CN105575453A - Composite dynamic isotope battery based on nanometer materials and preparation method thereof - Google Patents

Composite dynamic isotope battery based on nanometer materials and preparation method thereof Download PDF

Info

Publication number
CN105575453A
CN105575453A CN201511005242.0A CN201511005242A CN105575453A CN 105575453 A CN105575453 A CN 105575453A CN 201511005242 A CN201511005242 A CN 201511005242A CN 105575453 A CN105575453 A CN 105575453A
Authority
CN
China
Prior art keywords
heat source
inert gas
nano
insulating substrate
gas pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201511005242.0A
Other languages
Chinese (zh)
Other versions
CN105575453B (en
Inventor
周毅
张世旭
李公平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN201511005242.0A priority Critical patent/CN105575453B/en
Publication of CN105575453A publication Critical patent/CN105575453A/en
Application granted granted Critical
Publication of CN105575453B publication Critical patent/CN105575453B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/10Cells in which radiation heats a thermoelectric junction or a thermionic converter
    • G21H1/103Cells provided with thermo-electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Secondary Cells (AREA)

Abstract

一种基于纳米材料复合式动态型同位素电池;包括热源结构、换能结构和惰性气体管道;热源结构包括热源腔体和热源装置,热源腔体包括热源腔体外壳、热反射层和气动单向阀,热源装置包括放射源、导热筒和防辐射层,热源装置被封装并固定于热源腔体内;换能结构包括压电能量收集电路、以及分别设于惰性气体管道壁内、外表面的纳米线压电组件、纳米热电组件,纳米线压电组件经压电能量收集电路与电池正、负极连接,纳米热电组件直接与电池正、负极连接;利用惰性气体管道连接热源结构和换能结构;电池结构被内封装固定,内封装表面设有外封装层。它突破了传统动态型同位素电池的技术瓶颈,能量转换效率高、寿命长、适用性强、清洁环保。

A composite dynamic isotope battery based on nanomaterials; including a heat source structure, an energy conversion structure and an inert gas pipeline; the heat source structure includes a heat source cavity and a heat source device, and the heat source cavity includes a heat source cavity shell, a heat reflection layer and a pneumatic one-way The valve, the heat source device includes a radiation source, a heat conduction cylinder and a radiation protection layer, the heat source device is packaged and fixed in the heat source cavity; the energy conversion structure includes a piezoelectric energy collection circuit, and nano Wire piezoelectric components, nano-thermoelectric components, nano-wire piezoelectric components are connected to the positive and negative electrodes of the battery through piezoelectric energy harvesting circuits, and the nano-thermoelectric components are directly connected to the positive and negative electrodes of the battery; the heat source structure and the energy conversion structure are connected by inert gas pipelines; The battery structure is fixed by the inner package, and the surface of the inner package is provided with an outer package layer. It breaks through the technical bottleneck of the traditional dynamic isotope battery, with high energy conversion efficiency, long life, strong applicability, clean and environmental protection.

Description

一种基于纳米材料复合式动态型同位素电池及其制备方法A composite dynamic isotope battery based on nanomaterials and its preparation method

技术领域 technical field

本发明属于同位素电池领域,具体涉及一种基于纳米材料复合式动态型同位素电池;本发明还涉及一种基于纳米材料复合式动态型同位素电池的制备方法。 The invention belongs to the field of isotope batteries, and in particular relates to a composite dynamic isotope battery based on nanomaterials; the invention also relates to a preparation method of a composite dynamic isotope battery based on nanomaterials.

背景技术 Background technique

原子核成分(或能态)自发地发生变化,同时放射出射线的同位素称为放射性同位素。放射性同位素电池,简称同位素电池,正是直接利用放射性同位素衰变释放出射线所具有的电能或是利用换能器件将放射性同位素衰变释放出射线的能量转换成电能,并将电能输出,从而达到供电目的。由于同位素电池具有服役寿命长、环境适应性强、工作稳定性好、无需维护、小型化等优点,目前已在军事国防、航天航海、极地探测、生物医疗、电子工业等重要领域被广泛应用。 Isotopes whose nuclear composition (or energy state) changes spontaneously while emitting radiation are called radioactive isotopes. Radioactive isotope battery, referred to as isotope battery, is to directly use the radioactive isotope decay to release the electric energy of the ray or use a transducing device to convert the energy of the radioactive isotope decay into electric energy, and output the electric energy to achieve the purpose of power supply . Due to the advantages of long service life, strong environmental adaptability, good working stability, no maintenance, and miniaturization, isotope batteries have been widely used in important fields such as military defense, aerospace navigation, polar exploration, biomedicine, and electronics industry.

同位素电池首先由英国物理学家HenryMosley于1913年提出,而有关同位素电池的研究主要集中在过去的50年里,其可分为四类:①静态辐射热转换方式同位素电池的研究;②动态热电转换机制(动态型)同位素电池的研究;③辐射伏特效应同位素电池的研究;④其他辐射效应转换机制同位素电池的研究。上述四类同位素电池的研究结果表明,能量转换效率低仍是目前同位素电池的共性所在。静态辐射热转换方式的同位素电池的发展主要得益于国家层面的研究开发,特别是温差式热电转换机制同位素电池的设计与制造目前在美国已日趋完善,但目前静态辐射热转换方式同位素电池的热电转换效率仍较低,仅为4%~8%,导致其使用区域大幅减小、民用化过程较为困难。辐射伏特效应同位素电池以半导体材料为换能单元,可实现同位素电池器件小型化,扩大了同位素电池的应用范围,且随着材料科学的飞速发展取得了一定的研究成效,但辐射伏特效应同位素电池存在长期辐照下半导体材料性能退化的问题,降低了辐射伏特效应同位素电池的使用寿命。与静态辐射热转换方式同位素电池和辐射伏特效应同位素电池相比,动态型同位素电池具有较高的能量转换效率,使其成为目前同位素电池的重要研究方向,但传统动态型同位素电池存在高速运转部件润滑困难、高速转动产生的惯性矢量影响系统稳定性等技术瓶颈。本发明提出的一种基于纳米材料复合式动态型同位素电池可突破传统动态型同位素电池存在的上述技术瓶颈,同时较大程度地提升动态型同位素电池的能量转换效率。 Isotope batteries were first proposed by British physicist Henry Mosley in 1913, and the research on isotope batteries has been mainly concentrated in the past 50 years, which can be divided into four categories: ① research on isotope batteries by static radiation heat conversion; ② dynamic thermoelectricity Research on conversion mechanism (dynamic type) isotope battery; ③ research on radiation effect isotope battery; ④ research on other radiation effect conversion mechanism isotope battery. The research results of the above four types of isotope batteries show that the low energy conversion efficiency is still the common feature of current isotope batteries. The development of isotope batteries with static radiative heat conversion is mainly due to the research and development at the national level, especially the design and manufacture of isotope batteries with thermoelectric conversion mechanism is becoming more and more perfect in the United States, but the current isotope batteries with static radiative heat conversion The thermoelectric conversion efficiency is still low, only 4% to 8%, resulting in a significant reduction in its use area and the difficulty in the process of civilian use. Radiation voltaic effect isotope batteries use semiconductor materials as energy conversion units, which can realize the miniaturization of isotope battery devices, expand the application range of isotope batteries, and have achieved certain research results with the rapid development of material science, but radiant volta There is a problem of performance degradation of semiconductor materials under long-term irradiation, which reduces the service life of the radiation-volt effect isotope battery. Compared with the isotope battery of static radiative heat conversion mode and the isotope battery of radiation volt effect, the dynamic isotope battery has higher energy conversion efficiency, making it an important research direction of isotope battery at present, but the traditional dynamic isotope battery has high-speed operating parts Technical bottlenecks such as difficulty in lubrication and inertia vector generated by high-speed rotation affect system stability. A composite dynamic isotope battery based on nanomaterials proposed by the present invention can break through the above-mentioned technical bottleneck of the traditional dynamic isotope battery, and at the same time greatly improve the energy conversion efficiency of the dynamic isotope battery.

发明内容 Contents of the invention

本发明要解决的第一技术问题在于提供一种基于纳米材料复合式动态型同位素电池,该同位素电池能够突破传统动态型同位素电池存在高速运转部件润滑困难、高速转动产生的惯性矢量影响系统稳定性的技术瓶颈,具有能量转换效率高、输出功率大、工作稳定性好、绿色经济等特点。本发明要解决的第二个技术问题在于提供一种基于纳米材料复合式动态型同位素电池的制备方法。 The first technical problem to be solved by the present invention is to provide a composite dynamic isotope battery based on nanomaterials. This isotope battery can break through the difficulties in lubrication of high-speed running parts in traditional dynamic isotope batteries, and the inertia vector generated by high-speed rotation affects system stability. It has the characteristics of high energy conversion efficiency, large output power, good working stability, and green economy. The second technical problem to be solved by the present invention is to provide a method for preparing a composite dynamic isotope battery based on nanomaterials.

本发明为解决上述第一技术问题所提供的一种基于纳米材料复合式动态型同位素电池:包括热源结构、换能结构和惰性气体管道;热源结构包括热源腔体和热源装置,热源腔体包括热源腔体外壳,热源腔体外壳内表面设有热反射层,热源腔体外壳两端渐变收缩并通过气动单向阀连接有惰性气体管道,热源装置包括设有夹层的导热筒,导热筒夹层内装放射源,导热筒内、外壁均设有防辐射层,热源装置被封装于热源装置外壳内,热源装置外壳外表面均匀设有三个固定支架,热源装置利用螺丝通过固定支架固定于热源腔体外壳上,热源装置中间设有通孔;换能结构包括纳米线压电组件和纳米热电组件,纳米线压电组件固定于惰性气体管道壁内表面,纳米线压电组件两端设有第一电学输出电极,纳米热电组件固定于惰性气体管道壁外表面,纳米热电组件两端设有第二电学输出电极;第一电学输出电极通过导线与压电能量收集电路输入端连接,压电能量收集电路输出端和第二电学输出电极分别通过导线与电池正极、电池负极连接;热源腔体和惰性气体管道中充有惰性气体,惰性气体在热源腔体和惰性气体管道中形成气流循环;利用内封装材料将热源结构、换能结构和惰性气体管道固定封装,制成内封装,内封装的外表面设有外封装层。 The present invention provides a composite dynamic isotope battery based on nanomaterials to solve the above-mentioned first technical problem: it includes a heat source structure, an energy conversion structure and an inert gas pipeline; the heat source structure includes a heat source cavity and a heat source device, and the heat source cavity includes The shell of the heat source cavity, the inner surface of the shell of the heat source cavity is provided with a heat reflective layer, the two ends of the shell of the heat source cavity gradually shrink and are connected with an inert gas pipeline through a pneumatic check valve, the heat source device includes a heat conduction cylinder with an interlayer, and the interlayer of the heat conduction cylinder Built-in radiation source, the inner and outer walls of the heat conduction cylinder are equipped with radiation-proof layers, the heat source device is packaged in the heat source device shell, and the outer surface of the heat source device shell is evenly equipped with three fixing brackets, and the heat source device is fixed in the heat source cavity through the fixing brackets with screws On the shell, there is a through hole in the middle of the heat source device; the energy conversion structure includes a nanowire piezoelectric component and a nanothermoelectric component, the nanowire piezoelectric component is fixed on the inner surface of the inert gas pipeline wall, and there are first The electrical output electrode, the nano-thermoelectric component is fixed on the outer surface of the inert gas pipeline wall, and the second electrical output electrode is arranged at both ends of the nano-thermoelectric component; the first electrical output electrode is connected to the input end of the piezoelectric energy harvesting circuit through a wire, and the piezoelectric energy harvesting The circuit output terminal and the second electrical output electrode are respectively connected to the positive pole of the battery and the negative pole of the battery through wires; the heat source cavity and the inert gas pipeline are filled with inert gas, and the inert gas forms a flow circulation in the heat source cavity and the inert gas pipeline; The packaging material fixes and packages the heat source structure, the energy conversion structure and the inert gas pipeline to form an inner package, and the outer surface of the inner package is provided with an outer package layer.

纳米线压电组件由八个均匀固定于惰性气体管道壁内表面的纳米线压电单元通过导线连接组成,纳米线压电单元包括第一绝缘衬底、纳米梳、第二绝缘衬底和金属电极层;纳米热电组件由十六个均匀固定于惰性气体管道壁外表面的纳米热电单元通过导线连接组成,纳米热电单元包括第三绝缘衬底、金属导体、p型纳米热电元件和n型纳米热电元件。 The nanowire piezoelectric assembly consists of eight nanowire piezoelectric units uniformly fixed on the inner surface of the inert gas pipeline wall connected by wires. The nanowire piezoelectric unit includes a first insulating substrate, a nanocomb, a second insulating substrate and a metal Electrode layer; the nanothermoelectric assembly is composed of sixteen nanothermoelectric units uniformly fixed on the outer surface of the inert gas pipeline wall and connected by wires. The nanothermoelectric unit includes a third insulating substrate, a metal conductor, p-type nanothermoelectric elements and n-type nanothermoelectric elements. thermoelectric element.

根据实际工作环境的要求,可增加固定支架的数量;根据实际应用时的输出电压电流的需求,可调整放射源的剂量大小,可增减纳米线压电单元和纳米热电单元的数量,可选择串联、并联或串并联结合的方式将纳米线压电单元连接组成纳米线压电组件,亦可选择串联、并联或串并联结合的方式将纳米热电单元连接组成纳米热电组件,以满足具体参数要求。 According to the requirements of the actual working environment, the number of fixed brackets can be increased; according to the actual application of the output voltage and current requirements, the dose of the radioactive source can be adjusted, and the number of nanowire piezoelectric units and nanothermoelectric units can be increased or decreased, optional Nanowire piezoelectric units are connected in series, parallel or series-parallel combination to form nanowire piezoelectric components, and nanothermoelectric units can also be connected in series, parallel or series-parallel combination to form nanothermoelectric components to meet specific parameter requirements .

热源腔体外壳、热源装置外壳、固定支架、螺丝和惰性气体管道壁的材质相同,可以是316不锈钢、304不锈钢或310不锈钢;热反射层的材质可以是Al2O3;防辐射层的材质可以是钽合金、铅薄膜、有机玻璃和铁复合材料、树脂和纳米铅复合材料或树脂和纳米硫酸铅复合材料;导热筒的材质可以是BN;放射源可以是α放射源:Am-241、Po-210、Pu-238或Pu-238氧化物,也可以是β放射源:H-3、Ni-63、Pm-147、Sr-90、Sm-151或C-14;气动单向阀可采用JKT-420Mpa气动单向阀;第一绝缘衬底、第二绝缘衬底和第三绝缘衬底的材质相同,可以是SiO2、硅胶或环氧树脂;纳米梳的材质可以是PbZrTiO3、ZnO或GaN;金属电极层可以是Au、Pd、Pt、Al、Cu、Ni或Ti薄膜;金属导体的材质可以是金属Au、Pd、Pt、Al、Cu、Ni或Ti;压电能量收集电路可采用LTC3588-1型号芯片;导线可采用GN500镀镍铜芯高耐火绝缘导线;p型纳米热电元件的材质可以是p型BiSbTe纳米材料、p型SiGe纳米材料或p型Bi2Se3纳米材料,n型纳米热电元件的材质可以是n型YbxCo4Sb12填充方钴矿纳米材料;惰性气体可以是Ar或Ne;内封装的材质可以是乙烯基聚二甲基硅氧烷复合材料;外封装层的材质可以是FeNi可伐合金。 The material of heat source cavity shell, heat source device shell, fixing bracket, screw and inert gas pipe wall can be 316 stainless steel, 304 stainless steel or 310 stainless steel; the material of heat reflection layer can be Al 2 O 3 ; the material of radiation protection layer It can be tantalum alloy, lead film, plexiglass and iron composite material, resin and nano-lead composite material or resin and nano-lead sulfate composite material; the material of the heat conduction cylinder can be BN; the radiation source can be α radiation source: Am-241, Po-210, Pu-238 or Pu-238 oxide, also can be beta radiation source: H-3, Ni-63, Pm-147, Sr-90, Sm-151 or C-14; pneumatic check valve can JKT-420Mpa pneumatic check valve is adopted; the materials of the first insulating substrate, the second insulating substrate and the third insulating substrate are the same, which can be SiO 2 , silica gel or epoxy resin; the material of the nanocomb can be PbZrTiO 3 , ZnO or GaN; the metal electrode layer can be Au, Pd, Pt, Al, Cu, Ni or Ti film; the material of the metal conductor can be metal Au, Pd, Pt, Al, Cu, Ni or Ti; piezoelectric energy harvesting circuit The LTC3588-1 type chip can be used; the wire can be GN500 nickel-plated copper core high fire-resistant insulated wire; the material of the p-type nanothermoelectric element can be p-type BiSbTe nanomaterial, p-type SiGe nanomaterial or p-type Bi 2 Se 3 nanometer material , The material of n-type nanothermoelectric element can be n-type Yb x Co 4 Sb 12 filled skutterudite nanomaterial; the inert gas can be Ar or Ne; the material of inner package can be vinyl polydimethylsiloxane composite material ; The material of the outer packaging layer can be FeNi Kovar alloy.

本发明解决上述第二技术问题所采取的一种基于纳米材料复合式动态型同位素电池的制备方法,包括制备热源结构、制备换能结构、组配电池结构、灌装内封装材料与制备外封装层,具体步骤如下: The present invention solves the above-mentioned second technical problem and adopts a method for preparing a composite dynamic isotope battery based on nanomaterials, including preparing a heat source structure, preparing an energy conversion structure, assembling a battery structure, filling an inner packaging material and preparing an outer packaging layer, the specific steps are as follows:

(1)制备热源结构 (1) Preparation of heat source structure

a、加热淬火耐高温不锈钢制作成设计形状的热源腔体外壳; a. Heated and quenched high-temperature resistant stainless steel is made into the heat source cavity shell of the designed shape;

b、在热源腔体外壳内表面涂刷热反射层材料制备热反射层; b. Brushing the heat reflective layer material on the inner surface of the heat source cavity shell to prepare the heat reflective layer;

c、用耐高温不锈钢锻造固定支架,将固定支架焊接于热源装置外壳外表面; c. Forge the fixing bracket with high temperature resistant stainless steel, and weld the fixing bracket to the outer surface of the shell of the heat source device;

d、用螺丝通过固定支架将热源装置固定于热源腔体外壳上; d. Use screws to fix the heat source device on the shell of the heat source cavity through the fixing bracket;

e、在热源腔体外壳两端装配气动单向阀。 e. Pneumatic one-way valves are installed at both ends of the shell of the heat source cavity.

(2)制备换能结构 (2) Preparation of energy conversion structure

a、制作第一绝缘衬底,并采用水热法在第一绝缘衬底上表面合成纳米线,制备纳米梳; a, making a first insulating substrate, and using a hydrothermal method to synthesize nanowires on the upper surface of the first insulating substrate to prepare a nanocomb;

b、制作第二绝缘衬底,在第二绝缘衬底上表面采用溅射方法制备金属薄膜作为金属电极层; b. making a second insulating substrate, and preparing a metal thin film on the upper surface of the second insulating substrate by sputtering as a metal electrode layer;

c、用粘结剂将第一绝缘衬底下表面与金属电极层上表面粘结,制成纳米线压电单元; c. Bonding the lower surface of the first insulating substrate and the upper surface of the metal electrode layer with an adhesive to form a nanowire piezoelectric unit;

d、用粘结剂将纳米线压电单元固定于惰性气体管道壁内表面,制成纳米线压电组件,用导线将纳米线压电单元以串联方式连接,制成第一电学输出电极; d. Fixing the nanowire piezoelectric unit on the inner surface of the inert gas pipeline wall with an adhesive to make a nanowire piezoelectric component, and connecting the nanowire piezoelectric unit in series with a wire to make a first electrical output electrode;

e、制作第三绝缘衬底,用金属导体将p型纳米热电元件与n型纳米热电元件以串联方式连接,并用粘结剂垂直固定于第三绝缘衬底表面,制成纳米热电单元; e, making a third insulating substrate, connecting the p-type nano-thermoelectric element and the n-type nano-thermoelectric element in series with a metal conductor, and vertically fixing it on the surface of the third insulating substrate with an adhesive to make a nano-thermoelectric unit;

f、用粘结剂将纳米热电单元固定于惰性气体管道壁外表面,制成纳米热电组件,用导线将纳米热电单元以串联方式连接,制成第二电学输出电极。 f. Fixing the nanothermoelectric unit on the outer surface of the inert gas pipeline wall with an adhesive to make a nanothermoelectric component, and connecting the nanothermoelectric unit in series with wires to make a second electrical output electrode.

(3)组配电池结构 (3) Assembled battery structure

a、将热源腔体外壳所连接惰性气体管道的气流出口端与纳米线压电组件所在惰性气体管道的一端对接,对接时,以橡胶垫圈为垫片,采用外加固定结构进行装配; a. Connect the gas outlet end of the inert gas pipeline connected to the shell of the heat source cavity with one end of the inert gas pipeline where the nanowire piezoelectric component is located. When connecting, use rubber gaskets as gaskets and use an external fixed structure for assembly;

b、将纳米线压电组件所在惰性气体管道气流出口端与纳米热电组件所在惰性气体管道的一端对接,对接时,以橡胶垫圈为垫片,采用外加固定结构进行装配; b. Connect the gas flow outlet end of the inert gas pipeline where the nanowire piezoelectric component is located with one end of the inert gas pipeline where the nanothermoelectric component is located. When docking, use rubber gaskets as gaskets and use an external fixed structure for assembly;

c、将纳米热电组件所在惰性气体管道气流出口端与热源腔体外壳所连接惰性气体管道的气流入口端对接,对接时,以橡胶垫圈为垫片,采用外加固定结构进行装配,并充入惰性气体; c. Connect the airflow outlet end of the inert gas pipeline where the nanothermoelectric component is located with the airflow inlet end of the inert gas pipeline connected to the shell of the heat source cavity. gas;

d、将第一电学输出电极通过导线与压电能量收集电路输入端连接,压电能量收集电路的输出端和第二电学输出电极分别通过导线与电池正极、电池负极连接。 d. Connect the first electrical output electrode to the input end of the piezoelectric energy harvesting circuit through wires, and connect the output end of the piezoelectric energy harvesting circuit and the second electrical output electrode to the positive pole and the negative pole of the battery through wires, respectively.

(4)灌装内封装材料与制备外封装层 (4) Filling the inner packaging material and preparing the outer packaging layer

a、采用模具灌装法用内封装材料将组配完成的电池结构灌装封闭,室温下放置十二小时以上固化成型,制备内封装; a. Use the mold filling method to fill and seal the assembled battery structure with the inner packaging material, place it at room temperature for more than 12 hours to cure and form, and prepare the inner packaging;

b、在内封装表面包覆外封装层材料,接口处用密封胶固定,制备外封装层。 b. The surface of the inner package is coated with the material of the outer package layer, and the interface is fixed with a sealant to prepare the outer package layer.

上述步骤(1)b中还可以在热源腔体外壳内表面采用溅射方法制备热反射层;上述步骤(2)a中还可以采用静电纺丝法在第一绝缘衬底上表面合成纳米线;上述步骤(2)b中还可以在第二绝缘衬底上表面采用蒸发或电镀方法制备金属电极层。 In the above step (1)b, a heat reflective layer can also be prepared on the inner surface of the heat source cavity by sputtering; in the above step (2)a, nanowires can also be synthesized on the upper surface of the first insulating substrate by electrospinning ; In the above step (2)b, the metal electrode layer can also be prepared on the upper surface of the second insulating substrate by means of evaporation or electroplating.

本发明所依据的原理是:放射性同位素发生衰变时所释放出的射线入射到换能单元中,射线的能量转化为热能,通过高导热系数材料将换能单元中的热能传递给换能器件(热电元件、热机、涡轮机)实现热能向电能的转化,释能后的惰性气体回到热源腔体,被热源装置再次加热形成闭式循环。同理,本发明所提到的一种基于纳米材料复合式动态型同位素电池实现电学输出的过程可以依次描述为:放射性同位素衰变时释放出的射线与导热筒和防辐射层作用产生热能;利用导热筒和防辐射层所具有的热能加热耐高温腔体中的惰性气体使其膨胀并形成高速气流;高速气流直接作用于纳米线压电组件实现高速气流所具有的机械能向电能的转化;随后,惰性气体的剩余热能再通过纳米热电组件转化为电能,并经气动单向阀流回热源腔体被再次加热,进而形成稳定的气流循环。 The principle of the present invention is: the radiation released when the radioactive isotope decays is incident on the energy conversion unit, the energy of the radiation is converted into heat energy, and the heat energy in the energy conversion unit is transferred to the energy conversion device through a high thermal conductivity material ( Thermoelectric elements, heat engines, turbines) realize the conversion of heat energy into electric energy, and the inert gas after energy release returns to the heat source cavity, and is reheated by the heat source device to form a closed cycle. In the same way, the process of realizing the electrical output of a composite dynamic isotope battery based on nanomaterials mentioned in the present invention can be described as follows: the radiation released when the radioactive isotope decays interacts with the heat conduction cylinder and the radiation protection layer to generate heat energy; The thermal energy of the heat conduction cylinder and the radiation protection layer heats the inert gas in the high-temperature resistant cavity to expand and form a high-speed airflow; the high-speed airflow directly acts on the nanowire piezoelectric component to realize the conversion of the mechanical energy of the high-speed airflow into electrical energy; then , the remaining heat energy of the inert gas is converted into electrical energy through the nano-thermoelectric components, and flows back to the heat source cavity through the pneumatic check valve to be reheated, thereby forming a stable air circulation.

本发明提供的同位素电池通过采用纳米线压电材料与纳米热电材料为换能材料,有效突破了传统动态型放射性同位素电池的技术瓶颈,同时实现了动态型同位素电池能量转换效率的提升,具有清洁环保、寿命长、适用性强、能量转换效率高、易于实施的特点,可长时间工作于深空深海与极地探测领域,进一步满足了能源需求的绿色、清洁、普适性。与现有技术相比,主要有益效果如下: The isotope battery provided by the present invention effectively breaks through the technical bottleneck of the traditional dynamic radioisotope battery by using nanowire piezoelectric materials and nanothermoelectric materials as energy conversion materials, and at the same time realizes the improvement of the energy conversion efficiency of the dynamic isotope battery. The characteristics of environmental protection, long life, strong applicability, high energy conversion efficiency and easy implementation can work for a long time in the fields of deep space, deep sea and polar exploration, further meeting the green, clean and universal energy demand. Compared with the prior art, the main beneficial effects are as follows:

1、本发明采用压电效应为发电机理,突破了传统动态型放射性同位素电池局限于热机或涡轮机发电模式下所产出的高速运转部件润滑困难、高速转动产生的惯性矢量影响系统稳定性的技术瓶颈,对新一代动态型同位素电池研究具有借鉴价值。 1. The present invention adopts the piezoelectric effect as the power generation mechanism, which breaks through the technology that the traditional dynamic radioisotope battery is limited to the heat engine or turbine power generation mode, the high-speed running parts are difficult to lubricate, and the inertia vector generated by high-speed rotation affects the stability of the system The bottleneck has reference value for the research of a new generation of dynamic isotope batteries.

2、本发明采用高机电耦合系数的纳米线压电材料组配成纳米梳式的压电组件为第一换能元件,有效提高了电池的能量转化效率。 2. The present invention uses nanowire piezoelectric materials with high electromechanical coupling coefficients to form a nanocomb piezoelectric component as the first transducer element, which effectively improves the energy conversion efficiency of the battery.

3、本发明采用纳米热电组件为第二换能元件对惰性气体能量进行二次收集转化,较大限度地提高了电池能量转化效率,并满足能源绿色环保、集成高效、经济普适的要求。 3. The present invention uses nano-thermoelectric components as the second transducing element to perform secondary collection and conversion of inert gas energy, which greatly improves the energy conversion efficiency of the battery, and meets the requirements of green energy, high integration efficiency, and universal economy.

4、本发明将压电能量收集电路与纳米热电组件转换的电能以并联形式输出,弥补了纳米压电材料电学输出高电压、低电流和小功率的不足,有效提高了电池的输出功率。 4. In the present invention, the electrical energy converted by the piezoelectric energy harvesting circuit and the nanothermoelectric component is output in parallel, which makes up for the shortage of high voltage, low current and low power of the electrical output of the nanopiezoelectric material, and effectively improves the output power of the battery.

附图说明 Description of drawings

图1为一种基于纳米材料复合式动态型同位素电池的结构示意图; Figure 1 is a schematic structural view of a composite dynamic isotope battery based on nanomaterials;

图2为热源结构的径向截面图; Fig. 2 is a radial cross-sectional view of the heat source structure;

图3为纳米线压电组件的径向结构示意图; 3 is a schematic diagram of the radial structure of a nanowire piezoelectric component;

图4为纳米热电组件的径向结构示意图; 4 is a schematic diagram of the radial structure of the nanothermoelectric assembly;

图5至图21为制作一种基于纳米材料复合式动态型同位素电池的制作工艺流程图。 Fig. 5 to Fig. 21 are flow charts of the manufacturing process of a composite dynamic isotope battery based on nanomaterials.

图中:1-热源腔体,2-热源腔体外壳,3-热反射层,4-热源装置外壳,5-防辐射层,6-导热筒,7-放射源,8-固定支架,9-螺丝,10-通孔,11-气动单向阀,12-纳米线压电组件,13-第一电学输出电极,14-压电能量收集电路,15-电池正极,16-电池负极,17-导线,18-纳米热电组件,19-第二电学输出电极,20-惰性气体管道,21-惰性气体管道壁,22-惰性气体,23-内封装,24-外封装层,25-纳米线压电单元,26-纳米热电单元,27-第一绝缘衬底,28-纳米梳,29-第二绝缘衬底,30-金属电极层,31-第三绝缘衬底,32-金属导体,33-p型纳米热电元件,34-n型纳米热电元件。 In the figure: 1-heat source cavity, 2-heat source cavity shell, 3-heat reflection layer, 4-heat source device shell, 5-radiation protection layer, 6-heat conduction cylinder, 7-radiation source, 8-fixing bracket, 9 -screw, 10-through hole, 11-pneumatic one-way valve, 12-nanowire piezoelectric component, 13-first electrical output electrode, 14-piezoelectric energy harvesting circuit, 15-battery positive pole, 16-battery negative pole, 17 -wire, 18-nano thermoelectric component, 19-second electrical output electrode, 20-inert gas pipeline, 21-inert gas pipeline wall, 22-inert gas, 23-inner packaging, 24-outer packaging layer, 25-nanometer wire Piezoelectric unit, 26-nano thermoelectric unit, 27-first insulating substrate, 28-nanocomb, 29-second insulating substrate, 30-metal electrode layer, 31-third insulating substrate, 32-metal conductor, 33-p type nano thermoelectric element, 34-n type nano thermoelectric element.

具体实施方式 detailed description

下面结合附图对本发明的内容作进一步说明。 The content of the present invention will be further described below in conjunction with the accompanying drawings.

电池实施例;battery embodiment;

参见图1,一种基于纳米材料复合式动态型同位素电池,包括热源结构、换能结构和惰性气体管道20;热源结构包括热源腔体1和热源装置,热源腔体1包括热源腔体外壳2,热源腔体外壳2内表面设有热反射层3,热源腔体外壳2两端渐变收缩并通过气动单向阀11连接有惰性气体管道20,热源装置包括设有夹层的导热筒6,导热筒6夹层内装放射源7,导热筒6内、外壁均设有防辐射层5,热源装置被封装于热源装置外壳4内,热源装置利用螺丝9通过固定支架8固定于热源腔体外壳2上,热源装置中间设有通孔10;换能结构包括纳米线压电组件12和纳米热电组件18,纳米线压电组件12固定于惰性气体管道壁21内表面,纳米线压电组件12两端设有第一电学输出电极13,纳米热电组件18固定于惰性气体管道壁21外表面,纳米热电组件18两端设有第二电学输出电极19;第一电学输出电极13通过导线17与压电能量收集电路14输入端连接,压电能量收集电路14的输出端和第二电学输出电极19分别通过导线17与电池正极15、电池负极16连接;惰性气体22在热源腔体1和惰性气体管道20中形成气流循环,箭头为惰性气体22的流动方向;利用内封装材料将热源结构、换能结构惰性气体管道20固定封装,制成内封装23,内封装23的外表面设有外封装层24。 Referring to Fig. 1, a composite dynamic isotope battery based on nanomaterials includes a heat source structure, an energy conversion structure and an inert gas pipeline 20; the heat source structure includes a heat source cavity 1 and a heat source device, and the heat source cavity 1 includes a heat source cavity shell 2 The inner surface of the heat source cavity shell 2 is provided with a heat reflective layer 3, the two ends of the heat source cavity shell 2 shrink gradually and are connected with an inert gas pipeline 20 through a pneumatic check valve 11, and the heat source device includes a heat conduction cylinder 6 with an interlayer, heat conduction A radioactive source 7 is installed in the interlayer of the tube 6, and the inner and outer walls of the heat conducting tube 6 are provided with a radiation-proof layer 5. The heat source device is packaged in the heat source device shell 4, and the heat source device is fixed on the heat source cavity shell 2 through a fixing bracket 8 with screws 9 , the middle of the heat source device is provided with a through hole 10; the energy conversion structure includes a nanowire piezoelectric assembly 12 and a nanothermoelectric assembly 18, the nanowire piezoelectric assembly 12 is fixed on the inner surface of the inert gas pipeline wall 21, and the two ends of the nanowire piezoelectric assembly 12 The first electrical output electrode 13 is provided, the nanothermoelectric assembly 18 is fixed on the outer surface of the inert gas pipeline wall 21, and the two ends of the nanothermoelectric assembly 18 are provided with a second electrical output electrode 19; the first electrical output electrode 13 is connected to the piezoelectric The input end of the energy harvesting circuit 14 is connected, and the output end of the piezoelectric energy harvesting circuit 14 and the second electrical output electrode 19 are respectively connected to the battery positive pole 15 and the battery negative pole 16 through a wire 17; 20 forms a gas flow circulation, and the arrow is the flow direction of the inert gas 22; the heat source structure and the energy conversion structure inert gas pipeline 20 are fixed and packaged by using the inner packaging material to form the inner package 23, and the outer surface of the inner package 23 is provided with an outer packaging layer twenty four.

参见图2,热源装置外壳4外表面均匀设有三个固定支架8,热源装置利用螺丝9通过固定支架8固定于热源腔体外壳2上,热源装置中间设有通孔10。 Referring to FIG. 2 , three fixing brackets 8 are evenly provided on the outer surface of the heat source device housing 4 , and the heat source device is fixed on the heat source cavity housing 2 through the fixing brackets 8 with screws 9 , and a through hole 10 is provided in the middle of the heat source device.

参见图3,在惰性气体管道壁21内表面均匀设有八个纳米线压电单元25,组成纳米线压电组件12。 Referring to FIG. 3 , eight nanowire piezoelectric units 25 are uniformly arranged on the inner surface of the inert gas pipeline wall 21 to form the nanowire piezoelectric assembly 12 .

参见图4,在惰性气体管道壁21外表面均匀设有十六个纳米热电单元26,组成纳米热电组件18。 Referring to FIG. 4 , sixteen nanothermoelectric units 26 are uniformly arranged on the outer surface of the inert gas pipeline wall 21 to form a nanothermoelectric module 18 .

参见图12,纳米线压电单元25包括自下而上依次设置的纳米梳28、第一绝缘衬底27、金属电极层30和第二绝缘衬底29。 Referring to FIG. 12 , the nanowire piezoelectric unit 25 includes a nanocomb 28 , a first insulating substrate 27 , a metal electrode layer 30 and a second insulating substrate 29 sequentially arranged from bottom to top.

参见图14,纳米热电单元包括第三绝缘衬底31、金属导体32、p型纳米热电元件33和n型纳米热电元件34,p型纳米热电元件33和n型纳米热电元件34通过金属导体32首尾依次相连,并垂直固定于第三绝缘衬底31表面。 Referring to Fig. 14, the nano-thermoelectric unit includes a third insulating substrate 31, a metal conductor 32, a p-type nano-thermoelectric element 33 and an n-type nano-thermoelectric element 34, and the p-type nano-thermoelectric element 33 and the n-type nano-thermoelectric element 34 pass through the metal conductor 32 connected end to end in sequence, and fixed vertically to the surface of the third insulating substrate 31 .

热源腔体外壳2、热源装置外壳4、固定支架8、螺丝9和惰性气体管道壁21的材质相同,均为316不锈钢;热反射层3的材质为Al2O3;防辐射层5的材质为钽合金;导热筒6的材质为BN;放射源7为α放射源Am-241;气动单向阀11采用JKT-420Mpa气动单向阀;第一绝缘衬底27、第二绝缘衬底29和第三绝缘衬底31的材质相同,均为SiO2;纳米梳28的纳米线材质为PbZrTiO3;金属电极层30为Pt薄膜;金属导体32的材质为金属Pt;压电能量收集电路14采用LTC3588-1型号芯片;导线17采用GN500镀镍铜芯高耐火绝缘导线;p型纳米热电元件33的材质为p型BiSbTe纳米材料,n型纳米热电元件34的材质为n型YbxCo4Sb12填充方钴矿纳米材料;惰性气体22为Ar;内封装23的材质为乙烯基聚二甲基硅氧烷复合材料;外封装层24的材质为FeNi可伐合金。 The material of the heat source cavity shell 2, the heat source device shell 4, the fixing bracket 8, the screw 9 and the inert gas pipeline wall 21 are 316 stainless steel; the material of the heat reflection layer 3 is Al 2 O 3 ; the material of the radiation protection layer 5 is It is a tantalum alloy; the material of the heat conduction cylinder 6 is BN; the radiation source 7 is an α radiation source Am-241; the pneumatic check valve 11 adopts a JKT-420Mpa pneumatic check valve; the first insulating substrate 27 and the second insulating substrate 29 The same material as the third insulating substrate 31 is SiO 2 ; the nanowire material of the nanocomb 28 is PbZrTiO 3 ; the metal electrode layer 30 is a Pt film; the material of the metal conductor 32 is metal Pt; the piezoelectric energy harvesting circuit 14 LTC3588-1 type chip is adopted; wire 17 is made of GN500 nickel-plated copper core with high refractory insulated wire; p-type nanothermoelectric element 33 is made of p-type BiSbTe nanomaterial, and n-type nanothermoelectric element 34 is made of n-type Yb x Co 4 Sb 12 is filled with skutterudite nanomaterials; the inert gas 22 is Ar; the material of the inner package 23 is vinyl polydimethylsiloxane composite material; the material of the outer package layer 24 is FeNi Kovar alloy.

电池制备方法实施例;一种基于纳米材料复合式动态型同位素电池的制备方法,具体步骤如下: Example of battery preparation method; a method for preparing a composite dynamic isotope battery based on nanomaterials, the specific steps are as follows:

(1)制备热源结构 (1) Preparation of heat source structure

a、参见图5,加热淬火316不锈钢制作成设计形状的热源腔体外壳2; a. Referring to Fig. 5, heat source cavity housing 2 made of heat-quenched 316 stainless steel into a designed shape;

b、参见图6,在热源腔体外壳2内表面涂刷Al2O3制备热反射层3; b. Referring to Figure 6, paint Al2O3 on the inner surface of the heat source cavity housing 2 to prepare a heat reflective layer 3;

c、参见图7,用316不锈钢锻造固定支架8,将固定支架8焊接于热源装置外壳4外表面; c. Referring to Figure 7, use 316 stainless steel to forge the fixing bracket 8, and weld the fixing bracket 8 to the outer surface of the shell 4 of the heat source device;

d、参见图8,用螺丝9通过固定支架8将热源装置固定于热源腔体外壳2上; d. Referring to Figure 8, use screws 9 to fix the heat source device on the shell 2 of the heat source cavity through the fixing bracket 8;

e、参见图9,在热源腔体外壳2两端装配JKT-420MPa气动单向阀11。 e. Referring to Figure 9, install a JKT-420MPa pneumatic check valve 11 at both ends of the shell 2 of the heat source cavity.

(2)制备换能结构 (2) Prepare the transduction structure

a、参见图10,用SiO2基片制作第一绝缘衬底27,采用水热法在第一绝缘衬底27上表面合成PbZrTiO3单晶纳米线,制备纳米梳28; a, referring to Fig. 10, use SiO 2 substrates to make the first insulating substrate 27, adopt hydrothermal method to synthesize PbZrTiO 3 single crystal nanowires on the upper surface of the first insulating substrate 27, and prepare nanocomb 28;

b、参见图11,用SiO2基片制作第二绝缘衬底29,在第二绝缘衬底29上表面采用溅射方法制备金属Pt薄膜作为金属电极层30; B, referring to Fig. 11, make second insulating substrate 29 with SiO 2 substrates, adopt sputtering method to prepare metal Pt film as metal electrode layer 30 on the second insulating substrate 29 upper surface;

c、参见图12,用环氧树脂粘结剂将第一绝缘衬底27下表面与金属电极层30上表面粘结,制成纳米线压电单元25; c. Referring to FIG. 12, the lower surface of the first insulating substrate 27 is bonded to the upper surface of the metal electrode layer 30 with an epoxy resin adhesive to form a nanowire piezoelectric unit 25;

d、参见图13,用环氧树脂粘结剂将纳米线压电单元25固定于惰性气体管道壁21的内表面,制成纳米线压电组件12,用GN500镀镍铜芯高耐火绝缘导线17将纳米线压电单元25以串联方式连接,制成第一电学输出电极13; d. Referring to Figure 13, fix the nanowire piezoelectric unit 25 on the inner surface of the inert gas pipeline wall 21 with an epoxy resin adhesive to make a nanowire piezoelectric component 12, and use GN500 nickel-plated copper core with high refractory insulated wire 17. Connecting the nanowire piezoelectric units 25 in series to form the first electrical output electrode 13;

e、参见图14,用SiO2基片制作第三绝缘衬底31,用金属Pt作为金属导体32,将p型BiSbTe的纳米热电元件33与n型YbxCo4Sb12填充方钴矿的纳米热电元件34以串联方式连接,并用环氧树脂粘结剂垂直固定于第三绝缘衬底31表面,制成纳米热电单元26; e, see Fig. 14, make the third insulating substrate 31 with SiO 2 substrate, use metal Pt as metal conductor 32, the nanothermoelectric element 33 of p-type BiSbTe and n-type Yb x Co 4 Sb 12 are filled with skutterudite The nanothermoelectric elements 34 are connected in series, and are vertically fixed on the surface of the third insulating substrate 31 with an epoxy resin adhesive to form the nanothermoelectric unit 26;

f、参见图15,用环氧树脂粘结剂将纳米热电单元26固定于惰性气体管道壁21的外表面,制成纳米热电组件18,用GN500镀镍铜芯高耐火绝缘导线17将纳米热电单元26以串联方式连接,制成第二电学输出电极19。 f. Referring to Figure 15, the nanothermoelectric unit 26 is fixed on the outer surface of the inert gas pipeline wall 21 with an epoxy resin adhesive to make a nanothermoelectric assembly 18, and the nanothermoelectric unit 18 is made of a GN500 nickel-plated copper core high refractory insulated wire 17. The cells 26 are connected in series to make the second electrical output electrode 19 .

(3)组配电池结构 (3) Assembled battery structure

a、参见图16,将热源腔体外壳2所连接惰性气体管道20的气流出口端与纳米线压电组件12所在惰性气体管道20的一端对接,对接时,以橡胶垫圈为垫片,采用外加固定结构进行装配; a. Referring to FIG. 16 , connect the gas flow outlet end of the inert gas pipeline 20 connected to the heat source cavity housing 2 with one end of the inert gas pipeline 20 where the nanowire piezoelectric component 12 is located. Fixed structure for assembly;

b、参见图17,将纳米线压电组件12所在惰性气体管道20出口端与纳米热电组件18所在惰性气体管道20的一端对接,对接时,以橡胶垫圈为垫片,采用外加固定结构进行装配; b. Referring to Figure 17, connect the outlet end of the inert gas pipeline 20 where the nanowire piezoelectric component 12 is located with one end of the inert gas pipeline 20 where the nanothermoelectric component 18 is located. When docking, use rubber gaskets as gaskets and use an external fixed structure for assembly ;

c、参见图18,将纳米热电组件18所在惰性气体管道20出口端与热源腔体2所连接惰性气体管道20的气流入口端对接,对接时,以橡胶垫圈为垫片,采用外加固定结构进行装配,并充入Ar作为惰性气体22; c. Referring to Figure 18, connect the outlet end of the inert gas pipeline 20 where the nano-thermoelectric module 18 is located with the gas flow inlet end of the inert gas pipeline 20 connected to the heat source cavity 2. When connecting, use rubber gaskets as gaskets and use an external fixed structure. Assembled and filled with Ar as the inert gas 22;

d、参见图19,将第一电学输出电极13通过GN500镀镍铜芯高耐火绝缘导线17与LTC3588-1压电能量收集电路14输入端连接,LTC3588-1压电能量收集电路14的输出端和第二电学输出电极19分别通过GN500镀镍铜芯高耐火绝缘导线17与电池正极15、电池负极16连接。 d. Referring to Figure 19, the first electrical output electrode 13 is connected to the input end of the LTC3588-1 piezoelectric energy harvesting circuit 14 through a GN500 nickel-plated copper core high refractory insulated wire 17, and the output end of the LTC3588-1 piezoelectric energy harvesting circuit 14 and the second electrical output electrode 19 are respectively connected to the battery positive pole 15 and the battery negative pole 16 through GN500 nickel-plated copper core high refractory insulated wires 17.

(4)灌装内封装材料与制备外封装层 (4) Filling the inner packaging material and preparing the outer packaging layer

a、参见图20,用乙烯基聚二甲基硅氧烷复合材料作为内封装材料,采用模具灌装法将组配完成的电池结构灌装封闭,室温下放置十二小时以上固化成型,制备内封装23; a. Referring to Figure 20, use vinyl polydimethylsiloxane composite material as the inner packaging material, use the mold filling method to fill and seal the assembled battery structure, place it at room temperature for more than 12 hours to cure and form, and prepare Inner package 23;

b、参见图21,在内封装23表面包覆FeNi可伐合金作为外封装层24,接口处用密封胶固定。 b. Referring to FIG. 21 , the surface of the inner package 23 is coated with FeNi Kovar alloy as the outer package layer 24 , and the interface is fixed with a sealant.

Claims (8)

1.一种基于纳米材料复合式动态型同位素电池;其特征在于:包括热源结构、换能结构和惰性气体管道(20);热源结构包括热源腔体(1)和热源装置,热源腔体(1)包括热源腔体外壳(2),热源腔体外壳(2)内表面设有热反射层(3),热源腔体外壳(2)两端渐变收缩并通过气动单向阀(11)连接有惰性气体管道(20),热源装置包括设有夹层的导热筒(6),导热筒(6)夹层内装放射源(7),导热筒(6)内、外壁均设有防辐射层(5),热源装置被封装于热源装置外壳(4)内,热源装置利用螺丝(9)通过固定支架(8)固定于热源腔体外壳(2)上,热源装置中间设有通孔(10);换能结构包括纳米线压电组件(12)和纳米热电组件(18),纳米线压电组件(12)固定于惰性气体管道壁(21)内表面,纳米线压电组件(12)两端设有第一电学输出电极(13),纳米热电组件(18)固定于惰性气体管道壁(21)外表面,纳米热电组件(18)两端设有第二电学输出电极(19);第一电学输出电极(13)通过导线(17)与压电能量收集电路(14)的输入端连接,压电能量收集电路(14)的输出端和第二电学输出电极(19)分别通过导线(17)与电池正极(15)、电池负极(16)连接;惰性气体(22)在热源腔体(1)和惰性气体管道(20)中形成气流循环;利用内封装材料将热源结构、换能结构、压电能量收集电路(14)和惰性气体管道(20)固定封装,制成内封装(23),内封装(23)的外表面设有外封装层(24)。 1. A composite dynamic isotope battery based on nanomaterials; it is characterized in that it includes a heat source structure, an energy conversion structure and an inert gas pipeline (20); the heat source structure includes a heat source cavity (1) and a heat source device, and the heat source cavity ( 1) Including the heat source cavity shell (2), the inner surface of the heat source cavity shell (2) is provided with a heat reflective layer (3), and the two ends of the heat source cavity shell (2) shrink gradually and are connected by a pneumatic check valve (11) There is an inert gas pipeline (20), and the heat source device includes a heat conduction cylinder (6) with an interlayer. The heat conduction cylinder (6) is equipped with a radioactive source (7) in the interlayer, and the inner and outer walls of the heat conduction cylinder (6) are provided with radiation protection layers (5 ), the heat source device is packaged in the heat source device shell (4), the heat source device is fixed on the heat source cavity shell (2) through the fixing bracket (8) with screws (9), and a through hole (10) is provided in the middle of the heat source device; The transducer structure includes a nanowire piezoelectric component (12) and a nanothermoelectric component (18), the nanowire piezoelectric component (12) is fixed on the inner surface of the inert gas pipeline wall (21), and the two ends of the nanowire piezoelectric component (12) A first electrical output electrode (13) is provided, the nano thermoelectric assembly (18) is fixed on the outer surface of the inert gas pipeline wall (21), and the two ends of the nano thermoelectric assembly (18) are provided with a second electrical output electrode (19); the first The electrical output electrode (13) is connected to the input end of the piezoelectric energy harvesting circuit (14) through a wire (17), and the output end of the piezoelectric energy harvesting circuit (14) and the second electrical output electrode (19) are respectively connected through a wire (17) ) is connected to the positive pole of the battery (15) and the negative pole of the battery (16); the inert gas (22) forms a gas flow circulation in the heat source cavity (1) and the inert gas pipeline (20); 1. The piezoelectric energy harvesting circuit (14) and the inert gas pipeline (20) are fixed and packaged to form an inner package (23), and the outer surface of the inner package (23) is provided with an outer package layer (24). 2.如权利要求1所述的一种基于纳米材料复合式动态型同位素电池;其特征在于:热源装置外壳(4)外表面均匀设有三个固定支架(8);纳米线压电组件(12)由八个均匀固定于惰性气体管道壁(21)内表面的纳米线压电单元(25)通过导线(17)连接组成;纳米热电组件(18)由十六个均匀固定于惰性气体管道壁(21)外表面的纳米热电单元(26)通过导线(17)连接组成。 2. A composite dynamic isotope battery based on nanomaterials as claimed in claim 1; it is characterized in that: the outer surface of the heat source device casing (4) is evenly provided with three fixing brackets (8); the nanowire piezoelectric assembly (12 ) is composed of eight nanowire piezoelectric units (25) uniformly fixed on the inner surface of the inert gas pipeline wall (21) connected by wires (17); (21) Nano thermoelectric units (26) on the outer surface are connected by wires (17). 3.如权利要求2所述的一种基于纳米材料复合式动态型同位素电池;其特征在于:纳米线压电单元包括第一绝缘衬底(27)、纳米梳(28)、第二绝缘衬底(29)和金属电极层(30),第一绝缘衬底(27)上表面设有纳米梳(28),第二绝缘衬底(29)上表面设有金属电极层(30),第一绝缘衬底(27)下表面与金属电极层(30)粘接;纳米热电单元包括第三绝缘衬底(31)、金属导体(32)、p型纳米热电元件(33)和n型纳米热电元件(34),p型纳米热电元件(33)和n型纳米热电元件(34)通过金属导体(32)首尾依次相连,并垂直固定于第三绝缘衬底(31)表面。 3. A composite dynamic isotope battery based on nanomaterials as claimed in claim 2; it is characterized in that: the nanowire piezoelectric unit includes a first insulating substrate (27), a nanocomb (28), a second insulating substrate bottom (29) and metal electrode layer (30), the upper surface of the first insulating substrate (27) is provided with a nanocomb (28), the upper surface of the second insulating substrate (29) is provided with a metal electrode layer (30), the second The lower surface of an insulating substrate (27) is bonded to the metal electrode layer (30); the nano thermoelectric unit includes a third insulating substrate (31), a metal conductor (32), a p-type nano thermoelectric element (33) and an n-type nano thermoelectric element. The thermoelectric element (34), the p-type nano-thermoelectric element (33) and the n-type nano-thermoelectric element (34) are sequentially connected end to end through a metal conductor (32), and are vertically fixed on the surface of the third insulating substrate (31). 4.如权利要求3所述的一种基于纳米材料复合式动态型同位素电池;其特征在于:第一绝缘衬底(27)、第二绝缘衬底(29)和第三绝缘衬底(31)的材质是SiO2、硅胶或环氧树脂;纳米梳(28)的材质是PbZrTiO3、ZnO或GaN;金属电极层(30)是Au、Pd、Pt、Al、Cu、Ni或Ti薄膜;p型纳米热电元件(33)的材质是p型BiSbTe纳米材料、p型SiGe纳米材料或p型Bi2Se3纳米材料,n型纳米热电元件(34)的材质是n型YbxCo4Sb12填充方钴矿纳米材料。 4. A composite dynamic isotope battery based on nanomaterials as claimed in claim 3; characterized in that: the first insulating substrate (27), the second insulating substrate (29) and the third insulating substrate (31 ) is made of SiO 2 , silica gel or epoxy resin; the material of the nanocomb (28) is PbZrTiO 3 , ZnO or GaN; the metal electrode layer (30) is Au, Pd, Pt, Al, Cu, Ni or Ti film; The p-type nano-thermoelectric element (33) is made of p-type BiSbTe nano-material, p-type SiGe nano-material or p-type Bi 2 Se 3 nano-material, and the n-type nano-thermoelectric element (34) is made of n-type Yb x Co 4 Sb 12 filled with skutterudite nanomaterials. 5.如权利要求1至4任意一项所述的一种基于纳米材料复合式动态型同位素电池;其特征在于:热源腔体外壳(2)、热源装置外壳(4)、固定支架(8)、螺丝(9)和惰性气体管道壁(21)的材质相同,是316不锈钢、304不锈钢或310不锈钢;导线(17)采用GN500镀镍铜芯高耐火绝缘导线。 5. A composite dynamic isotope battery based on nanomaterials according to any one of claims 1 to 4; characterized in that: heat source cavity shell (2), heat source device shell (4), fixed bracket (8) , screw (9) and inert gas pipe wall (21) are made of the same material, which is 316 stainless steel, 304 stainless steel or 310 stainless steel; wire (17) adopts GN500 nickel-plated copper core high fire-resistant insulated wire. 6.如权利要求5所述的一种基于纳米材料复合式动态型同位素电池;其特征在于:热反射层(3)的材质是Al2O3;防辐射层(5)的材质是钽合金、铅薄膜、有机玻璃和铁复合材料、树脂和纳米铅复合材料或树脂和纳米硫酸铅复合材料;导热筒(6)的材质是BN;放射源(7)是α放射源:Am-241、Po-210、Pu-238或Pu-238氧化物,或者是β放射源:H-3、Ni-63、Pm-147、Sr-90、Sm-151或C-14。 6. A composite dynamic isotope battery based on nanomaterials as claimed in claim 5; characterized in that: the material of the heat reflection layer (3) is Al 2 O 3 ; the material of the radiation protection layer (5) is tantalum alloy , lead film, plexiglass and iron composite material, resin and nano-lead composite material or resin and nano-lead sulfate composite material; the material of the heat conduction cylinder (6) is BN; the radiation source (7) is an alpha radiation source: Am-241, Po-210, Pu-238 or Pu-238 oxides, or beta emitters: H-3, Ni-63, Pm-147, Sr-90, Sm-151 or C-14. 7.如权利要求6所述的一种基于纳米材料复合式动态型同位素电池;其特征在于:气动单向阀(11)是JKT-420Mpa气动单向阀;压电能量收集电路(14)是LTC3588-1型号芯片;惰性气体(22)是Ar或Ne;内封装(23)的材质是乙烯基聚二甲基硅氧烷复合材料;外封装层(24)的材质是FeNi可伐合金。 7. A composite dynamic isotope battery based on nanomaterials as claimed in claim 6; characterized in that: the pneumatic check valve (11) is a JKT-420Mpa pneumatic check valve; the piezoelectric energy harvesting circuit (14) is LTC3588-1 type chip; the inert gas (22) is Ar or Ne; the material of the inner package (23) is vinyl polydimethylsiloxane composite material; the material of the outer package layer (24) is FeNi Kovar alloy. 8.一种基于纳米材料复合式动态型同位素电池的制备方法,其特征在于:包括制备热源结构、制备换能结构、组配电池结构、灌装内封装(23)与制备外封装层(24),具体步骤如下: 8. A method for preparing a composite dynamic isotope battery based on nanomaterials, characterized in that it includes preparing a heat source structure, preparing an energy conversion structure, assembling a battery structure, filling an inner package (23) and preparing an outer package layer (24 ),Specific steps are as follows: 1)制备热源结构 1) Prepare heat source structure a、加热淬火耐高温不锈钢制作成设计形状的热源腔体外壳(2); a. Heat and quench high temperature resistant stainless steel to make the heat source cavity shell (2) into the designed shape; b、在热源腔体外壳(2)内表面涂刷或溅射热反射层材料制备热反射层(3); b. Brushing or sputtering a heat reflection layer material on the inner surface of the heat source cavity shell (2) to prepare a heat reflection layer (3); c、用耐高温不锈钢锻造固定支架(8),将固定支架(8)焊接于热源装置外壳(4)外表面; c. Forging the fixing bracket (8) with high temperature resistant stainless steel, welding the fixing bracket (8) to the outer surface of the heat source device shell (4); d、用螺丝(9)通过固定支架(8)将热源装置固定于热源腔体外壳(2)上; d. Use screws (9) to fix the heat source device on the shell of the heat source cavity (2) through the fixing bracket (8); e、在热源腔体外壳(2)两端装配气动单向阀(11); e. Install a pneumatic check valve (11) at both ends of the heat source cavity shell (2); 2)制备换能结构 2) Prepare the transduction structure a、制作第一绝缘衬底(27),在第一绝缘衬底(27)上表面采用水热法或静电纺丝法合成纳米线,制备纳米梳(28); a. Fabricate the first insulating substrate (27), synthesize nanowires on the upper surface of the first insulating substrate (27) by hydrothermal method or electrospinning method, and prepare nanocombs (28); b、制作第二绝缘衬底(29),在第二绝缘衬底(29)上表面采用溅射方法、蒸发方法或电镀方法制备金属薄膜作为金属电极层(30); b. Making a second insulating substrate (29), and preparing a metal thin film on the upper surface of the second insulating substrate (29) by sputtering, evaporation or electroplating as a metal electrode layer (30); c、用粘结剂将第一绝缘衬底(27)下表面与金属电极层(30)上表面粘结,制成纳米线压电单元(25); c. Bonding the lower surface of the first insulating substrate (27) and the upper surface of the metal electrode layer (30) with an adhesive to form a nanowire piezoelectric unit (25); d、用粘结剂将纳米线压电单元(25)固定于惰性气体管道壁内表面,制成纳米线压电组件(12),用导线(17)将纳米线压电单元(25)以串联方式连接,制成第一电学输出电极(13); d. Fix the nanowire piezoelectric unit (25) on the inner surface of the inert gas pipeline wall with an adhesive to make a nanowire piezoelectric component (12), and use a wire (17) to connect the nanowire piezoelectric unit (25) to connected in series to form a first electrical output electrode (13); e、制作第三绝缘衬底(31),用金属导体(32)将p型纳米热电元件(33)与n型纳米热电元件(34)以串联方式连接,并用粘结剂垂直固定于第三绝缘衬底(31)表面,制成纳米热电单元(26); e. Make a third insulating substrate (31), connect the p-type nano-thermoelectric element (33) and the n-type nano-thermoelectric element (34) in series with a metal conductor (32), and fix it vertically on the third insulating substrate with an adhesive The surface of the insulating substrate (31) is made into a nanothermoelectric unit (26); f、用粘结剂将纳米热电单元(26)固定于惰性气体管道壁(21)外表面,制成纳米热电组件(18),用导线将纳米热电单元以串联方式连接,制成第二电学输出电极(19); f. Fix the nano-thermoelectric unit (26) on the outer surface of the inert gas pipeline wall (21) with an adhesive to make a nano-thermoelectric component (18), connect the nano-thermoelectric unit in series with a wire to make a second electrical output electrode (19); 3)组配电池结构 3) Assembled battery structure a、将热源腔体外壳(2)所连接惰性气体管道(20)的气流出口端与纳米线压电组件(12)所在惰性气体管道(20)的一端对接,对接时,以橡胶垫圈为垫片,采用外加固定结构进行装配; a. Connect the gas flow outlet end of the inert gas pipeline (20) connected to the heat source cavity shell (2) with one end of the inert gas pipeline (20) where the nanowire piezoelectric component (12) is located. When docking, use the rubber gasket as a pad The pieces are assembled with an external fixed structure; b、将纳米线压电组件(12)所在惰性气体管道(20)气流出口端与纳米热电组件(18)所在惰性气体管道(20)的一端对接,对接时,以橡胶垫圈为垫片,采用外加固定结构进行装配; b. Connect the gas flow outlet end of the inert gas pipeline (20) where the nanowire piezoelectric component (12) is located with one end of the inert gas pipeline (20) where the nanothermoelectric component (18) is located. When docking, use a rubber gasket as a gasket and use Additional fixed structure for assembly; c、将纳米热电组件(18)所在惰性气体管道(20)气流出口端与热源腔体(1)所连接惰性气体管道(20)的气流入口端对接,对接时,以橡胶垫圈为垫片,采用外加固定结构进行装配,并充入惰性气体(22); c. Connect the gas flow outlet end of the inert gas pipeline (20) where the nanothermoelectric component (18) is located with the gas flow inlet end of the inert gas pipeline (20) connected to the heat source cavity (1). When docking, use the rubber gasket as a gasket, Assembled with an external fixed structure and filled with inert gas (22); d、将第一电学输出电极(13)通过导线(17)与压电能量收集电路(14)输入端连接,压电能量收集电路(14)的输出端和第二电学输出电极(19)分别通过导线(17)与电池正极(15)、电池负极连接(16); d. Connect the first electrical output electrode (13) to the input end of the piezoelectric energy harvesting circuit (14) through a wire (17), and the output end of the piezoelectric energy harvesting circuit (14) and the second electrical output electrode (19) respectively Connect the battery positive pole (15) and the battery negative pole (16) through the wire (17); 4)灌装内封装材料与制备外封装层(24) 4) Filling the inner packaging material and preparing the outer packaging layer (24) a、采用模具灌装法用内封装材料将组配完成的电池结构灌装封闭,室温下放置12小时以上固化成型,制备内封装(23); a. Using the mold filling method to fill and seal the assembled battery structure with the inner packaging material, place it at room temperature for more than 12 hours to cure and form, and prepare the inner packaging (23); b、在内封装(23)表面包覆外封装层材料,接口处用密封胶固定,制备外封装层(24)。 b. The surface of the inner package (23) is coated with the material of the outer package layer, and the interface is fixed with a sealant to prepare the outer package layer (24).
CN201511005242.0A 2015-12-29 2015-12-29 Composite dynamic isotope battery based on nanometer materials and preparation method thereof Active CN105575453B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511005242.0A CN105575453B (en) 2015-12-29 2015-12-29 Composite dynamic isotope battery based on nanometer materials and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511005242.0A CN105575453B (en) 2015-12-29 2015-12-29 Composite dynamic isotope battery based on nanometer materials and preparation method thereof

Publications (2)

Publication Number Publication Date
CN105575453A true CN105575453A (en) 2016-05-11
CN105575453B CN105575453B (en) 2017-05-17

Family

ID=55885492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511005242.0A Active CN105575453B (en) 2015-12-29 2015-12-29 Composite dynamic isotope battery based on nanometer materials and preparation method thereof

Country Status (1)

Country Link
CN (1) CN105575453B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123457A (en) * 2017-04-10 2017-09-01 兰州大学 A kind of photoelectric heat of directly collecting replies box-like isotope battery and preparation method by cable
CN107680705A (en) * 2017-09-19 2018-02-09 壹号元素(广州)科技有限公司 A kind of isotope battery of the wide forbidden region semi-conductor nano tube/linear of ordered arrangement
CN107767983A (en) * 2017-09-19 2018-03-06 壹号元素(广州)科技有限公司 A kind of tritium based nanotube isotope battery
CN107785093A (en) * 2017-09-19 2018-03-09 壹号元素(广州)科技有限公司 A kind of isotope battery of disorderly arranged wide forbidden region semi-conductor nano tube/linear
CN108550412A (en) * 2018-05-15 2018-09-18 南方科技大学 Piezoelectric thermoelectric dynamic isotope battery
CN108648847A (en) * 2018-05-15 2018-10-12 南方科技大学 Dynamic isotope battery based on liquid metal
CN109887635A (en) * 2019-01-22 2019-06-14 兰州大学 A kind of isotope battery based on wind chime-type PZT transducer assembly and preparation method thereof
WO2019218163A1 (en) * 2018-05-15 2019-11-21 南方科技大学 Liquid metal-based dynamic isotope battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758346A (en) * 1971-05-17 1973-09-11 Siemens Ag Thermoelectric generator
US3981750A (en) * 1973-07-12 1976-09-21 Coratomic Inc. Electrical generator
US5079469A (en) * 1990-10-15 1992-01-07 The United State Of America As Represented By The United States Department Of Energy Piezonuclear battery
US20070273244A1 (en) * 2005-07-22 2007-11-29 Amit Lal High efficiency radio isotope energy converters using both charge and kinetic energy of emitted particles
CN101257266A (en) * 2008-01-14 2008-09-03 大连理工大学 Silicon-Based Piezoelectric Cantilever Micro Power Generation Device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758346A (en) * 1971-05-17 1973-09-11 Siemens Ag Thermoelectric generator
US3981750A (en) * 1973-07-12 1976-09-21 Coratomic Inc. Electrical generator
US5079469A (en) * 1990-10-15 1992-01-07 The United State Of America As Represented By The United States Department Of Energy Piezonuclear battery
US20070273244A1 (en) * 2005-07-22 2007-11-29 Amit Lal High efficiency radio isotope energy converters using both charge and kinetic energy of emitted particles
CN101257266A (en) * 2008-01-14 2008-09-03 大连理工大学 Silicon-Based Piezoelectric Cantilever Micro Power Generation Device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A LAL ET AL.: "Pervasive power:a radioisotope-powered piezoelectric generator", 《IEEE PERVASIVE COMPUTING》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123457A (en) * 2017-04-10 2017-09-01 兰州大学 A kind of photoelectric heat of directly collecting replies box-like isotope battery and preparation method by cable
CN107680705A (en) * 2017-09-19 2018-02-09 壹号元素(广州)科技有限公司 A kind of isotope battery of the wide forbidden region semi-conductor nano tube/linear of ordered arrangement
CN107767983A (en) * 2017-09-19 2018-03-06 壹号元素(广州)科技有限公司 A kind of tritium based nanotube isotope battery
CN107785093A (en) * 2017-09-19 2018-03-09 壹号元素(广州)科技有限公司 A kind of isotope battery of disorderly arranged wide forbidden region semi-conductor nano tube/linear
US20200090825A1 (en) * 2018-05-15 2020-03-19 South University Of Science And Technology Of China Dynamic isotope battery
CN108648847A (en) * 2018-05-15 2018-10-12 南方科技大学 Dynamic isotope battery based on liquid metal
WO2019218163A1 (en) * 2018-05-15 2019-11-21 南方科技大学 Liquid metal-based dynamic isotope battery
WO2019218486A1 (en) * 2018-05-15 2019-11-21 南方科技大学 Piezoelectric thermoelectric dynamic isotope cell
CN108550412A (en) * 2018-05-15 2018-09-18 南方科技大学 Piezoelectric thermoelectric dynamic isotope battery
CN108648847B (en) * 2018-05-15 2020-08-04 南方科技大学 Dynamic isotope battery based on liquid metal
US11929185B2 (en) 2018-05-15 2024-03-12 South University Of Science And Technology Of China Dynamic isotope battery
CN109887635A (en) * 2019-01-22 2019-06-14 兰州大学 A kind of isotope battery based on wind chime-type PZT transducer assembly and preparation method thereof
CN109887635B (en) * 2019-01-22 2020-09-15 兰州大学 A kind of isotope battery based on wind chime-type PZT transducer assembly and preparation method thereof

Also Published As

Publication number Publication date
CN105575453B (en) 2017-05-17

Similar Documents

Publication Publication Date Title
CN105575453B (en) Composite dynamic isotope battery based on nanometer materials and preparation method thereof
CN105427913B (en) Dynamic isotope battery based on PZT and manufacturing method thereof
CN106941017B (en) A kind of thermion-photoelectricity-thermoelectricity combined type isotope battery and preparation method thereof
CN107123457B (en) A direct collection-photoelectric-thermoelectric composite isotope battery and preparation method
CN108550412B (en) Piezoelectric thermoelectric dynamic isotope battery
CN109243653B (en) A multipurpose small nuclear reactor power supply
CN102592696A (en) Interlayer structure nuclear battery based on liquid semiconductor and preparation method thereof
CN114242880B (en) Flexible self-healing thermoelectric power generation device and preparation method thereof
CN206179845U (en) Composite films lead wire type metal dewar
CN209545466U (en) Thermoelectricity/phase-change energy storage device based on photovoltaic power generation technology
CN202549322U (en) Interlayer structure battery based on liquid semiconductor
CN108807564B (en) Radiation photovoltaic isotope battery packaging structure
CN102510244A (en) Annular array thermoelectric generator with functional gradient thermoelectric arms
CN205302969U (en) Radio isotope battery based on dynamic thermoelectric conversion mechanism under PZT
CN111968772A (en) Heterojunction isotope battery based on graphene
CN209710039U (en) Solar Photovoltaic Photothermal System
CN205069688U (en) Thermoelectric module and thermoelectric generation machine
CN110086425A (en) Photovoltaic and photothermal solar system and its manufacture craft
CN112104264B (en) Thermoelectric power generation device for aircraft engine
CN202334390U (en) Annular array thermoelectric generator with functional gradient thermoelectric arms
CN108648847B (en) Dynamic isotope battery based on liquid metal
CN108039219A (en) Direct collection-radiation ionization-photoelectricity-thermoelectric isotope battery and preparation method thereof
CN109887635B (en) A kind of isotope battery based on wind chime-type PZT transducer assembly and preparation method thereof
CN108538422B (en) Direct collection-thermionic emission-thermoelectric isotope battery and preparation method thereof
CN112635093B (en) Based on 90 Temperature difference power generation device of Sr isotope

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant