CN105566027B - 一种常温常压下催化α-蒎烯加氢制备顺式蒎烷的方法 - Google Patents

一种常温常压下催化α-蒎烯加氢制备顺式蒎烷的方法 Download PDF

Info

Publication number
CN105566027B
CN105566027B CN201610095927.7A CN201610095927A CN105566027B CN 105566027 B CN105566027 B CN 105566027B CN 201610095927 A CN201610095927 A CN 201610095927A CN 105566027 B CN105566027 B CN 105566027B
Authority
CN
China
Prior art keywords
pinane
cis
catalyst
under
australene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610095927.7A
Other languages
English (en)
Other versions
CN105566027A (zh
Inventor
解从霞
侯胜利
袁冰
于凤丽
王小燕
于世涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201610095927.7A priority Critical patent/CN105566027B/zh
Publication of CN105566027A publication Critical patent/CN105566027A/zh
Application granted granted Critical
Publication of CN105566027B publication Critical patent/CN105566027B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/068Polyalkylene glycols
    • B01J35/23
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers

Abstract

本发明涉及一种采用聚乙二醇1000维生素E琥珀酸酯(TPGS‑1000)稳定的钌纳米粒子水胶束为催化剂,在常温常压下催化α‑蒎烯加氢反应制备顺式蒎烷的方法,属于催化剂的制备与应用领域。本发明提供的水介质中催化α‑蒎烯加氢反应的方法,在常温(25℃)常压(0.1MPa)条件下,反应6h,α‑蒎烯的转化率即可达到99.9%,顺式蒎烷的选择性为99.1%。该方法简便易行,环境友好,不需要外加热源,能耗小,对设备要求低。本发明为顺式蒎烷的绿色合成提供了一条高效、温和、环境友好的新途径。

Description

一种常温常压下催化α-蒎烯加氢制备顺式蒎烷的方法
技术领域
本发明涉及一种常温常压下水相中制备顺式蒎烷的方法。具体地说是一种以聚乙二醇1000维生素E琥珀酸酯(TPGS-1000)稳定的钌纳米粒子水胶束为催化剂,在常温常压条件下催化α-蒎烯加氢高选择性制备顺式蒎烷的新方法。
背景技术
α-蒎烯是廉价天然资源松节油的主要成分,其选择性加氢产物顺式蒎烷是合成药物、香料等精细化学品的重要化工原料。我国是主要的α-蒎烯产地之一,但多作为原料出口。与发达国家相比,我国在α-蒎烯的深加工产量和品质方面都有很大差距。因此,对α-蒎烯加氢反应的深入研究具有重要意义。
目前工业上常用Pd/C和雷尼镍催化α-蒎烯加氢反应。存在反应温度及压力较高、催化剂重复使用性能不佳、顺式蒎烷选择性差等缺点。为了改善α-蒎烯加氢制备顺式蒎烷的条件,科学家们在催化剂的选择方面做了大量的工作。萧树德等(CN 1191857A)将改性的雷尼镍用于催化α-蒎烯加氢反应,α-蒎烯的转化率可达99.5%,顺式蒎烷的选择性为96.8%,但反应压力(3MPa)较高,反应时间较长(8h)。谈燮峰等(CN 1262263A)利用制得的MPC催化剂催化α-蒎烯加氢反应,在温度70-110℃,氢气压力2-3MPa,反应时间3-6h的条件下,可得α-蒎烯转化率99%,顺式蒎烷选择性96.0%。蒋丽红等(CN 102125864A)利用设计的负载型Ni-B-分子筛催化剂催化α-蒎烯加氢,在较高的压力下(6MPa)反应80min,α-蒎烯的转化率即可达到99.3%,顺式蒎烷的选择性为95.4%。王亚明等(CN 104003831A)将铑膦配合物RhCl(PPh3)3和离子液体按一定比例混合后得到催化剂,将其用于α-蒎烯加氢反应中。α-蒎烯与催化剂质量比为3.3,反应压力为1MPa,于120℃下反应2h。所得α-蒎烯的转化率为99.1%,顺式蒎烷的选择性为97.1%。上述工艺虽然改善了α-蒎烯加氢反应的条件,但仍需在高温或高压条件下进行。
20世纪80年代起,随着Rideout等(J Am Chem Soc,1980,102,7816-7817)发现水介质可以提高某些反应的速率和选择性,水作为“绿色反应介质”应用到有机反应中已经成为绿色化学领域的一个重要研究方向。有文献报道(Chin J Catal,2011,32,643-646)在水介质中用氯化钌催化α-蒎烯加氢反应,水对α-蒎烯的加氢反应有一定的促进作用,可以提高产物中顺式蒎烷的选择性,并且产物与催化剂易于分离。然而上述体系仍存在着反应温度高、压力大、催化剂重复使用次数少等缺点。
两亲性胶束稳定的金属纳米催化剂,在反应过程中可以形成纳米微反应器,从而极大的提高反应活性和选择性,为化学合成提供了一个新的思路(Green Chem,2015,17,644-683)。TPGS-1000是一种商业化且生物相容性好的两亲性化合物,能够促进许多有机反应的进行。但迄今为止,采用这种聚合物用于催化α-蒎烯加氢反应在国内外文献中均未见报道。开发创制以TPGS-1000稳定的金属纳米粒子水胶束为催化剂,从而在温和条件下催化α-蒎烯加氢高选择性制备顺式蒎烷的工艺,有望为顺式蒎烷的合成提供一条高效、温和、环境友好的新途径。
发明内容
本发明提供了一种温和反应条件下高选择性制备顺式蒎烷的新方法。该方法是利用TPGS-1000水胶束稳定的钌纳米粒子为催化剂,在常温常压下催化α-蒎烯加氢反应。
根据本发明,金属钌纳米粒子水胶束催化剂组成及功能如下:
以TPGS-1000在水中形成的胶束为稳定剂来稳定氯化钌加氢还原制备的钌纳米粒子。在此催化剂体系中,TPGS-1000在水中形成的胶束不仅可以保护钌纳米粒子,防止其聚集失活。同时还可以在反应过程中作为两亲性纳米微反应器,加速反应的进行。在催化α-蒎烯加氢反应中对转化率和选择性的提高起到关键作用,并可提高催化剂的循环利用次数。
本发明提供的TPGS-1000稳定的钌纳米粒子水胶束催化剂具体制备方法如下:
在三口烧瓶中加入10mg TPGS-1000及2mL去离子水,常温搅拌溶解。再加入2.0mg的RuCl3,充分搅拌。用氢气将烧瓶内空气置换四次,之后在0.1MPa的氢气环境下,50℃反应1h,得到TPGS-1000稳定的黑色钌纳米粒子水胶束催化剂。
本发明提供的钌纳米粒子水胶束催化α-蒎烯加氢的技术方案是这样实现的:
将2mmolα-蒎烯和2-10mg碳酸钠加入到盛有上述制得的TPGS-1000稳定的钌纳米粒子水胶束催化剂的三口烧瓶中。先用氢气将烧瓶内空气置换四次,之后在0.1MPa的氢气环境下,常温(25℃)搅拌反应3-7h。反应结束后,简单分液分离收集上层产物相,采用气相色谱法进行定量分析,下层催化剂相则可直接重复利用。
本发明与现有技术相比,其特点是:(1)本发明提供的催化α-蒎烯加氢技术是在常温常压下进行的,条件温和,不需要外加热源,从而降低能耗。(2)本发明提供了水介质中催化α-蒎烯加氢反应的方法,简便易行,清洁廉价。(3)本发明提供的催化α-蒎烯加氢技术具有很高的催化活性及顺式蒎烷选择性。(4)本发明提供的催化α-蒎烯加氢技术环境友好,催化剂可循环使用多次。
附图说明
图1为实施例1所制备的TPGS-1000胶束稳定的钌纳米粒子的透射电子显微镜(TEM)照片及相应的粒径分布图。
图2为实施例1所制备的TPGS-1000胶束稳定的钌纳米粒子的X射线光电子能谱(XPS)图。
具体实施方式
下面结合实施例对本发明的方法做进一步说明,但并不是对本发明的限定。
【实施例1】TPGS-1000水胶束稳定的钌纳米粒子催化剂A的制备
向三口烧瓶中加入10mg TPGS-1000及2mL去离子水,常温搅拌溶解。再加入2.0mg的RuCl3,充分搅拌。用氢气将烧瓶内空气置换四次,之后在0.1MPa的氢气环境下,50℃反应1h,得到TPGS-1000水胶束稳定的黑色钌纳米粒子催化剂。
附图1显示,制备出的钌纳米粒子粒径在2.5nm左右,分散性较好。附图2数据表明制备出的钌纳米粒子为零价金属钌。
【实施例2】TPGS-1000水胶束稳定的钌纳米粒子催化剂A催化α-蒎烯加氢反应
将2mmolα-蒎烯和2mg的碳酸钠加入到装有实施例1制得的TPGS-1000水胶束稳定的钌纳米粒子催化剂A的三口烧瓶中。用氢气将烧瓶内空气置换四次,之后在0.1MPa的氢气环境下,常温下(25℃)搅拌反应3h。反应结束后,收集上层产物相,采用气相色谱法进行定量分析。α-蒎烯的转化率为53.2%,顺式蒎烷的选择性为99.3%。
【实施例3】TPGS-1000水胶束稳定的钌纳米粒子催化剂A催化α-蒎烯加氢反应
将2mmolα-蒎烯和2mg的碳酸钠加入到装有实施例1制得的TPGS-1000水胶束稳定的钌纳米粒子催化剂A的圆底烧瓶三口烧瓶中。先用氢气将烧瓶内空气置换数四次,之后在0.1MPa的氢气环境下,常温下(25℃)搅拌反应6h。反应结束后,收集上层产物相,采用气相色谱法进行定量分析。α-蒎烯的转化率为99.9%,顺式蒎烷的选择性为99.1%。
【实施例4】TPGS-1000水胶束稳定的钌纳米粒子催化剂A催化α-蒎烯加氢反应
将2mmolα-蒎烯和2mg的碳酸钠加入到装有实施例1制得的TPGS-1000水胶束稳定的钌纳米粒子催化剂A的三口烧瓶中。先用氢气将烧瓶内空气置换数四次,之后在0.1MPa的氢气环境下,常温下(25℃)搅拌反应7h。反应结束后,收集上层产物相,采用气相色谱法进行定量分析。α-蒎烯的转化率为99.9%,顺式蒎烷的选择性为98.9%。
【实施例5】TPGS-1000水胶束稳定的钌纳米粒子催化剂A催化α-蒎烯加氢反应
将2mmolα-蒎烯和10mg的碳酸钠加入到装有实施例1制得的TPGS-1000水胶束稳定的钌纳米粒子催化剂A的三口烧瓶中。用氢气将烧瓶内空气置换四次,之后在0.1MPa的氢气环境下,常温下(25℃)搅拌反应6h。反应结束后,收集上层产物相,采用气相色谱法进行定量分析。α-蒎烯的转化率为97.8%,顺式蒎烷的选择性为98.5%。
【实施例6-13】上述实施例3反应结束后,简单分液分离上层有机产物相,在下层的水胶束催化剂相中重新加入2mmolα-蒎烯,用氢气将烧瓶内空气置换四次,之后在0.1MPa的氢气环境下,常温下(25℃)搅拌反应6h。
重复上述步骤7次后,收集上层产物相,采用气相色谱法进行定量分析,α-蒎烯的转化率为96.3%,顺式蒎烷的选择性为98.9%。
【对比例1】将2mmolα-蒎烯加入到装有实施例1制得的TPGS-1000水胶束稳定的钌纳米粒子催化剂A的三口烧瓶中。用氢气将烧瓶内空气置换四次,之后在0.1MPa的氢气环境下,常温下(25℃)搅拌反应6h。反应结束后,收集上层产物相,采用气相色谱法进行定量分析。α-蒎烯的转化率为13.5%,顺式蒎烷的选择性为99.2%。
【对比例2】向三口烧瓶中加入2mL去离子水及2mg的RuCl3,充分搅拌后,用氢气将烧瓶内空气置换四次,之后在0.1MPa的氢气环境下,50℃反应1h,得到对比催化剂B。
将2mmolα-蒎烯和2mg的碳酸钠加入到装有对比例1制得的对比催化剂B的三口烧瓶中。用氢气将烧瓶内空气置换四次,之后在0.1MPa的氢气环境下,常温下(25℃)搅拌反应6h。反应结束后,收集上层产物相,采用气相色谱法进行定量分析。α-蒎烯的转化率为2.2%,顺式蒎烷的选择性为94.9%。
【对比例3】将2mmolα-蒎烯和2mg的Pd/C催化剂及2mL去离子水加入到圆底烧瓶三口烧瓶中。用氢气将烧瓶内空气置换四次,之后在0.1MPa的氢气环境下,常温下(25℃)搅拌反应6h。对比反应结束后,收集上层产物相,采用气相色谱法进行定量分析。α-蒎烯的转化率为43.5%,顺式蒎烷的选择性为82.2%。

Claims (1)

1.一种催化α-蒎烯选择性加氢制备顺式蒎烷的方法,其特征在于:向三口烧瓶中加入10mg聚乙二醇1000维生素E琥珀酸酯(TPGS-1000)及2mL去离子水,室温搅拌溶解后,加入2.0mg RuCl3充分搅拌,用氢气将烧瓶内空气置换四次后,在0.1MPa氢气气氛下,50℃反应1h,得到TPGS-1000水胶束稳定的黑色金属钌纳米粒子催化剂,再加入2-10mg碳酸钠和2mmolα-蒎烯,在25℃和0.1MPa氢气气氛下,反应3-7h制备顺式蒎烷。
CN201610095927.7A 2016-02-22 2016-02-22 一种常温常压下催化α-蒎烯加氢制备顺式蒎烷的方法 Active CN105566027B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610095927.7A CN105566027B (zh) 2016-02-22 2016-02-22 一种常温常压下催化α-蒎烯加氢制备顺式蒎烷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610095927.7A CN105566027B (zh) 2016-02-22 2016-02-22 一种常温常压下催化α-蒎烯加氢制备顺式蒎烷的方法

Publications (2)

Publication Number Publication Date
CN105566027A CN105566027A (zh) 2016-05-11
CN105566027B true CN105566027B (zh) 2018-07-17

Family

ID=55876743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610095927.7A Active CN105566027B (zh) 2016-02-22 2016-02-22 一种常温常压下催化α-蒎烯加氢制备顺式蒎烷的方法

Country Status (1)

Country Link
CN (1) CN105566027B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316747B (zh) * 2016-08-15 2019-01-11 青岛科技大学 一种钯镍双金属催化剂催化α-蒎烯加氢制备顺式蒎烷的方法
CN107056572B (zh) * 2017-05-16 2019-12-06 潍坊学院 常温下还原α-蒎烯制备顺式蒎烷的方法
CN107188775A (zh) * 2017-07-07 2017-09-22 青岛科技大学 一种两亲性分子筛负载Ru纳米粒子催化α‑蒎烯加氢制备顺式蒎烷的方法
CN107649147B (zh) * 2017-10-23 2020-08-07 湖南长岭石化科技开发有限公司 加氢催化剂、其应用以及利用其催化α-蒎烯加氢制备顺式蒎烷的方法
CN111545195A (zh) * 2020-05-19 2020-08-18 福州大学 一种可循环Ru纳米催化剂及其制备方法以及在制备顺式蒎烷上的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003831A (zh) * 2014-05-04 2014-08-27 昆明理工大学 一种由α-蒎烯不对称催化加氢制备顺式蒎烷的方法
CN104844408A (zh) * 2015-01-21 2015-08-19 青岛科技大学 一种催化α-蒎烯加氢制备顺式蒎烷的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003831A (zh) * 2014-05-04 2014-08-27 昆明理工大学 一种由α-蒎烯不对称催化加氢制备顺式蒎烷的方法
CN104844408A (zh) * 2015-01-21 2015-08-19 青岛科技大学 一种催化α-蒎烯加氢制备顺式蒎烷的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
水促进的氯化钌催化a-蒎烯加氢反应;杨晓等;《催化学报》;20111231;643-646 *

Also Published As

Publication number Publication date
CN105566027A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN105566027B (zh) 一种常温常压下催化α-蒎烯加氢制备顺式蒎烷的方法
Wei et al. Optimizing alkyne hydrogenation performance of Pd on carbon in situ decorated with oxygen-deficient TiO2 by integrating the reaction and diffusion
CN109999880B (zh) 氮掺杂多孔碳负载双金属催化剂及其制备方法及用途
Sheng et al. Single-crystal cobalt phosphide nanorods as a high-performance catalyst for reductive amination of carbonyl compounds
US11141724B2 (en) Method for efficiently catalyzing furfural to prepare cyclopentanone, and catalyst and preparation method therefor
CN100486950C (zh) 一种1,4-环己二酮的合成方法
JP2007130525A (ja) 包接触媒及びその製造方法
Li et al. Efficient and exceptionally selective semireduction of alkynes using a supported gold catalyst under a CO atmosphere
CN110368928B (zh) 一种用于苯甲醇氧化合成苯甲醛的催化剂及其制备方法和应用
Poovan et al. Synergy between homogeneous and heterogeneous catalysis
CN111153768B (zh) 一种异己二醇的合成方法
CN102728386A (zh) 一种Pd-Ni/Al2O3催化剂及其制备方法和用途
CN109806867A (zh) 纳米碳负载原子级分散铜基催化剂及其制备方法和应用
CN111185209B (zh) 碳化钼负载的镍基催化剂制备及其在二氧化碳加氢制备乙醇中的应用
CN103874540A (zh) 用于h2o2合成的催化剂及制备此种催化剂的方法
CN109926056A (zh) 一种以碳纳米管为载体的催化剂、制备方法及应用
CN109622050A (zh) 催化剂和利用该催化剂制备橙花醇和香叶醇的方法
Xu et al. Enhanced performance of binary WO3/N-doped carbon composites for the catalytic oxidation of benzyl alcohol under mild conditions
CN106316747B (zh) 一种钯镍双金属催化剂催化α-蒎烯加氢制备顺式蒎烷的方法
CN110256198B (zh) 一种1,4-戊二醇的生产方法
Wang et al. Ambient-pressure highly active hydrogenation of ketones and aldehydes catalyzed by a metal-ligand bifunctional iridium catalyst under base-free conditions in water
CN106946668A (zh) 一种苯酚加氢制备环己酮的方法
CN107999072B (zh) 一种光热催化剂、其制备方法和催化环己烷氧化的方法
CN102060656A (zh) 一种制备环己酮的方法
CN103752307B (zh) 用于苯选择加氢制环己烯的核壳结构催化剂的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant