CN105551968B - 定向/无序复合单层碳纳米管为沟道的场效应管及制作方法 - Google Patents

定向/无序复合单层碳纳米管为沟道的场效应管及制作方法 Download PDF

Info

Publication number
CN105551968B
CN105551968B CN201610088025.0A CN201610088025A CN105551968B CN 105551968 B CN105551968 B CN 105551968B CN 201610088025 A CN201610088025 A CN 201610088025A CN 105551968 B CN105551968 B CN 105551968B
Authority
CN
China
Prior art keywords
carbon nanotube
unordered
layer
drain electrode
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610088025.0A
Other languages
English (en)
Other versions
CN105551968A (zh
Inventor
陈长鑫
廖成浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201610088025.0A priority Critical patent/CN105551968B/zh
Publication of CN105551968A publication Critical patent/CN105551968A/zh
Application granted granted Critical
Publication of CN105551968B publication Critical patent/CN105551968B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种定向/无序复合单层碳纳米管为沟道的场效应管及制作方法,在位于基底上的无序网状的碳纳米管薄膜两侧通过光刻曝光分别制成源、漏极,再在其上表面通过双向电泳排布技术将碳纳米管有序排布制成定向排布碳纳米管阵列,最后在顶部依次光刻曝光和磁控溅射得到栅极和介质层,实现场效应晶体管的制备。本发明采用无序网状与定向排布混合碳纳米管薄膜制备得到的器件具有优良的场效应晶体管开关特性,在室温空气中性能稳定。本发明通过改变无序网状与定向排布复合碳纳米管薄膜的密度、器件的结构尺寸以及掺杂参数,可以自由实现对场效应晶体管性能进行调控。

Description

定向/无序复合单层碳纳米管为沟道的场效应管及制作方法
技术领域
本发明涉及一种场效应晶体管领域的技术,具体是一种定向/无序复合单层碳纳米管为沟道的场效应管及制作方法。
背景技术
碳纳米管是一种具有优异的机械性能和电子性能的一维纳米材料,被认为是制作未来纳米器件的首选。目前,基于单根碳纳米管的场效应已经被成功制作出来。然而,在实际应用中,将单根半导体性的碳纳米管制备的场效应晶体管的工艺较为复杂,器件的电流性能也受材料本身尺寸的限制。无序网状碳纳米管薄膜制备工艺简单,定向排布的碳纳米管阵列能够实现高导通电流。因此在实际应用中二者或是二者复合物可以被用来替代单根碳纳米管场效应晶体管。
无序网状碳纳米管薄膜可以通过静电自组装的方法来进行构建,定向排布的碳纳米管阵列能够通过双向电泳排布实现。利用静电自组装技术将碳纳米管组装在衬底之上(电极之下),利用双向电泳排布技术将碳纳米管排布与电极之上(介质层之下),两层碳纳米管相互连接,构成无序网状碳纳米管薄膜与有序排布碳纳米管阵列复合的场效应晶体管沟道。
经过对现有技术的检索发现,中国专利文献号CN101540285A,公开(公告)日2009.09.23,公开了一种纳米电子器件的碳纳米管薄膜场效应晶体管的制备方法,步骤为:在表面含有绝缘层的硅片上采用光刻技术制作出源漏电极图案,将碳纳米管通过交变电场双向电泳的方法沉积在源漏电极之间形成碳纳米管薄膜,然后用等离子体刻蚀的方法选择性去除沉积的碳纳米管中的金属性碳纳米管,得到具有良好性能的碳纳米管薄膜场效应晶体管;另一种为:将碳纳米管通过自组装的方法沉积在表面含有绝缘层的硅片上形成碳纳米管薄膜,然后采用光刻技术在碳纳米管薄膜上制作出源漏电极图案,接着用等离子体刻蚀的方法选择性去除沉积的碳纳米管中的金属性碳纳米管,得到碳纳米管薄膜场效应晶体管,该技术采用交变电场双向电泳法可制备定向排布的碳纳米管薄膜,但是该种有序定向阵列碳纳米管薄膜的电学性能将受到搭接在电极两端的金属性碳纳米管的严重干扰。
发明内容
本发明针对上述现有技术的缺陷和不足,提出一种定向/无序复合单层碳纳米管为沟道的场效应管及制作方法,制备得到的晶体管具有良好的整流特性和性能稳定性。
本发明通过以下技术方案实现:
本发明涉及一种基于无序网状与定向排布混合碳纳米管的场效应晶体管的制备方法,在位于基底上的无序网状的碳纳米管薄膜两侧通过光刻曝光分别制成源、漏极,再在其上表面通过双向电泳排布技术将碳纳米管有序排布制成定向排布碳纳米管阵列,最后在顶部依次光刻曝光和磁控溅射得到栅极和介质层,实现场效应晶体管的制备。
所述的无序网状的碳纳米管薄膜,采用但不限于自组装法或转移法制备得到。
所述的定向排布碳纳米管阵列,采用双向电泳排布技术制备得到,具体为:在源、漏极之间施加高频正弦交流电压,同时将碳纳米管悬浮液滴在源、漏极之间,使其在交变电场的作用下定向沉积后,通过紫外线进行照射处理。
所述的高频正弦交流电压优选频率为10MHz,峰-峰电压值为5V。
所述的碳纳米管悬浮液优选浓度为0.5g/mL。
所述的定向沉积优选沉积时间为40s,沉积温度为25℃。
所述的照射处理优选为用功率10W,波长175nm的紫外线对制得的纳米器件进行辐射处理5分钟。
所述的碳纳米管,直径为0.9~1.8nm,长度为2~5μm。
所述的基片采用但不限于具有SiO2热氧化层的硅片。
所述的源、漏极以及栅极,优选为Au、Pt、Pd、Ti或Cu制成。
所述的源、漏极优选为对电极,其宽度,即对电极间距离为0.5~5μm。
所述的栅极的宽度为0.5~5μm,厚度为100~500nm。
所述的光刻曝光,其尺寸可以根据所用无定形碳纳米管薄膜沟道尺寸进行调节,一般为0.5*1μm~5*3μm。
所述的光刻曝光,采用两层光刻胶实现,其中:第一层分子量495的PMMA光刻胶,厚度约为200nm,第二层分子量950的PMMA光刻胶,厚度约为100nm。
所述的光刻胶,优选在每层旋涂后在高温下进行烘胶。
所述的介质层优选为二氧化硅、氧化铝或氧化铪,其厚度为50~200nm。
本发明涉及上述方法制备得到的基于无序网状与定向排布混合碳纳米管的场效应晶体管,由上而下依次包括介质层、栅极层、定向排布碳纳米管阵列和源漏极层,其中:源漏极层中的源极和漏极之间设有无序网状碳纳米管薄膜。
技术效果
与现有技术相比,本发明采用无序网状与定向排布混合碳纳米管薄膜制备得到场效应晶体管,器件具有优良的开关特性,在室温空气中性能稳定,通过改变无序网状碳纳米管薄膜与定向排布碳纳米管阵列的密度、器件的结构尺寸,可以自由实现对场效应晶体管性能的调控。
附图说明
图1为实施例1制备的无序网状与定向排布混合碳纳米管的场效应晶体管的结构示意图;
图中:无序网状碳纳米管薄膜1、定向排布碳纳米管阵列2、源漏Au电极3、SiO2介质层4、顶栅Au电极5、硅基底6。
具体实施方式
实施例1
本实施例包括以下步骤:
第一步,利用自组装技术在作为基底的硅片表面自组装一层密度为1μm-2的无序网状碳纳米管薄膜,具体为:通过将经表面处理的基底浸泡于的单壁碳纳米管悬浮液中,使单壁碳纳米管在硅片上自组装形成无序网状单壁碳纳米管薄膜。
所述的表面处理包括但不限于:亲水处理和修饰处理。
所述的亲水处理是指:将基底洗净后浸泡在H2SO4和H2O2混合液中使表面呈亲水性。
所述的修饰处理是指:将基底浸泡在过硫酸铵溶液中,使单层过硫酸铵被修饰到亲水性的基底表面,优选浸泡时间为10h。
所述的混合液中H2SO4和H2O2比例范围为2∶1,浸泡时间为10小时,浸泡温度为80℃;
所述的过硫酸铵溶液中过硫酸铵的质量比优选为1%。
第二步,如图1所示,通过紫外光刻电子束光刻和磁控溅射在无序网状碳纳米管薄膜的两端制作Au对称电极,其中电极宽度为6μm,对电极间距离为4μm。
所述的Au对称电极,优选利用离子刻蚀去除无序网状碳纳米管薄膜沟道旁侧多余的碳纳米管。
第三步,利用交变电场双向电泳技术将长度为1~3μm的碳纳米管定向排布于电极两侧,得到定向排布的碳纳米管阵列;
所述的无序网状碳纳米管薄膜与定向排布的碳纳米管阵列相互复合连接形成接连电极两端的完整的碳纳米管薄膜。
第四步,在定向排布的碳纳米管阵列上涂敷电子束光刻胶,利用电子束光刻对碳纳米管的顶端进行开窗口曝光,利用磁控溅射技术在碳管薄膜沟道上溅射50nm的Au层和50nm的SiO2介质层,形成顶栅电极。
所述的开窗,其窗口尺寸为6μm*4μm;碳纳米管薄膜沟道被曝光的部分经显影和定影之后将被暴露在空气中;未曝光的部分将受到光刻胶PMMA的保护。
将本实施例得到的碳纳米管场效应晶体管在黑暗的条件下进行I-V性能测试,施加源漏电压+1V,测量栅电压范围为-20V到+20V。结果表明随着负栅电压的增大,器件电流以指数的方式增加;在施加正栅电压时,器件几乎没有电流,器件表现出典型的p型场效应晶体管的开关特性。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (2)

1.一种定向/无序复合单层碳纳米管为沟道的场效应管的制作方法,其特征在于,该场效应晶体管由上而下依次包括栅极层、介质层、定向排布碳纳米管阵列和源漏极层,其中:源漏极层中的源极和漏极之间设有无序网状碳纳米管薄膜;
所述的制作方法,在位于基底上的无序网状的碳纳米管薄膜两侧通过光刻曝光分别制成源、漏极,再在其上表面通过双向电泳排布技术将碳纳米管有序排布制成定向排布碳纳米管阵列,最后在顶部依次光刻曝光和磁控溅射得到介质层和栅极层,实现场效应晶体管的制备;
所述的定向排布碳纳米管阵列,采用双向电泳排布技术制备得到,具体为:在源、漏极之间施加高频正弦交流电压,同时将碳纳米管悬浮液滴在源、漏极之间,使其在交变电场的作用下定向沉积后,通过紫外线进行照射处理;
所述的碳纳米管,直径为0.9~1.8nm,长度为2~5μm;
所述的源、漏极以及栅极,为Au、Pt、Pd、Ti或Cu制成;
所述的源、漏极为对电极,对电极间距离为0.5~5μm;
所述的栅极的宽度为0.5~5μm,厚度为100~500nm;
所述的光刻曝光,其尺寸为0.5*1μm~5*3μm;
所述的光刻曝光,采用两层光刻胶实现,其中:第一层分子量495的PMMA光刻胶,厚度为200nm,第二层分子量950的PMMA光刻胶,厚度为100nm;
所述的介质层为二氧化硅、氧化铝或氧化铪,其厚度为50~200nm。
2.一种基于无序网状与定向排布混合碳纳米管的场效应晶体管,其特征在于,根据权利要求1所述方法制备得到。
CN201610088025.0A 2016-02-17 2016-02-17 定向/无序复合单层碳纳米管为沟道的场效应管及制作方法 Expired - Fee Related CN105551968B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610088025.0A CN105551968B (zh) 2016-02-17 2016-02-17 定向/无序复合单层碳纳米管为沟道的场效应管及制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610088025.0A CN105551968B (zh) 2016-02-17 2016-02-17 定向/无序复合单层碳纳米管为沟道的场效应管及制作方法

Publications (2)

Publication Number Publication Date
CN105551968A CN105551968A (zh) 2016-05-04
CN105551968B true CN105551968B (zh) 2019-01-25

Family

ID=55831080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610088025.0A Expired - Fee Related CN105551968B (zh) 2016-02-17 2016-02-17 定向/无序复合单层碳纳米管为沟道的场效应管及制作方法

Country Status (1)

Country Link
CN (1) CN105551968B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851536A (zh) * 2020-06-28 2021-12-28 华为技术有限公司 场效应晶体管及其制备方法、半导体结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100930997B1 (ko) * 2008-01-22 2009-12-10 한국화학연구원 탄소나노튜브 트랜지스터 제조 방법 및 그에 의한탄소나노튜브 트랜지스터
JP6256912B2 (ja) * 2013-11-12 2018-01-10 国立研究開発法人産業技術総合研究所 カーボンナノチューブ集合体を用いた電界効果トランジスタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Multichannel carbon nanotube field-effect transistors with compound channel layer;Changxin Chen et al;《APPLIED PHYSICS LETTERS》;20091113;第95卷(第19期);第192110-1页第1段-第192110-3页最后1段,图1-4

Also Published As

Publication number Publication date
CN105551968A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
US8592820B2 (en) Layers and patterns of nanowire or carbon nanotube using chemical self assembly and fabricating method in liquid crystal display device thereby
JP4635410B2 (ja) 半導体装置及びその製造方法
TWI585985B (zh) 薄膜電晶體及其製備方法
US9502659B2 (en) Carbon nanotube field effect transistor
Huang et al. Metal oxide nanowire transistors
JP2004071654A (ja) カーボンナノチューブ半導体素子の作製方法
CN105609636B (zh) 定向单壁碳纳米管阵列为沟道的场效应晶体管及制作方法
CN104867876B (zh) 薄膜晶体管阵列的制备方法
Chung et al. Low-voltage and short-channel pentacene field-effect transistors with top-contact geometry using parylene-C shadow masks
KR101182522B1 (ko) 나노 패턴 형성 방법과 그를 이용한 박막트랜지스터 및액정표시장치의 제조 방법
CN114242780A (zh) 氧化铟锡垂直型环栅场效应晶体管及其制备方法
CN114597260A (zh) 一种电学可控单分子开关器件及制备方法
CN111063731A (zh) Cnt-igzo薄膜异质结双极晶体管及其制备方法和应用
CN105551968B (zh) 定向/无序复合单层碳纳米管为沟道的场效应管及制作方法
CN105609561A (zh) 一种石墨烯射频晶体管及其制作方法
JP2008159923A (ja) 有機薄膜トランジスタ製造用蒸着用マスク、これを用いた有機薄膜トランジスタの製造方法、有機薄膜トランジスタ
JP2008071898A (ja) カーボンナノチューブ電界効果トランジスタ及びその製造方法
CN111540786B (zh) 一种二硫化钼纳米带及其制备方法、场效应晶体管的电极材料
CN104867980B (zh) 薄膜晶体管及其阵列
JP5015438B2 (ja) 薄膜トランジスタおよびその製造方法
JP5706077B2 (ja) 半導体素子とその製造及び動作方法
KR100924489B1 (ko) 탄소나노튜브를 이용한 투명 전자 소자 및 그 제조 방법
CN101075637A (zh) 一种基于硼碳氮纳米材料的场效应晶体管及其制备方法
Lee et al. All-Solution-Processed Carbon Nanotube Floating Gate Memories
CN117080257A (zh) 一种双结型场效应晶体管及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190125

Termination date: 20220217

CF01 Termination of patent right due to non-payment of annual fee