) 2011-10-12 2013-04-18 Cardioinsight Technologies, Inc. Sensing zone for spatially relevant electrical information
US8861830B2 (en) 2011-11-07 2014-10-14 Paieon Inc. Method and system for detecting and analyzing heart mechanics
US8682433B2 (en) 2011-11-21 2014-03-25 Medtronic, Inc. Method for efficient delivery of dual site pacing
US9199087B2 (en) 2011-11-21 2015-12-01 Medtronic, Inc. Apparatus and method for selecting a preferred pacing vector in a cardiac resynchronization device
US8886315B2 (en) 2011-12-23 2014-11-11 Medtronic, Inc. Effectiveness of ventricular sense response in CRT
US8948869B2 (en) 2012-02-17 2015-02-03 Medtronic, Inc. Criteria for optimal electrical resynchronization derived from multipolar leads or multiple electrodes during biventricular pacing
US10413203B2 (en) 2012-03-27 2019-09-17 Cardiac Pacemakers, Inc. Baseline determination for phrenic nerve stimulation detection
US8958876B2 (en) 2012-03-27 2015-02-17 Cardiac Pacemakers, Inc. Determination of phrenic nerve stimulation threshold
US20130289640A1 (en) 2012-04-27 2013-10-31 Medtronic, Inc. Heart sound-based pacing vector selection system and method
WO2013169933A1 (en) 2012-05-09 2013-11-14 Cardioinsight Technologies, Inc. Channel integrity detection
US8527051B1 (en) 2012-07-10 2013-09-03 St. Jude Medical Ab Detection and reduction of phrenic nerve stimulation
US9272151B2 (en) 2012-07-12 2016-03-01 Cardiac Pacemakers, Inc. Adaptive phrenic nerve stimulation detection
US8781584B2 (en) 2012-11-15 2014-07-15 Medtronic, Inc. Capture threshold measurement for selection of pacing vector
US9320905B2 (en) 2012-12-06 2016-04-26 Medtronic, Inc. Effective capture test
US8738132B1 (en) 2012-12-06 2014-05-27 Medtronic, Inc. Effective capture test
US9604064B2 (en) 2013-02-21 2017-03-28 Medtronic, Inc. Criteria for optimal electrical resynchronization during fusion pacing
US9931048B2 (en) 2013-04-30 2018-04-03 Medtronic, Inc. Systems, methods, and interfaces for identifying effective electrodes
US10064567B2 (en) 2013-04-30 2018-09-04 Medtronic, Inc. Systems, methods, and interfaces for identifying optimal electrical vectors
US9877789B2 (en) 2013-06-12 2018-01-30 Medtronic, Inc. Implantable electrode location selection
US9486151B2 (en) 2013-06-12 2016-11-08 Medtronic, Inc. Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
US10251555B2 (en) 2013-06-12 2019-04-09 Medtronic, Inc. Implantable electrode location selection
US9282907B2 (en) 2013-07-23 2016-03-15 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9265955B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9265954B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9789319B2 (en) 2013-11-21 2017-10-17 Medtronic, Inc. Systems and methods for leadless cardiac resynchronization therapy
US9320446B2 (en) 2013-12-09 2016-04-26 Medtronic, Inc. Bioelectric sensor device and methods
US10206601B2 (en) 2013-12-09 2019-02-19 Medtronic, Inc. Noninvasive cardiac therapy evaluation
US9776009B2 (en) 2014-03-20 2017-10-03 Medtronic, Inc. Non-invasive detection of phrenic nerve stimulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1504713A1 (en) * 2003-07-14 2005-02-09 Surgical Navigation Technologies, Inc. Navigation system for cardiac therapies
US20080269823A1 (en) * 2007-04-30 2008-10-30 Burnes John E Apparatus and Methods for Automatic Determination of a Fusion Pacing Pre-Excitation Interval
CN102300603A (zh) * 2009-01-30 2011-12-28 麦德托尼克公司 基于心房心室延时的起搏治疗调节

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769893A (zh) * 2017-06-16 2020-02-07 心脏起搏器股份公司 心力衰竭治疗的动态控制
CN110769893B (zh) * 2017-06-16 2024-03-22 心脏起搏器股份公司 心力衰竭治疗的动态控制
CN110996784B (zh) * 2017-07-28 2023-05-30 美敦力公司 生成激动时间
CN110996784A (zh) * 2017-07-28 2020-04-10 美敦力公司 生成激动时间
CN111432875A (zh) * 2017-12-01 2020-07-17 心脏起搏器股份公司 从心室植入式无引线心脏起搏器检测心房收缩定时基准并确定心脏间隔的方法和系统
CN111432875B (zh) * 2017-12-01 2024-04-30 心脏起搏器股份公司 从心室植入式无引线心脏起搏器检测心房收缩定时基准并确定心脏间隔的方法和系统
CN108175941B (zh) * 2017-12-29 2021-10-22 创领心律管理医疗器械(上海)有限公司 基于无心室起搏的双腔起搏模式的存储介质及医疗设备
US11420068B2 (en) 2017-12-29 2022-08-23 Microport Soaring Crm (Shanghai) Co., Ltd. Method and medical device for implementing dual-chamber pacing mode without ventricular pacing
CN108175941A (zh) * 2017-12-29 2018-06-19 创领心律管理医疗器械(上海)有限公司 一种无心室起搏的双腔起搏模式实现方法及医疗设备
CN111867506A (zh) * 2018-02-05 2020-10-30 梅奥医学教育与研究基金会 用于标测和调制复极化的系统和方法
CN111789590A (zh) * 2019-04-08 2020-10-20 四川锦江电子科技有限公司 一种人体心腔内刺激与电生理记录同步记录的方法和系统
CN112972898A (zh) * 2019-12-17 2021-06-18 百多力两合公司 配置为提供心脏内起搏的无引线心脏起搏器装置
CN112972898B (zh) * 2019-12-17 2024-01-09 百多力两合公司 配置为提供心脏内起搏的无引线心脏起搏器装置

Also Published As

Publication number Publication date
US9265954B2 (en) 2016-02-23
CN105579094B (zh) 2018-02-02
EP3024543B1 (en) 2018-01-31
US20150032172A1 (en) 2015-01-29
EP3024543A1 (en) 2016-06-01
WO2015013493A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
CN105579095B (zh) 用于改进对心脏再同步治疗中左心室起搏相对于固有右心室激动的时间估算的方法及系统
CN105579094B (zh) 用于改进对心脏再同步治疗中左心室起搏相对于固有右心室激动的时间估算的方法及系统
CN105451811B (zh) 可植入电极位置选择
US9591982B2 (en) Systems and methods for evaluating cardiac therapy
CN105555356A (zh) 可植入电极位置选择
US9764143B2 (en) Systems and methods for configuration of interventricular interval
CN105358215B (zh) 用于标识最佳电向量的系统、方法和界面
EP3180081B1 (en) Systems, methods, and interfaces for configuring cardiac therapy
CN105377363A (zh) 用于标识有效电极的系统、方法和界面
WO2015088998A1 (en) Noninvasive cardiac therapy evaluation
US10617318B2 (en) Mapping electrical activity on a model heart
CN111491693A (zh) 异位搏动补偿的电异质性信息

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant