CN105543697A - 一种钴铁基含氮合金磁致伸缩材料及其制备方法 - Google Patents

一种钴铁基含氮合金磁致伸缩材料及其制备方法 Download PDF

Info

Publication number
CN105543697A
CN105543697A CN201510937271.4A CN201510937271A CN105543697A CN 105543697 A CN105543697 A CN 105543697A CN 201510937271 A CN201510937271 A CN 201510937271A CN 105543697 A CN105543697 A CN 105543697A
Authority
CN
China
Prior art keywords
cobalt
ferro
preparation
base nitrogen
containing alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510937271.4A
Other languages
English (en)
Other versions
CN105543697B (zh
Inventor
马永青
耿冰倩
孙潇
徐士涛
王敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201510937271.4A priority Critical patent/CN105543697B/zh
Publication of CN105543697A publication Critical patent/CN105543697A/zh
Application granted granted Critical
Publication of CN105543697B publication Critical patent/CN105543697B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • H10N35/85Magnetostrictive active materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种钴铁基含氮合金磁致伸缩材料及其制备方法,所述钴铁基含氮合金磁致伸缩材料可由钴铁氧在H2/N2气氛,800℃~1000℃下还原2~4h,得到单相钴铁合金;接着在NH3气氛下,退火温度300~1000℃,退火2h制成。本发明还包括钴铁基含氮合金磁致伸缩材料的制备方法。本发明之钴铁基含氮合金磁致伸缩材料具有良好的耐酸腐蚀性能,拓宽了它在具有腐蚀环境中的应用范围,且制备工艺简单,价格低廉,适合于工业化生产。实验证明,本发明与单相钴铁合金(CF)相比,钴铁基含氮合金(CFN)样品磁致伸缩系数与CF相当,可达51ppm;而CFN样品在硫酸溶液中腐蚀24h无明显变化,对酸性溶液表现出具有良好的抗腐蚀性。

Description

一种钴铁基含氮合金磁致伸缩材料及其制备方法
技术领域
本发明涉及一种钴铁基含氮合金磁致伸缩材料及其制备方法,具体涉及一种具有高磁致伸缩系数及良好耐酸腐蚀的钴铁基含氮合金磁致伸缩材料及其制备方法。
背景技术
磁致伸缩材料在驱动器、传感器和换能器等领域具有巨大的潜在应用价值。磁致伸缩系数λ大于30ppm的材料一般称为高磁致伸缩材料。例如,广泛应用的Galfenol合金即Fe81Ga19合金室温下的磁致伸缩系数为34ppm。Er掺杂的Fe83Ga17Erx合金磁致伸缩系数在20ppm~40ppm之间。但是炉冷处理可使合金的磁致伸缩性能下降,除Fe83Ga17Er0.2合金的磁致伸缩系数可达37ppm,性能较高以外,其他合金均在25ppm左右。近年来,通过Tb掺杂,可将合金磁致伸缩系数提高到85ppm,但Ga的价格约为Co价格的4倍,Tb的价格更高,是Co价格的16倍,由此昂贵的价格限制了该类材料的大规模应用。
目前,CoFe2O4具有较大的磁致伸缩系数,受到广泛研究,主要集中在Co2+和Fe3+位进行掺杂,包括在Fe3+位掺杂Mn,Cr,Al,Ga,Zr;在Co2+位掺杂Ge等,至今尚未见在O2﹣位进行掺杂的报道,但是CoFe2O4矫顽力大,磁滞损耗强,磁电转换效率低。纯CoFe合金也有比较大的磁致伸缩系数,其薄膜样品的最高磁致伸缩系数可达75ppm,但纯合金材料易被氧化和腐蚀,从而影响器件性能。
基于上述考虑,开发一种具有高磁致伸缩系数、价格便宜、易于制备,同时又耐腐蚀的合金材料意义重大。
发明内容
本发明所要解决的技术问题是,提供一种具有高磁致伸缩系数及良好耐酸腐蚀的钴铁基含氮合金磁致伸缩材料及其制备方法。
本发明解决其技术问题采用的技术方案是,一种钴铁基含氮合金磁致伸缩材料,可由钴铁氧在H2/N2气氛,800℃~1000℃下还原2~4h,得到单相钴铁合金;接着在NH3气氛下,退火温度300~1000℃,退火2h制成。
进一步,所述钴铁氧是按照钴:铁元素摩尔比为1:2,称取二价钴盐、三价铁盐样品溶解,加入柠檬酸和乙二醇,再滴加氨水调节PH值为6~8,接着水浴60~80℃机械搅拌至样品成凝胶状,放入烘箱内在180~220℃发烟,取出放入高温加热设备中在800℃~1000℃,高温烧结2~4h制成。
进一步,所述二价钴盐为硝酸钴、氯化钴或硫酸钴,所述三价铁盐为硝酸铁、氯化铁或硫酸铁。
进一步,所述钴铁氧是将二苄醚、油胺、油酸、称量好的乙酰丙酮铁和乙酰丙酮钴加入到三口圆底烧瓶中,30~40℃磁力搅拌20~30min,加热到100~120℃恒温30~40min,然后加热到180~200℃恒温2~2.5h,最后再加热到290~300℃恒温30~60min制成。
本发明进一步解决其技术问题采用的技术方案是,一种钴铁基含氮合金磁致伸缩材料的制备方法,包括以下步骤:
(1)钴铁氧的制备:按照钴:铁元素摩尔比为1:2,称取二价钴盐、三价铁盐样品放入烧杯中,加入水,在50~60℃下磁力搅拌使其完全溶解,然后加入柠檬酸和乙二醇,再滴加氨水调节PH值为6~8,接着在水浴60~80℃机械搅拌至样品成凝胶状,将样品放入烘箱内在180~220℃发烟,取出放入高温加热设备中在800℃~1000℃,高温烧结2~4h,制得钴铁氧(CoFe2O4);
(2)单相钴铁合金的制备:将步骤(1)中制备的钴铁氧在H2/N2气氛,800℃~1000℃下还原2~4h,得到单相钴铁合金(CF);
(3)钴铁基含氮合金磁致伸缩材料的制备:将步骤(2)中制备的单相钴铁合金在NH3气氛下,退火温度300~1000℃,退火2h,即得钴铁基含氮合金材料(CFN)。
进一步,所述钴铁基含氮合金磁致伸缩材料的制备方法,包括以下步骤:
(1)钴铁氧的制备:按照钴:铁元素摩尔比为1:2,称取二价钴盐、三价铁盐样品放入烧杯中,加入蒸馏水,在60℃下磁力搅拌使其完全溶解,然后加入柠檬酸和乙二醇,再滴加氨水调节PH值为7,接着在水浴80℃机械搅拌至样品成凝胶状,将样品放入烘箱内在200℃发烟,取出放入马弗炉中在800℃,高温烧结4h,制得钴铁氧;
(2)单相钴铁合金的制备:将步骤(1)中制备的钴铁氧在H2/N2气氛,800℃下还原4h,得到单相钴铁合金;
(3)钴铁基含氮合金磁致伸缩材料的制备:将步骤(2)中制备的单相钴铁合金在NH3气氛下,退火温度400~1000℃(更优选1000℃),退火2h,即得钴铁基含氮合金磁致伸缩材料。
本发明之钴铁基含氮合金磁致伸缩材料具有良好的耐酸腐蚀性能,拓宽了CFN材料在具有腐蚀环境中的应用范围,且制备工艺简单,价格低廉,适合于工业化生产。实验证明,本发明与单相钴铁合金(CF)相比,钴铁基含氮合金(CFN)样品磁致伸缩系数与CF相当,可达51ppm;而CFN样品在硫酸溶液中腐蚀24h无明显变化,对酸性溶液表现出具有良好的抗腐蚀性。
附图说明
图1为高温烧结后的钴铁氧(CoFe2O4)和氢气还原后得到的钴铁合金(CF)样品的X-射线衍射图谱。其中,横坐标为衍射角,纵坐标为相对强度。
图2为钴铁合金在NH3中系列温度退火后得到的钴铁基含氮合金样品的X-射线衍射图谱。其中,选CFN1000作为CFN样品。
图3为CF、CFN的X射线光电子能谱图。
图4为未经任何腐蚀的CFN样品(a)和在硫酸溶液中腐蚀24h后的CFN样品的扫描电镜照片(SEM),(b)为低放大倍数,(c)为高放大倍数。
图5(a)为CF的磁致伸缩系数,图5(b)为CFN的磁致伸缩系数。
图6为金属有机盐热分解法制备的CFN的XRD图。其中,(a)为钴铁合金在氨气中系列温度退火后的样品的XRD图,(b)为钴铁氧直接在氨气中系列温度退火后得到的样品的XRD图。
图7为CF(a)与CFN(b)样品的电阻率随温度变化关系图。
具体实施方式
下面结合实施例对本发明进一步加以说明。
实施例1:钴铁基含氮合金磁致伸缩材料的制备
(1)按照钴:铁元素摩尔比为1:2,称取二价钴盐、三价铁盐样品放入烧杯中,加入蒸馏水,在60℃下磁力搅拌使其完全溶解,然后加入柠檬酸和乙二醇,再滴加氨水调节PH值为7,接着在水浴80℃机械搅拌至样品成凝胶状,将样品放入烘箱内在200℃发烟,取出放入马弗炉中在800℃,高温烧结4h,制得结晶状况良好的钴铁氧;
(2)将步骤(1)中制备的钴铁氧在H2/N2气氛(4%N2+96%H2,500sccm气氛),800℃下还原4h,得到单相钴铁合金;
(3)将步骤(2)中制备的单相钴铁合金分成8份,将其中七份在NH3中退火2h,退火温度依次为400℃、600℃、800℃、850℃、900℃、950、1000℃,得到的样品依次命名为CFN400、CFN600、CFN800、CFN850、CFN900、CFN950、CFN1000。
实施例2、验证钴铁基含氮合金磁致伸缩材料
1、验证中间产物钴铁氧和钴铁合金的纯度
用X-射线衍射仪(XRD;DX-2000SSC)测试实施例1制备的高温烧结后的钴铁氧(CoFe2O4)和氢气还原后得到的钴铁合金(CF),相应的X-射线衍射图谱,见图1。
由图1中的各衍射峰的位置和相对强度与标准PDF卡片(CoFe2O4(No.221086)、CoFe(No.491568))相比可知,本发明实验制得的是纯的钴铁氧和钴铁合金。
2、确定钴铁基含氮合金磁致伸缩材料
用X-射线衍射仪(XRD;DX-2000SSC)测试实施例1制备的钴铁合金在NH3中系列温度退火后的样品,得到钴铁基含氮合金的X-射线衍射图谱,见图2。
由图2中的各衍射峰的位置和相对强度与标准PDF卡片(Fe3N(No.760091)、CoFe(No.491568))相比可知,从600℃开始形成与Fe3N结构相似的新物质,申请人定义这种新物种为钴铁氮(CoFe2N),一种新型金属氮化物。
用X射线光电子能谱仪测试钴铁合金(CF)、CFN1000样品即CFN,得到的X射线光电子能谱图如图3所示。与钴铁合金的光电子能谱相比,在CFN的光电子能谱出现了氮元素的峰。
实施例3:钴铁基含氮合金磁致伸缩材料的腐蚀实验和磁致伸缩系数测试
1、腐蚀实验测试
将实施例1中的钴铁合金(CF)、CFN1000样品压成圆片后,在氮气气氛下1000℃煅烧4h,然后将煅烧后的圆片表面及侧面用砂纸打磨光滑,进行腐蚀实验测试。
将钴铁合金(CF)、CFN在0.1MH2SO4溶液中浸泡24h。在浸泡过程中,钴铁合金(CF)浸泡20h后完全被腐蚀溶解;未经任何腐蚀的CFN样品和在硫酸溶液中腐蚀24h后的CFN样品的扫描电镜照片(SEM),见图4。
由图4可见,与CF相比,CFN样品对酸具有很好的耐腐蚀性。
2、磁致伸缩系数测试
CF与CFN的磁致伸缩系数采用标准的线性应变片技术在超导量子干涉仪(QuantumDesign,PPMSEC-II)中测量,结果如图5所示。由图5可知,CFN样品具有高的磁致伸缩系数51ppm,磁致伸缩系数与CF相当。
CF与CFN样品的电阻率随温度变化不明显,见图7(a),7(b)。实施例4:钴铁基含氮合金磁致伸缩材料的制备
利用金属有机盐热分解法制备出均匀分散的、粒径大小仅有十几纳米的钴铁氧纳米粒子(CoFe2O4),然而将CoFe2O4分成两份:CFO1和CFO2。
将CFO1在4%H2+96%N2氛围下,500sccm,还原4小时,完全还原成钴铁合金(CF),然后分别于300、500、700、900度NH3退火2小时,所得样品命名为CFN300、CFN500、CFN700、CFN900。用X-射线衍射仪(XRD;DX-2000SSC)测试钴铁合金在氨气中系列温度退火后的得到的钴铁基含氮合金样品的X-射线衍射图谱(XRD),见图6(a)。由图6(a)中可知,500度时有新相生成,900度氨气处理后即可得到纯相的新物质,这种物质与Fe3N(No.760091)具有相似的结构,为新型的钴铁基含氮合金磁致伸缩材料。
将CFO2直接在NH3中退火,分别于300、500、700、900度NH3退火2小时,所得样品命名为CFON300、CFON500、CFON700、CFON900。
用X-射线衍射仪(XRD;DX-2000SSC)测试钴铁氧直接在氨气中系列温度退火后得到的钴铁基含氮合金样品的XRD图,见图6(b)。由图6(b)可知,采用这种方法也可得到钴铁基含氮合金磁致伸缩材料,但由于退火温度或时间不足,并没有得到单相的物质,最终900度处理后得到的是钴铁基含氮合金与钴铁合金的复合物。

Claims (7)

1.一种钴铁基含氮合金磁致伸缩材料,其特征在于,可由钴铁氧在H2/N2气氛,800℃~1000℃下还原2~4h,得到单相钴铁合金;接着在NH3气氛下,退火温度300~1000℃,退火2h制成。
2.根据权利要求1所述的钴铁基含氮合金磁致伸缩材料,其特征在于,所述钴铁氧是按照钴:铁元素摩尔比为1:2,称取二价钴盐、三价铁盐样品溶解,加入柠檬酸和乙二醇,再滴加氨水调节PH值为6~8,接着水浴60~80℃机械搅拌至样品成凝胶状,放入烘箱内在180~220℃发烟,取出放入高温加热设备中在800℃~1000℃,高温烧结2~4h制成。
3.根据权利要求2所述的钴铁基含氮合金磁致伸缩材料,其特征在于,所述二价钴盐为硝酸钴、氯化钴或硫酸钴,所述三价铁盐为硝酸铁、氯化铁或硫酸铁。
4.根据权利要求1所述的钴铁基含氮合金磁致伸缩材料,其特征在于,所述钴铁氧是将二苄醚、油胺、油酸、称量好的乙酰丙酮铁和乙酰丙酮钴加入到三口圆底烧瓶中,30~40℃磁力搅拌20~30min,加热到100~120℃恒温30~40min,然后加热到180~200℃恒温2~2.5h,最后再加热到290~300℃恒温30~60min制成。
5.一种如权利要求1~4之一所述的钴铁基含氮合金磁致伸缩材料的制备方法,其特征在于,包括以下步骤:
(1)单相钴铁合金的制备:将钴铁氧在H2/N2气氛,800℃~1000℃下还原2~4h,得到单相钴铁合金;
(2)钴铁基含氮合金磁致伸缩材料的制备:将步骤(1)中制备的单相钴铁合金在NH3气氛下,退火温度300~1000℃,退火2h,即成。
6.根据权利要求5所述的钴铁基含氮合金磁致伸缩材料的制备方法,其特征在于,包括以下步骤:
(1)单相钴铁合金的制备:将钴铁氧在H2/N2气氛,800℃下还原4h,得到单相钴铁合金;
(2)钴铁基含氮合金磁致伸缩材料的制备:将步骤(1)中制备的单相钴铁合金在NH3气氛下,退火温度400~1000℃,退火2h,即成。
7.根据权利要求5或6所述的钴铁基含氮合金磁致伸缩材料的制备方法,其特征在于,步骤(2)中,所述退火温度1000℃。
CN201510937271.4A 2015-12-11 2015-12-11 一种钴铁基含氮合金磁致伸缩材料及其制备方法 Expired - Fee Related CN105543697B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510937271.4A CN105543697B (zh) 2015-12-11 2015-12-11 一种钴铁基含氮合金磁致伸缩材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510937271.4A CN105543697B (zh) 2015-12-11 2015-12-11 一种钴铁基含氮合金磁致伸缩材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105543697A true CN105543697A (zh) 2016-05-04
CN105543697B CN105543697B (zh) 2018-02-23

Family

ID=55823247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510937271.4A Expired - Fee Related CN105543697B (zh) 2015-12-11 2015-12-11 一种钴铁基含氮合金磁致伸缩材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105543697B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107008915A (zh) * 2017-04-01 2017-08-04 西安工程大学 一种Co3Fe7磁性合金微粉吸收剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101669180A (zh) * 2007-04-27 2010-03-10 旭化成株式会社 高频用磁性材料及其制造方法
CN102350504A (zh) * 2011-10-27 2012-02-15 哈尔滨工业大学 一种柠檬酸体系下制备Fe2Ni合金粉末的方法
CN104368825A (zh) * 2014-11-24 2015-02-25 中国人民解放军军械工程学院 一种形状可控铁钴合金磁性纳米粒子的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101669180A (zh) * 2007-04-27 2010-03-10 旭化成株式会社 高频用磁性材料及其制造方法
CN102350504A (zh) * 2011-10-27 2012-02-15 哈尔滨工业大学 一种柠檬酸体系下制备Fe2Ni合金粉末的方法
CN104368825A (zh) * 2014-11-24 2015-02-25 中国人民解放军军械工程学院 一种形状可控铁钴合金磁性纳米粒子的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张超: "钴铁氧体的制备及其性能研究", 《中国优秀硕士学位论文全文数据库-工程科技Ⅰ辑》 *
马永青等: "硬磁CoFe2O4/软磁CoFe2复合物的磁性研究", 《安徽大学学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107008915A (zh) * 2017-04-01 2017-08-04 西安工程大学 一种Co3Fe7磁性合金微粉吸收剂的制备方法
CN107008915B (zh) * 2017-04-01 2019-05-17 西安工程大学 一种Co3Fe7磁性合金微粉吸收剂的制备方法

Also Published As

Publication number Publication date
CN105543697B (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
Obayashi et al. Some Crystallographic, Electric and Thermochemical Properties of the Perovskite-Type La1-xMxNiO3 (M: Ca, Sr and Ba)
Ishida et al. The Co-Si (cobalt-silicon) system
Han et al. Fe-based soft magnetic amorphous alloys with high saturation magnetization above 1.5 T and high corrosion resistance
CN101665271B (zh) 单金属掺杂改性花簇状纳米四氧化三铁储氢材料的制备方法
Zhang et al. Facile synthesis, phase transition, optical switching and oxidation resistance properties of belt-like VO2 (A) and VO2 (M) with a rectangular cross section
CN108570607A (zh) 一种铁钴镍系抗直流纳米晶合金材料及其制备方法
CN102373343A (zh) 小尺寸磁性二元合金纳米材料及其制备方法
Fujitani et al. Relation between equilibrium hydrogen pressure and lattice parameters in pseudobinary Zr Mn alloy systems
El Kossi et al. Structural, magnetic and theoretical investigations on the magnetocaloric properties of La 0.7 Sr 0.25 K 0.05 MnO 3 perovskite
CN107799258A (zh) 高饱和磁感应强度的铁钴基非晶软磁合金材料及其制备方法
CN106636981A (zh) 一种软磁铁基非晶合金制品
CN105543697A (zh) 一种钴铁基含氮合金磁致伸缩材料及其制备方法
CN105525215A (zh) 一种镍铁基含氮合金磁致伸缩材料及其制备方法
CN101229930A (zh) 一种镍掺杂的钛酸铋钠多铁性材料及其制备方法
Dhanapal et al. Influence of Sn on the magnetic ordering of Ni–Sn alloy synthesized using chemical reduction method
CN103060692B (zh) 一种高耐蚀性稀土-铁铬硅碳磁热材料及其制备方法
Lv et al. Rod-Like MnMoO4 with Excellent Electrochemical Performance as Sensing Material to Detect Triethylamine
Hussain et al. Tungsten-substituted double perovskite Ba2FeMo1-xWxO6 for enhanced magnetocaloric effects
CN104538144B (zh) 一种钆掺杂铁镍基软磁材料的制备方法
Li et al. Effect of Ti content on magnetic and electrochemical corrosion properties of FeCoCrNi high entropy alloys
Rasool et al. Synthesis, characterization, thermal and electrical properties of composite of polyaniline with cobaltmonoethanolamine complex
CN101607714B (zh) 一种定向排列的纤蛇纹石纳米管的制备方法
Romero et al. Weak ferromagnetism in cobalt oxalate crystals
CN113604643A (zh) 一种高冲击韧性的高饱和磁感FeCo合金的制备方法
CN101045561B (zh) Ca3Co4O9+δ前驱粉体的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180223

Termination date: 20181211