CN105576031A - 一种以GaN为界面层的GaAs沟道MOS界面结构 - Google Patents

一种以GaN为界面层的GaAs沟道MOS界面结构 Download PDF

Info

Publication number
CN105576031A
CN105576031A CN201511032304.7A CN201511032304A CN105576031A CN 105576031 A CN105576031 A CN 105576031A CN 201511032304 A CN201511032304 A CN 201511032304A CN 105576031 A CN105576031 A CN 105576031A
Authority
CN
China
Prior art keywords
layer
gan
interface
channel mos
gallium arsenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201511032304.7A
Other languages
English (en)
Inventor
刘丽蓉
马莉
夏校军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DONGGUAN QINGMAITIAN DIGITAL TECHNOLOGY Co Ltd
Original Assignee
DONGGUAN QINGMAITIAN DIGITAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DONGGUAN QINGMAITIAN DIGITAL TECHNOLOGY Co Ltd filed Critical DONGGUAN QINGMAITIAN DIGITAL TECHNOLOGY Co Ltd
Priority to CN201511032304.7A priority Critical patent/CN105576031A/zh
Publication of CN105576031A publication Critical patent/CN105576031A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种以GaN为界面层的GaAs沟道MOS界面结构,该结构自上而下依次是:一半绝缘单晶砷化镓衬底(101);一在该砷化镓单晶衬底层(101)上形成的砷化镓沟道层(102);一在该N型掺杂的砷化镓沟道层(102)上形成的界面控制层GaN(103);一在该界面控制层GaN(103)上形成的界面过渡层AlN(104);一在该界面过渡层AlN(104)上形成的高K介质层(105);以及一在该高K栅介质(105)上形成的金属栅结构(106)。

Description

一种以GaN为界面层的GaAs沟道MOS界面结构
技术领域
本发明涉及半导体集成电路制造技术领域,具体涉及一种以GaN为界面层的GaAs沟道MOS界面结构,应用于高性能III-V族半导体CMOS技术。
背景技术
Ⅲ-Ⅴ化合物半导体材料相对硅材料而言,具有高载流子迁移率、大的禁带宽度等优点,而且在热学、光学和电磁学等方面都有很好的特性。在过去四十年中,高质量热稳定栅介质材料一直是III-V族半导体在大规模CMOS集成电路中的应用的主要障碍。最新研究报道表明:在III-V族半导体表面,直接采用原子层沉积(ALD)以及分子束外延(MBE)技术沉积高k栅介质材料已经实现了器件质量的的MOS界面。然而,该界面的性质仍无法与SiO2/Si相比拟,直接在高迁移率沟道表面直接生长高k栅介质材料界面态密度高会导致沟道载流子迁移率的下降。因此,需要一种新的途径在III-V族半导体材料上同时实现高载流子迁移率与低界面态密度,以满足高性能III-V族半导体CMOS技术的要求。
发明内容
(一)要解决的技术问题
本发明的主要目的是提供一种以GaN为界面层的GaAs沟道MOS界面结构,以同时实现高载流子迁移率与低界面态密度,满足高性能III-V族半导体CMOS技术的要求。
(二)技术方案
为达到上述目的,本发明提供了一种以GaN为界面层的GaAs沟道MOS界面结构,其特征在于,该结构自下而上依次包括:
一半绝缘单晶砷化镓衬底(101);
一在该砷化镓单晶衬底层(101)上形成的砷化镓沟道层(102);
一在该砷化镓沟道层(102)上形成的GaN界面控制层(103);
一在该GaN界面控制层(103)上形成的AlN界面过渡层(104);
一在该AlN界面过渡层(104)上形成的Al2O3高K介质层(105);
以及一在该Al2O3高K栅介质(105)上形成的钨金属栅层(106)。
上述方案中,所述单晶衬底101是砷化镓(GaAs)衬底,其衬底晶向为(100)、(110)或者(111)。
上述方案中,所述砷化镓沟道层(102)是采用MBE或者MOCVD的生长方式在砷化镓单晶衬底上生长的,厚度在20纳米到200纳米。
上述方案中,所述GaN界面控制层(103)是采用MBE或者MOCVD的生长方式在砷化镓沟道层上生长的,其生长方式为在生长完砷化镓的镓原子后,采用含N气体进行吹扫,在砷化镓沟道层上形成厚度为2-4个原子层的GaN界面控制层。
上述方案中,所述AlN界面过渡层(104)是采用MBE或者MOCVD的生长方式在GaN界面控制层(103)上生长的,其生长方式为在生长完GaN的N原子后,采用含Al元素的生长气体进行吹扫,在GaN界面控制层(103)上形成厚度为2-4个原子层的AlN界面控制层。
上述方案中,所述Al2O3高K栅介质(105)的生长方式为原子层沉积,是在生长完AlN后,立即放入原子层沉积系统生长的,厚度为3-5纳米。
上述方案中,所述钨金属栅层(106)其沉积方式为溅射,是在Al2O3介质生长后,立即放入溅射系统进行的,钨金属层的厚度为50-200纳米。
(三)有益效果
从上述技术方案可以看出,本发明具有以下有益效果:
本发明提供的一种以GaN为界面层的GaAs沟道MOS界面结构,利用GaN界面控制层技术钝化界面处的悬挂键,实现低界面态密度,并降低沟道中载流子的散射,同时GaP界面层又是势垒层,提高了沟道层中的二维电子气浓度,实现高迁移率和高电子浓度双重作用;由于砷化镓材料的电子迁移率和空穴迁移率相对比较均衡,所以发明这种GaAs沟道MOS结构,以满足高性能III-V族半导体CMOS技术的要求。
附图说明
图1是本发明提供的GaAs沟道MOS界面结构的示意图;
图2是本发明提高的GaAs沟道MOS界面结构实施例图
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
如图2所示,图2是本发明提供一种以GaN为界面层的GaAs沟道MOS界面结构,其特征在于,该结构自下而上依次包括:
一半绝缘单晶砷化镓衬底(201);
一在该砷化镓单晶衬底层(201)上形成的50纳米厚的砷化镓沟道层(202);
一在该砷化镓沟道层(202)上采用MBE方式生长的4个原子层厚的GaN界面控制层(203);
一在该GaN界面控制层(203)上采用MBE方式生长的4个原子层厚的AlN界面过渡层(204);
一在该AlN界面过渡层(204)上采用原子层沉积系统生长的3纳米厚度的Al2O3高K介质层(205);
以及一在该Al2O3高K栅介质(205)上采用磁控溅射系统直接溅射的100纳米厚度的钨金属栅层(206)。
上述实施例中,所述单晶衬底201是砷化镓(GaAs)衬底,其衬底晶向为(100),在生长沟道层之前,进行常规的有机清洗,再采用稀释盐酸清洗,再用稀释的氨水进行清洗。
上述实施例中,所述砷化镓沟道层(202)是采用MBE的生长方式在砷化镓单晶衬底上生长的,厚度在50纳米。
上述实施例中,所述GaN界面控制层(203)是采用MBE或者MOCVD的生长方式在砷化镓沟道层上生长的,其生长方式为在生长完砷化镓的镓原子后,采用含N气体进行吹扫,在砷化镓沟道层上形成厚度为4个原子层的GaN界面控制层。
上述实施例中,所述AlN界面过渡层(204)是采用MBE或者MOCVD的生长方式在GaN界面控制层(203)上生长的,其生长方式为在生长完GaN的N原子后,采用含Al元素的生长气体进行吹扫,在GaN界面控制层(203)上形成厚度为4个原子层的AlN界面控制层。
上述实施例中,所述Al2O3高K栅介质(205)的生长方式为原子层沉积,是在生长完AlN后,立即放入原子层沉积系统生长的,其厚度为3纳米。
上述实施例中,所述钨金属栅层(206)其沉积方式为溅射,是在Al2O3介质生长后,立即放入溅射系统进行的,钨金属层的厚度为200纳米。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种以GaN为界面层的GaAs沟道MOS界面结构,其特征在于,该结构自下而上依次包括:
一半绝缘单晶砷化镓衬底(101);
一在该砷化镓单晶衬底层(101)上形成的砷化镓沟道层(102);
一在该砷化镓沟道层(102)上形成的GaN界面控制层(103);
一在该GaN界面控制层(103)上形成的AlN界面过渡层(104);
一在该AlN界面过渡层(104)上形成的Al2O3高K介质层(105);
以及一在该Al2O3高K栅介质(105)上形成的钨金属栅层(106)。
2.根据权利要求1所述的以GaN为界面层的GaAs沟道MOS界面结构,其特征在于,所述GaN界面控制层(103)是在生长N型砷化镓沟道层(102)后,采用含N的气体源进行表面吹扫后形成的,其厚度为2-4个原子层。
3.根据权利要求1所述的以GaN为界面层的GaAs沟道MOS界面结构,其特征在于,所述AlN界面过渡层(104)是在生长GaN为界面控制层(103)后,采用含Al的气体源进行表面吹扫后形成的,其厚度为2-4个原子层。
4.根据权利要求1所述的以GaN为界面层的GaAs沟道MOS界面结构,其特征在于,所述Al2O3高K介质层(105)是在生长AlN界面过渡层(104)后,立即转移到原子层沉积系统中生长的,其厚度为2-3纳米。
5.根据权利要求1所述的以GaN为界面层的GaAs沟道MOS界面结构,其特征在于,所述W金属栅层(106)是在生长Al2O3高K介质层(105)后,立即转移到磁控溅射台上直接溅射形成的,其厚度为50-200纳米。
CN201511032304.7A 2015-12-30 2015-12-30 一种以GaN为界面层的GaAs沟道MOS界面结构 Pending CN105576031A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511032304.7A CN105576031A (zh) 2015-12-30 2015-12-30 一种以GaN为界面层的GaAs沟道MOS界面结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511032304.7A CN105576031A (zh) 2015-12-30 2015-12-30 一种以GaN为界面层的GaAs沟道MOS界面结构

Publications (1)

Publication Number Publication Date
CN105576031A true CN105576031A (zh) 2016-05-11

Family

ID=55885961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511032304.7A Pending CN105576031A (zh) 2015-12-30 2015-12-30 一种以GaN为界面层的GaAs沟道MOS界面结构

Country Status (1)

Country Link
CN (1) CN105576031A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024712A (zh) * 2016-07-29 2016-10-12 东莞华南设计创新院 一种自对准砷化镓pmos器件的制作方法
CN110797398A (zh) * 2019-11-07 2020-02-14 中合博芯(重庆)半导体有限公司 一种高k氧化物栅绝缘层mos-hemt器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100270591A1 (en) * 2009-04-27 2010-10-28 University Of Seoul Industry Cooperation Foundation High-electron mobility transistor
CN102194859A (zh) * 2010-03-05 2011-09-21 中国科学院微电子研究所 高迁移率ⅲ-ⅴ族半导体mos界面结构
CN102842595A (zh) * 2011-06-20 2012-12-26 中国科学院微电子研究所 半导体器件及其制造方法
CN103828030A (zh) * 2012-08-10 2014-05-28 日本碍子株式会社 半导体元件、hemt元件、以及半导体元件的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100270591A1 (en) * 2009-04-27 2010-10-28 University Of Seoul Industry Cooperation Foundation High-electron mobility transistor
CN102194859A (zh) * 2010-03-05 2011-09-21 中国科学院微电子研究所 高迁移率ⅲ-ⅴ族半导体mos界面结构
CN102842595A (zh) * 2011-06-20 2012-12-26 中国科学院微电子研究所 半导体器件及其制造方法
CN103828030A (zh) * 2012-08-10 2014-05-28 日本碍子株式会社 半导体元件、hemt元件、以及半导体元件的制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024712A (zh) * 2016-07-29 2016-10-12 东莞华南设计创新院 一种自对准砷化镓pmos器件的制作方法
CN110797398A (zh) * 2019-11-07 2020-02-14 中合博芯(重庆)半导体有限公司 一种高k氧化物栅绝缘层mos-hemt器件及其制备方法
CN110797398B (zh) * 2019-11-07 2024-03-26 中合博芯(重庆)半导体有限公司 一种高k氧化物栅绝缘层mos-hemt器件及其制备方法

Similar Documents

Publication Publication Date Title
JP5580602B2 (ja) デプレッションモードGaNベースFETを使用したカスコード回路
CN103066103B (zh) 硅衬底上的iii族氮化物的衬底击穿电压改进方法
US7494911B2 (en) Buffer layers for device isolation of devices grown on silicon
US20130140525A1 (en) Gallium nitride growth method on silicon substrate
US9893188B2 (en) Semiconductor structure with template for transition metal dichalcogenides channel material growth
US20090001384A1 (en) Group III Nitride semiconductor HFET and method for producing the same
JP7013710B2 (ja) 窒化物半導体トランジスタの製造方法
JP2005286135A (ja) 半導体装置および半導体装置の製造方法
US20150115327A1 (en) Group III-V Device Including a Buffer Termination Body
US20150001582A1 (en) HEMT Structure with Iron-Doping-Stop Component and Methods of Forming
JP2015527749A (ja) Inganチャネルのn極のganhemt特性
US20220367176A1 (en) Epitaxies of a Chemical Compound Semiconductor
JP2012169470A (ja) 半導体装置およびその製造方法
CN105576031A (zh) 一种以GaN为界面层的GaAs沟道MOS界面结构
CN105518868A (zh) InGaAlN基半导体元件
CN206697485U (zh) 基于Si衬底AlGaN/GaN异质结基的增强型HEMT器件
CN102437042A (zh) 一种制作结晶态高k栅介质材料的方法
JP2010283372A (ja) 半導体装置
JP2019021873A (ja) 基板生産物の製造方法
JP2005035869A (ja) 高比抵抗GaN層を含む窒化物膜の製造方法、およびそれによって得られたエピタキシャル基板
JP6089122B2 (ja) 窒化物半導体積層体およびその製造方法並びに窒化物半導体装置
CN106952952A (zh) 一种iii‑v cmos型赝配异质结场效应晶体管
WO2020009020A1 (ja) トンネル電界効果トランジスタ
KR101972045B1 (ko) 헤테로 구조 반도체 소자
US8969882B1 (en) Transistor having an ohmic contact by screen layer and method of making the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160511