CN105561976B - 一种具有可见光活性的Bi2WO6微米球的制备方法 - Google Patents

一种具有可见光活性的Bi2WO6微米球的制备方法 Download PDF

Info

Publication number
CN105561976B
CN105561976B CN201510953658.9A CN201510953658A CN105561976B CN 105561976 B CN105561976 B CN 105561976B CN 201510953658 A CN201510953658 A CN 201510953658A CN 105561976 B CN105561976 B CN 105561976B
Authority
CN
China
Prior art keywords
micron ball
visible light
bic
preparation
light activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510953658.9A
Other languages
English (en)
Other versions
CN105561976A (zh
Inventor
陈美娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Zhongchuang Nate New Material Technology Co.,Ltd.
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201510953658.9A priority Critical patent/CN105561976B/zh
Publication of CN105561976A publication Critical patent/CN105561976A/zh
Application granted granted Critical
Publication of CN105561976B publication Critical patent/CN105561976B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

一种具有可见光活性的Bi2WO6微米球的制备方法,以BiC6H5O7和H2WO4为原料,经超声喷雾法制得均匀的具有中空结构的Bi2WO6微米球。本发明将Bi2WO6可见光催化剂用于气相空气污染物NO的去除,具有高催化效率。该催化剂制备方法简单,以可见光为驱动能,用于大气污染控制,有利于环境和能源的可持续发展。本发明通过简单的调整溶液配方,制备出不同形貌的Bi2WO6微米球,这些形貌的存在均对NO的降解效率有提升的作用;得到了一例具有中空结构的Bi2WO6微米球,该中空微球有利于光生电子和空穴的分离,对NO的降解效率提升最为显著;本方法制备产品操作简单、设备要求低、无需复杂的合成装置。

Description

一种具有可见光活性的Bi2WO6微米球的制备方法
技术领域
本发明涉及一种具有可见光活性的催化剂,具体涉及一种具有可见光活性的Bi2WO6微米球的制备方法。
背景技术
目前,环境污染与防治是全球的重要课题,去除大气中的有害污染物更成为环境保护行业的一项重要任务。当前,以二氧化钛为代表的光催化材料尽管表现出优良的光催化性能,但光响应范围主要以紫外光为主,使其实际应用受到很大程度的限制。因此,开发能有效利用可见光的新型光催化材料在大气污染控制方面具有重要意义。
Bi2WO6是典型的n型直接半导体,带隙宽度约为2.70eV。它的价带顶主要由Bi 6s和O2p轨道杂化组成,而导带底则主要由W 5d轨道与少量Bi 6s轨道构成。由于Bi 6s轨道和O2p轨道杂化,是催化剂的价带电位升高,带隙宽度减少,因此Bi2WO6对可见光有吸收。另外,Bi2WO6三明治结构的层间空间能够为光催化反应提供活化点,夹层能接受光生电子,从而有效的抑制光生电子与空穴的复合,使光催化效率得到大幅度的提高。因此,Bi2WO6是一种很有发展前景的可见光催化材料。
目前,Bi2WO6通常采用高温固相反应和水热法等方法制备,制备的实验条件要求较苛刻,且得到的样品粉末通常粒径较大、比表面积较小,严重影响该光催化剂的光催化活性。
发明内容
为克服现有技术中的问题,本发明的目的是提供了一种具有可见光活性的Bi2WO6微米球的制备方法,该方法制得的Bi2WO6微米球在太阳光照射下具有良好的降解大气污染物NO 的能力,且制备过程成本低廉。
为了实现上述目的,本发明采用如下的技术方案:
一种具有可见光活性的Bi2WO6微米球的制备方法,将BiC6H5O7溶于氨水中,得到前驱体A,将H2WO4溶于氨水中,得到前驱体B;将前驱体A和前驱体B混合,并加入无机盐,然后加水定容至a,持续搅拌至形成均匀液体,再将得到的均匀的液体超声喷雾,喷雾形成的液滴经过煅烧,得到具有可见光活性的Bi2WO6微米球;其中,BiC6H5O7、H2WO4的物质的量比为10:5,无机盐为NaCl、Na2SO4或KCl;BiC6H5O7与NaCl的物质的量的比为10:1,BiC6H5O7与Na2SO4的物质的量的比为10:1;BiC6H5O7与KCl的物质的量的比为10:1;BiC6H5O7的物质的量与a的比为20mmol:80~100mL。
所述氨水的质量浓度为28%。
所述BiC6H5O7与氨水的比为2mmol:1mL。
所述H2WO4与氨水的比为1mmol:1mL。
所述喷雾功率采用1.7MHZ±10%。
所述煅烧是在马弗炉中进行的,并且煅烧的温度为600℃。
与现有技术相比,本发明具有的有益效果:
(1)本发明以BiC6H5O7和H2WO4为原料,通过先将BiC6H5O7的氨水溶液和H2WO4的氨水溶液混合,然后加入NaCl和水,由于加入了NaCl,使得在超声喷雾过程中形成以NaCl为核,Bi2WO6为壳的核壳包覆结构,最后经过水洗将NaCl洗出,留下具有可见光活性的中空Bi2WO6微米球;该中空Bi2WO6微米球由纳米片组装而成,粒径约为0.4微米,具有表面多孔,比表面积较大等优点。本发明通过添加一种廉价的NaCl原料,极大的改善了Bi2WO6的形貌及理化性能:将由纳米颗粒堆积而成的现有技术中的Bi2WO6实心微米球改善成具有可见光活性的中空结构的Bi2WO6微米球,该中空微球有利于光生电子和空穴的分离,显著 提升NO的降解效率,通过对比,其较现有技术中的Bi2WO6使NO去除效率显著提升了70.1%;
(2)本发明通过简单的调整溶液配方,实现了表面多孔的Bi2WO6中空微米球的可控制备。以KCl或Na2SO4替换NaCl显著影响Bi2WO6的形貌,确定NaCl对形成表面多孔中空结构的独特贡献。加入KCl后,微米球仍由和现有技术中的Bi2WO6一样的纳米颗粒堆积而成,但部分球的表面出现孔结构,说明Cl离子对表面孔结构的出现起主要作用;加入Na2SO4后,微米球变为由纳米片堆积而成,但并未观察到孔结构,说明Na离子对纳米片的形成起主要作用。加入KCl和Na2SO4均未形成中空结构,说明NaCl独特的结晶特性(结晶温度、晶型等)对中空结构的形成起主要作用;
(3)本发明加入KCl或Na2SO4均一定程度上改善Bi2WO6的光催化性能,其降解NO的效率较现有技术中的Bi2WO6分别提升了67.3%和16.7%,为提升Bi2WO6的光催化性能提供更多易操作的选择;
(4)另外,采用超声喷雾法制备产品,操作简单、设备要求低、无需复杂的合成装置。该Bi2WO6微米球可作为催化剂,以可见光为驱动能,用于大气污染控制,有利于环境和能源的可持续发展。
附图说明
图1为Bi2WO6、Bi2WO6-NaCl、Bi2WO6-KCl、Bi2WO6-Na2SO4在太阳光下降解NO的效果图;
图2为对比例1的Bi2WO6的SEM图片;
图3为实施例2的Bi2WO6-KCl的SEM图片;
图4为实施例3的Bi2WO6-Na2SO4的SEM图片;
图5为实施例1的Bi2WO6-NaCl的SEM图片;
图6为实施例1的Bi2WO6-NaCl的TEM图片。
具体实施方式
以下结合附图和具体实施例对本发明作具体的介绍。
实施例1
步骤一:20mmol BiC6H5O7溶于10mL的质量浓度为28%的氨水得到澄清透明的前驱体A,10mmol的H2WO4溶于10mL的质量浓度为28%的氨水得到澄清透明的前驱体B。
步骤二:将步骤一的前驱体A、前驱体B两者混合搅拌后,加入2mmol的NaCl,随后加水定容至100mL,持续搅拌至形成均匀液体。
步骤三:将步骤二得到的均匀液体进行超声喷雾,喷雾功率采用1.7MHZ±10%,喷雾形成的液滴随即进入管式马弗炉中,煅烧温度设置为600℃,在管式炉出口处收集固体产物,并将得到固体产物用去离子水清洗三次,得到具有可见光活性的Bi2WO6微米球(即Bi2WO6-NaCl),该微米球具有中空结构。
实施例2
步骤一:20mmol BiC6H5O7溶于10mL的质量浓度为28%的氨水得到澄清透明的前驱体A,10mmol的H2WO4溶于10mL的质量浓度为28%的氨水得到澄清透明的前驱体B;
步骤二:将前驱体A、前驱体B两溶液混和,并向其中加入2mmol的KCl,随后加水定容至100mL,持续搅拌至形成均匀液体。
步骤三:将步骤二得到的均匀液体进行超声喷雾,喷雾功率采用1.7MHZ±10%,喷雾形成的液滴随即进入管式马弗炉中,煅烧温度设置为600℃,在管式炉出口处收集固体产物,并将得到固体产物用去离子水清洗三次,得到Bi2WO6-KCl。
实施例3
步骤一:20mmol BiC6H5O7溶于10mL的质量浓度为28%的氨水得到澄清透明的前驱体A,10mmol的H2WO4溶于10mL的质量浓度为28%的氨水得到澄清透明的前驱体B。
步骤二:将步骤一的前驱体A、前驱体B两溶液混和,并向其中加入2mmol的Na2SO4,随后加水定容至100mL,持续搅拌至形成均匀液体。
步骤三:将步骤二得到的均匀液体进行超声喷雾,喷雾功率采用1.7MHZ±10%,喷雾形成的液滴随即进入管式马弗炉中,煅烧温度设置为600℃,在管式炉出口处收集固体产物,并将得到固体产物用去离子水清洗三次,得到Bi2WO6-Na2SO4
对比例1
对比例1制得Bi2WO6,Bi2WO6的制备方法是将实施例1中的NaCl溶液换成去离子水,制备方法已发表于J.Phys.Chem.C 2010,114,6342-6349。据文献报道,Bi2WO6光催化性能优越于高温固相反应所制备的Bi2WO6,且超声喷雾的最佳煅烧温度为600℃(催化效果比400和500℃好)。
对对比例1的Bi2WO6、实施例1的Bi2WO6-NaCl、实施例2的Bi2WO6-KCl、实施例3的Bi2WO6-Na2SO4分别进行活性测试,以NO为目标污染物。将包含0.3g催化剂样品的培养皿放置在具有石英玻璃视窗的连续流动反应器中,通入起始浓度为400ppb的NO。待气流稳定后,打开模拟太阳光(300W卤钨灯)进行测试。采用NO光学分析仪动态监测反应器中的NO浓度,以NO出口浓度与初始浓度的比率(C/Co)来评价两种Bi2WO6的催化性能。图1为四种催化剂对NO降解效率图,由图可见,通过本发明制备的Bi2WO6-NaCl、Bi2WO6-KCl、Bi2WO6-Na2SO4均具备良好的光催化性能,分别显示出43.5%、43%、30.0%的最佳NO去除效率。相比于对比例1的Bi2WO625.7%的去除效率(图1的“Bi2WO6”表示对比例1制得的Bi2WO6),加盐的三种Bi2WO6的光催化性能都好于对比例1制备的Bi2WO6。这其中,Bi2WO6-NaCl性能最优,其NO去除效率比对比例中的Bi2WO6提升了0.7倍。
图2、图3、图4、图5分别为对比例1的Bi2WO6、实施例1的Bi2WO6-NaCl、实施例2的Bi2WO6-KCl和实施例3的Bi2WO6-Na2SO4的扫描电子显微镜(SEM)图片。从图2、图3、图4、图5可以看出,在制备过程中在加入盐后,Bi2WO6的微观形貌发生很大变化:对比例1的Bi2WO6是由粒径为20-30nm的纳米颗粒堆积而成的实心微米球(J.Phys.Chem.C 2010,114,6342-6349已发表其TEM图片);加入NaCl后,Bi2WO6微米球的表面分布着大量的孔,且微球变为空心结构(透射电子显微镜图,见图6),进一步证实了Bi2WO6-NaCl的表面多孔的中空结构,且该中空球表面由纳米片组装而成;加入KCl后,微米球仍由颗粒堆积而成,但部分球的表面出现孔结构,说明Cl离子对孔结构的形成起主要作用;加入Na2SO4后,微米球变为由纳米片堆积而成,但并未看到孔结构,说明Na离子对纳米片的形成起主要作用。
本发明步骤二中加水定容为80~100mL都可以,均能够得到如上述实施例中的结构,因为经步骤三中煅烧后均不含水。
需要说明的是,上述实施不以任何形式限制本发明,凡采用等同或替换或等效变化的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (6)

1.一种具有可见光活性的Bi2WO6微米球的制备方法,其特征在于,将BiC6H5O7溶于氨水中,得到前驱体A,将H2WO4溶于氨水中,得到前驱体B;将前驱体A和前驱体B混合,并加入无机盐,然后加水定容至a,持续搅拌至形成均匀液体,再将得到的均匀的液体超声喷雾,喷雾形成的液滴经过煅烧,得到具有可见光活性的Bi2WO6微米球;其中,BiC6H5O7、H2WO4的物质的量比为10:5,无机盐为NaCl、Na2SO4或KCl;BiC6H5O7与NaCl的物质的量的比为10:1,BiC6H5O7与Na2SO4的物质的量的比为10:1;BiC6H5O7与KCl的物质的量的比为10:1;BiC6H5O7的物质的量与a的比为20mmol:80~100mL;
无机盐为NaCl时,0.3g Bi2WO6微米球对起始浓度为400ppb的NO的去除效率为43.5%;
无机盐为Na2SO4时,0.3g Bi2WO6微米球对起始浓度为400ppb的NO的去除效率为43%;
无机盐为KCl时,0.3g Bi2WO6微米球对起始浓度为400ppb的NO的去除效率为30.0%。
2.根据权利要求1所述的一种具有可见光活性的Bi2WO6微米球的制备方法,其特征在于,所述氨水的质量浓度为28%。
3.根据权利要求2所述的一种具有可见光活性的Bi2WO6微米球的制备方法,其特征在于,所述BiC6H5O7与氨水的比为2mmol:1mL。
4.根据权利要求2所述的一种具有可见光活性的Bi2WO6微米球的制备方法,其特征在于,所述H2WO4与氨水的比为1mmol:1mL。
5.根据权利要求1所述的一种具有可见光活性的Bi2WO6微米球的制备方法,其特征在于,所述喷雾功率采用1.7MHZ±10%。
6.根据权利要求1所述的一种具有可见光活性的Bi2WO6微米球的制备方法,其特征在于,所述煅烧是在马弗炉中进行的,并且煅烧的温度为600℃。
CN201510953658.9A 2015-12-17 2015-12-17 一种具有可见光活性的Bi2WO6微米球的制备方法 Active CN105561976B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510953658.9A CN105561976B (zh) 2015-12-17 2015-12-17 一种具有可见光活性的Bi2WO6微米球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510953658.9A CN105561976B (zh) 2015-12-17 2015-12-17 一种具有可见光活性的Bi2WO6微米球的制备方法

Publications (2)

Publication Number Publication Date
CN105561976A CN105561976A (zh) 2016-05-11
CN105561976B true CN105561976B (zh) 2017-12-15

Family

ID=55872932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510953658.9A Active CN105561976B (zh) 2015-12-17 2015-12-17 一种具有可见光活性的Bi2WO6微米球的制备方法

Country Status (1)

Country Link
CN (1) CN105561976B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106994341B (zh) * 2017-04-20 2020-07-03 北京石油化工学院 用于光催化分解n2o的催化剂及其制备方法和用途
CN108940259B (zh) * 2018-03-21 2020-07-31 中国矿业大学 一种分级结构多孔MoO2光催化剂微球及其制备方法
CN110813306A (zh) * 2019-11-08 2020-02-21 苏州大学 铁酸锌/钨酸铋复合催化剂及其制备方法与在废气处理方面的应用
CN112844375B (zh) * 2021-02-04 2023-02-28 四川大学 脱除氮氧化物的MnO2/Bi2WO6异质结光催化剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041801A (zh) * 2013-01-11 2013-04-17 南开大学 一种柿饼状形貌的钨酸铋光催化剂的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041801A (zh) * 2013-01-11 2013-04-17 南开大学 一种柿饼状形貌的钨酸铋光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis of Single-Crystalline Nanoplates by Spray Pyrolysis: A Metathesis Route to Bi2WO6;Amanda K. P. Mann et al.;《Chemistry of materials》;20110110;第23卷(第4期);第1017-1022页 *

Also Published As

Publication number Publication date
CN105561976A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
Nguyen et al. Efficient removal of methylene blue dye by a hybrid adsorption–photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse
Nasirian et al. Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: a review
Tang et al. Aerosol spray assisted assembly of TiO2 mesocrystals into hierarchical hollow microspheres with enhanced photocatalytic performance
CN105561976B (zh) 一种具有可见光活性的Bi2WO6微米球的制备方法
Zhang et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst
CN104399516B (zh) 一种处理硝基苯酚废水的光催化剂的制备方法、一种硝基苯酚废水的处理方法
Zhao et al. Sol–gel assisted hydrothermal synthesis of ZnO microstructures: morphology control and photocatalytic activity
CN107970944B (zh) 一种复合钼酸盐空心微球的制备方法及其应用
CN104707542B (zh) 一种光催化剂/SiO2复合气凝胶材料及其制备方法
CN105772069A (zh) 一种纳微尺度的核-壳型分子筛包覆抗硫化催化剂
Hu et al. Synthesis of mesoporous SiO2@ TiO2 core/shell nanospheres with enhanced photocatalytic properties
CN103920509A (zh) 介孔BiOX光催化剂、制备方法及应用
CN103894218B (zh) 一种氮、氟共掺杂二氧化钛介孔微球光催化材料及其制备方法
Zhang et al. Enhanced photocatalytic activity and optical response mechanism of porous graphitic carbon nitride (g-C3N4) nanosheets
CN102527381A (zh) 一种纳米金/二氧化钛复合介孔微球光催化剂的制备方法
Deng et al. Nanohybrid photocatalysts for heavy metal pollutant control
CN106381682A (zh) 一种高吸附‑光催化性能的纳米二氧化钛/活性炭纤维毡三维多孔材料及其制备方法
Ao et al. Synthesis, characterization and photocatalytic activity of BiOBr–AC composite photocatalyst
CN102161510A (zh) 一种中空多孔氧化钨球的制备方法
CN106311304A (zh) 一种紫外光及可见光催化复合纳米材料及其制备和应用
CN102125831B (zh) 介孔Bi2O3/TiO2纳米光催化剂的制备方法
Christy et al. Porous nonhierarchical CeO2/SiO2 monolith for effective degradation of organic pollutants
CN108147453A (zh) 一种新型二氧化钛微粒材料及其制备方法、在环保领域中的应用
CN108033485A (zh) 一种一步法合成TiO2微球高效制氢和降解污染物的方法
Barrocas et al. Titanosilicates enhance carbon dioxide photocatalytic reduction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240105

Address after: 710086 Room 401, 4th Floor, East Building, Building 5, Western Life Science Park, Fengdong New City, Xixian New District, Xi'an City, Shaanxi Province

Patentee after: Shaanxi Zhongchuang Nate New Material Technology Co.,Ltd.

Address before: Beilin District Xianning West Road 710049, Shaanxi city of Xi'an province No. 28

Patentee before: XI'AN JIAOTONG University