CN105543175B - 一种胚胎干细胞向肝脏组织结构诱导分化的方法 - Google Patents

一种胚胎干细胞向肝脏组织结构诱导分化的方法 Download PDF

Info

Publication number
CN105543175B
CN105543175B CN201610013206.7A CN201610013206A CN105543175B CN 105543175 B CN105543175 B CN 105543175B CN 201610013206 A CN201610013206 A CN 201610013206A CN 105543175 B CN105543175 B CN 105543175B
Authority
CN
China
Prior art keywords
embryonic stem
stem cells
final concentration
differentiation
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610013206.7A
Other languages
English (en)
Other versions
CN105543175A (zh
Inventor
胡安斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Affiliated Hospital of Sun Yat Sen University
Original Assignee
First Affiliated Hospital of Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Affiliated Hospital of Sun Yat Sen University filed Critical First Affiliated Hospital of Sun Yat Sen University
Priority to CN201610013206.7A priority Critical patent/CN105543175B/zh
Publication of CN105543175A publication Critical patent/CN105543175A/zh
Application granted granted Critical
Publication of CN105543175B publication Critical patent/CN105543175B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/44Thiols, e.g. mercaptoethanol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/70Undefined extracts
    • C12N2500/80Undefined extracts from animals
    • C12N2500/84Undefined extracts from animals from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/12Hepatocyte growth factor [HGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/148Transforming growth factor alpha [TGF-a]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/237Oncostatin M [OSM]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/33Insulin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于细胞培养技术领域,具体涉及一种胚胎干细胞向肝脏组织结构诱导分化的方法。本发明将E‑cadherin基因作为外源基因转染胚胎干细胞,得到高效表达E‑cadherin基因的胚胎干细胞,然后培养分化,得到拟胚体,将其移植至含有EMT抑制剂的三维细胞培养系统中进行诱导培养,得到三维生长的肝脏组织结构。本发明首次从细胞黏附和EMT水平的角度研究ESC体外向肝脏组织结构分化,E‑cadherin转染后表达水平稳定控制,可保持细胞分化中足够的细胞黏附力,使其不易分散为单层细胞;降低胚胎干细胞体外分化过快的EMT水平,调控分化肝实质细胞以及肝间质细胞同步分化以形成肝脏组织,更加符合体内组织发育机理。

Description

一种胚胎干细胞向肝脏组织结构诱导分化的方法
技术领域
本发明属于细胞培养技术领域,具体涉及一种胚胎干细胞向肝脏组织结构诱导分化的方法。
背景技术
当今胚胎干细胞(ESC)向肝脏方向分化研究中,分化研究水平仍多限于单细胞状态,即仅能分化为肝细胞和胆管上皮细胞(BEC)等肝系细胞,缺点包括单一的细胞类型和不能进一步形成肝脏组织结构。现有技术也曾成功诱导胚胎干细胞向肝细胞和胆管上皮细胞分化,但分化细胞仍呈单细胞状态而很难形成肝组织。有学者研究改善胚胎干细胞分化的肝细胞状态,如通过聚氨酯支架等三维培养使分化肝细胞形成聚合体,但仅能改善其物理性态,不能形成包含肝细胞、胆管上皮细胞、血管结构等间质成分的真正意义上的肝脏组织。
作为功能复杂的器官组织,肝脏不仅需要肝细胞的合成代谢及解毒等功能,还需要胆管上皮的运输功能,以及其他间质细胞的细胞因子分泌和免疫调节等功能。如要在治疗中达到较全面的肝功能替代效果,仅靠获得数量和功能满意的单一的肝细胞是远远不够的,需要分化为由肝细胞、胆管上皮细胞、间质细胞、血管成分等组成的肝脏组织结构。
研究人员发现胚胎干细胞在体外向肝系细胞分化过程中,由单个胚胎干细胞首先分化发育为包含三胚层结构的拟胚体(embryonic body,EB),再进而由拟胚体分化为包含肝系细胞的细胞群落。期间,拟胚体向细胞群落分化过程中,细胞间黏附力较体内胚胎发育时明显下降,从而很容易失去拟胚体的三维组织结构状态而逐渐变为单层的细胞分化群落,即只能分化为单层的肝细胞或胆管上皮细胞,而不能形成肝脏组织。同时,拟胚体在体外分化过程中,的细胞上皮间质转化(epithelial mesenchymal transition,EMT)速度(水平)过快(过高),使得肝系细胞分化时程与肝脏间质成分如血管结构等分化时程脱节,因此在分化得到的肝细胞中间也缺乏血管间质成分,也就不能形成真正意义上的肝脏组织结构。
上皮型钙粘蛋白(Epithelial-cadherin,E-cadherin)是介导肝脏组织中细胞间黏附的主要黏附分子,通过介导肝细胞黏附而调控肝脏组织发育信号传导。分泌型卷曲相关蛋白-1(secreted frizzled-related proteins,sFRP-1)可通过下调Wnt/β-catenin信号而降低细胞培养中的EMT水平,减缓肝实质细胞和血管等肝脏间质细胞的分化时程,是二者分化达到同步,有利于分化出各种肝脏组织成分。
目前没有相关研究通过增强细胞黏附力和减缓细胞分化中EMT速度实现胚胎干细胞分化为真正意义上的肝脏组织结构。
发明内容
为了克服现有技术的不足和缺点,本发明的首要目的在于提供一种胚胎干细胞向肝脏组织结构诱导分化的方法。
本发明的目的通过下述技术方案实现:
一种胚胎干细胞向肝脏组织结构诱导分化的方法,包含如下步骤;
(1)将E-cadherin基因作为外源基因转染胚胎干细胞,得到高效表达E-cadherin基因的胚胎干细胞(E-cadherin-ESC);
(2)将步骤(1)得到的高效表达E-cadherin基因的胚胎干细胞进行培养分化,得到包含三胚层结构的拟胚体(EB);
(3)将步骤(2)得到的包含三胚层结构的拟胚体移植至含有EMT抑制剂的细胞培养系统中进行诱导培养,得到三维生长的肝脏组织结构;
步骤(1)中所述的胚胎干细胞优选为BALB/c系小鼠胚胎干细胞;
步骤(1)中所述的转染的方法,优选包含如下操作:
将E-cadherin-cDNA全序列和真核细胞表达载体连接,得到含有E-cadherin-cDNA全序列和CAG启动子的重组载体,然后将重组载体转染胚胎干细胞并筛选阳性克隆胚胎干细胞,得到高效表达E-cadherin基因的胚胎干细胞;
所述的真核细胞表达载体优选为pCAG-MCS载体;
所述的转染的方式优选为脂质体介导法;
步骤(2)中所述的培养分化的培养基优选由基础培养基和添加物组成;
所述的基础培养基优选为DMEM培养基;所述的添加物包含如下组分:体积分数为20%的胎牛血清、终浓度为0.1M的2-巯基乙醇、终浓度为25mM的HEPES、终浓度为100U/mL的青霉素和终浓度为100μg/mL的链霉素;
步骤(2)中所述的培养分化的时间优选为6天;
步骤(3)中所述的细胞培养系统优选为半开放胶原支架颗粒三维培养系统;
所述的半开放胶原支架颗粒三维培养系统通过如下方法制备得到:
对胶原支架颗粒进行切割,使其形成裂隙;得到半开放胶原支架颗粒三维培养系统;
所述的裂隙的宽度优选为1mm;
所述的胶原支架颗粒优选为来源于母牛皮肤胶原的胶原支架颗粒,每个支架颗粒大小为3×3×2mm,颗粒内部孔径为400μm;
所述的半开放胶原支架颗粒三维培养系统使用前,优选先在培养基中将胶原支架颗粒离心使其沉淀,然后37℃静置12~24h;
步骤(3)中所述的拟胚体优选位于上述胶原支架颗粒切割后形成的裂隙中;
步骤(3)中所述的诱导培养的培养基优选由基础培养基和添加物组成;
所述的基础培养基优选为DMEM培养基;所述的添加物包含如下组分:体积分数为20%的胎牛血清、终浓度为0.1M的2-巯基乙醇、终浓度为25mM的HEPES、终浓度为100U/mL的青霉素和终浓度为100μg/mL的链霉素;
步骤(3)中所述的诱导培养过程中添加肝性生长因子;
所述的肝性生长因子为EGF、TGF、HGF、OSM、地塞米松、胰岛素和转铁蛋白中的至少一种;
所述的肝性生长因子加入时间和用量优选为:
胚胎干细胞分化第7天~19天(本发明中的分化天数是从胚胎干细胞首次分化开始计),加入终浓度为30ng/mL的EGF和终浓度为30ng/mL的TGF;
胚胎干细胞分化第7天~10天,加入终浓度为20ng/mL的HGF;
胚胎干细胞分化第11~19天,加入终浓度为40ng/mL的HGF;
胚胎干细胞分化第15~19天,加入终浓度为10ng/mL的OSM,终浓度为10-7M的地塞米松、终浓度为5μg/mL的胰岛素、终浓度为5μg/mL的转铁蛋白;
步骤(3)中所述的EMT抑制剂优选为EMT抑制剂sFRP-1;
步骤(3)中所述的EMT抑制剂在细胞培养系统中的终浓度优选为0.5μg/mL;
进一步优选的,胚胎干细胞分化第7~19天(即拟胚体转入胶原颗粒三维培养系统中开始),加入0.5μg/mL的sFRP-1;
步骤(2)和(3)中所述的培养条件优选为:在5%CO2培养箱中37℃条件下培养;
一种肝脏组织结构,通过上述方法制备得到;
所述的肝脏组织结构在探索和验证肝脏组织发育相关机制中的应用;
本发明的原理:
胚胎干细胞向肝细胞分化中,早期首先悬浮发育为包含三胚层结构的拟胚体,然后贴壁生长并在细胞因子诱导下向肝细胞分化。随着分化进行,细胞逐渐从拟胚体结构分离并呈分散生长,最后变为单层细胞群落并失去拟胚体的三维组织结构,这是胚胎干细胞体外无法分化为肝脏组织的主要原因。研究发现,拟胚体分化后期,上皮间质转化(EMT)水平较体内明显升高,表现为E-cadherin表达和细胞黏附力(AF)较体内肝脏组织明显下降,间质细胞骨架蛋白Vimentin明显上调等。形态学上也体现了EMT加快的特点,细胞由圆形变为多角形、狭长形,细胞黏附连接消失,由克隆生长变为分散生长。同时,拟胚体在体外分化过程中,细胞上皮间质转化(EMT)速度(水平)过快(过高),使得肝系细胞分化时程与肝脏间质成分如血管结构等分化时程脱节,因此在分化得到的肝细胞中间缺乏血管间质成分,也就不能形成真正意义上的肝脏组织结构。
因此,胚胎干细胞体外分化后期1-EMT水平过快导致分化细胞不能形成必要的细胞黏附和细胞极性,分化细胞失去拟胚体的三维组织结构而只能以单层分散方式生长。同时,因为EMT水平过快使得血管等其他间质成分很早期即分化完毕,而肝系细胞在肝性生长因子作用下则继续分化生长至19天,因此在肝系细胞分化后期,分化系统中已经不存在血管等肝脏间质成分,即使分化中出现数量和功能满意的肝细胞,也不能形成肝脏组织。
本发明发现稳定表达黏附分子上皮型钙粘蛋白(E-cadherin)的胚胎干细胞向肝细胞分化时,分化细胞通过增强细胞间黏附力而使得分化的肝系细胞保持三维结构生长状态。分泌型卷曲相关蛋白-1(secreted frizzled-related proteins,sFRP-1)可通过下调Wnt/β-catenin信号而降低细胞培养中的EMT水平,可使血管等间质细胞分化时程延缓变慢,使其延长至19d与肝细胞成熟期同步,有利于分化出包括肝细胞、血管等肝脏组织结构成分。在上述E-cadherin和sFRP-1调控下,再联合三维培养方法,利用肝性细胞因子诱导胚胎干细胞向肝脏方向,这种联合诱导培养方法,可使胚胎干细胞分化发育为真正意义上的肝脏组织结构。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明首次从细胞黏附角度研究胚胎干细胞体外向肝脏组织结构分化,E-cadherin转染后表达水平稳定控制,可保持细胞分化中足够的细胞黏附力,使其不易分散为单层细胞。
(2)本发明从EMT角度进行胚胎干细胞向肝脏组织分化研究,通过应用EMT抑制剂,抑制体外胚胎干细胞分化中过快的EMT现象,使肝脏实质细胞和血管等肝脏间质细胞的分化时程达到同步分化,在肝细胞分化成熟后期,分化系统中仍然存在血管结构,与以往仅是分化肝细胞在物理形态上的集聚不同,是包含了肝实质细胞和血管细胞等间质成分的真正意义上的肝脏组织,也更加符合体内组织发育的本质机制。
(3)本发明采用半开放胶原支架颗粒三维培养系统:对每个胶原支架颗粒进行显微操作切割使其形成裂隙,这种半开放状态的支架较海藻酸盐微囊、聚氨酯泡沫等封闭支架使拟胚体更容易及时获取培养液营养成分,1mm距离可保证拟胚体充分向外周分化生长。
(4)本发明从体内组织发育机理方面入手,调控分化肝细胞、胆管上皮细胞等肝实质细胞以及血管等肝间质细胞同步分化以形成肝脏组织,获得一种功能更为完善的肝脏替代物,并探索和验证肝脏组织发育相关机制,具有重要而现实的意义。
附图说明
图1是实施例3胚胎干细胞向肝脏方向分化光镜像图,其中,A:分化第1天,胚胎干细胞;B:分化第5天,胚胎干细胞经悬浮培养并分化为拟胚体;C:对照组分化第15天,拟胚体自然状态下分化形成的松散的单层肝细胞群落;D:实验组分化第15天,拟胚体仍然保持三维组织结构分化,分化形成的肝细胞呈多层生长状态。
图2是分化第19天时实施例3分化的肝脏组织结构免疫荧光检测图;其中,A:血管结构标记物VEGFR1阳性;B:肝脏功能标记物ALB阳性;C:二者叠加,显示ALB阳性的肝细胞分布于血管结构之间,体现肝脏组织结构的形态结构和功能特点;VEGFR1:血管内皮生长因子受体1;ALB:白蛋白。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1高效表达E-cadherin基因的胚胎干细胞的构建
(1)根据小鼠E-cadherin基因(ACCESSION-AF167441)cDNA全序列信息,设计引物(cDNA-F:5′-GGAAGCTTATGGGAGCCCGGTGC-3',cDNA-R:5′-GCGGATCCCTAGTCGTCCTCACCA-3');
(2)以BALB/c系小鼠肝脏组织总RNA为模板,逆转录得到cDNA模板;用该模板与步骤(1)涉及的引物进行PCR扩增,得到E-cadherin基因;
(3)将步骤(2)得到的PCR产物与真核细胞pCAG-MCS载体连接(购自Yrbio公司)质粒连接,构建pCAG-E-cadherin质粒,然后转化感受态大肠杆菌并培养大量提取质粒;
(4)采用脂质体介导法将pCAG-E-cadherin重组质粒转染胚胎干细胞并进行G418筛选;筛选一周后挑选阳性克隆胚胎干细胞进行PCR鉴定(QPCR-F:GCAGGTCTCCTCATGGCTTTGC,QPCR-R:CCTTCAAATCTCACTCTGCCCAGG;),如检测到高效表达E-cadherin基因即为转染成功。将这种高效表达E-cadherin基因的胚胎干细胞定义为E-cadherin-ESC。
实施例2三维培养系统建立
(2)三维培养系统建立:胶原支架颗粒(购自试剂公司,来源于母牛皮肤胶原),每个支架颗粒大小约3×3×2mm,颗粒内部孔径400um,每个支架颗粒经过显微操作切割,形成1mm裂隙,得到半开放胶原支架颗粒三维培养系统;使用前先在培养液(由基础培养基和添加物组成;基础培养基优选为DMEM培养基;添加物包含:体积分数为20%的胎牛血清、终浓度为0.1M的2-巯基乙醇、终浓度为25mM的HEPES、终浓度为100U/mL的青霉素和终浓度为100μg/mL的链霉素)中将胶原支架颗粒离心使其沉淀,然后于培养液37℃过夜。
实施例3胚胎干细胞向肝脏组织结构诱导分化的方法
(1)E-cadherin-ESC细胞诱导为拟胚体:将实施例1制得的E-cadherin-ESC细胞悬浮培养6天使其发育分化为包含三胚层结构的拟胚体;悬浮培养的培养基由基础培养基和添加物组成;所述的基础培养基为DMEM培养基;所述的添加物包含如下组分:体积分数为20%的胎牛血清、终浓度为0.1M的2-巯基乙醇、终浓度为25mM的HEPES、终浓度为100U/mL的青霉素和终浓度为100μg/mL的链霉素;
(2)E-cadherin-ESC细胞向肝脏组织结构诱导:然后将步骤(1)制得的拟胚体移植到实施例2制得的半开放胶原支架颗粒三维培养系统中,每个支架颗粒添加一个拟胚体,拟胚体位于支架颗粒切割形成的裂隙中,将这些包含拟胚体的胶原支架颗粒转入培养皿中,进行诱导培养:诱导培养的培养基由基础培养基和添加物组成;所述的基础培养基为DMEM培养基;所述的添加物包含如下组分:体积分数为20%的胎牛血清、终浓度为0.1M的2-巯基乙醇、终浓度为25mM的HEPES、终浓度为100U/mL的青霉素和终浓度为100μg/mL的链霉素;诱导培养过程中还需添加肝性生长因子;
肝性生长因子的加入时间和用量如下所示:
胚胎干细胞分化第7天~19天(本发明中的分化天数是从胚胎干细胞首次分化开始计,加入终浓度为30ng/mL的EGF和终浓度为30ng/mL的TGF;
胚胎干细胞分化第7天~10天,加入终浓度为终浓度为20ng/mL的HGF;
胚胎干细胞分化第11~19天,加入终浓度为40ng/mL的HGF;
胚胎干细胞分化第15~19天,加入终浓度为10ng/mL的OSM,终浓度为10-7M的地塞米松,终浓度为5μg/mL的胰岛素,终浓度为5μg/mL的转铁蛋白;
所述的培养系统中还包括EMT抑制剂sFRP-1:胚胎干细胞分化7~19天,即EB转入胶原颗粒三维培养系统中开始,加入0.5μg/mL的sFRP-1;
通过诱导培养后,使分化的肝细胞和胆管上皮细胞在培养系统中同时出现,通过E-cadherin介导细胞黏附和sFRP-1调控细胞分化EMT速度的作用,在半开放胶原支架三维培养系统中形成肝脏组织结构(图1)。
实施例4(对比实施例)
(1)将未经E-cadherin基因转染的BALB/c系小鼠普通胚胎干细胞,经悬浮培养6天使其发育分化为包含三胚层结构的拟胚体;悬浮培养的培养基由基础培养基和添加物组成;所述的基础培养基为DMEM培养基;所述的添加物包含如下组分:体积分数为20%的胎牛血清、终浓度为0.1M的2-巯基乙醇、终浓度为25mM的HEPES、终浓度为100U/mL的青霉素和终浓度为100μg/mL的链霉素;
(2)然后将步骤(1)制得的拟胚体转入培养皿中,进行贴壁诱导培养:诱导培养的培养基由基础培养基和添加物组成;所述的基础培养基为DMEM培养基;所述的添加物包含如下组分:体积分数为20%的胎牛血清、终浓度为0.1M的2-巯基乙醇、终浓度为25mM的HEPES、终浓度为100U/mL的青霉素和终浓度为100μg/mL的链霉素;诱导培养过程中还需添加肝性生长因子;
肝性生长因子的加入时间和用量如下所示:
胚胎干细胞分化第7天~19天(本发明中的分化天数是从胚胎干细胞首次分化开始计,加入终浓度为30ng/mL的EGF和终浓度为30ng/mL的TGF;
胚胎干细胞分化第7天~10天,加入终浓度为终浓度为20ng/mL的HGF;
胚胎干细胞分化第11~19天,加入终浓度为40ng/mL的HGF;
胚胎干细胞分化第15~19天,加入终浓度为10ng/mL的OSM,终浓度为10-7M的地塞米松,终浓度为5μg/mL的胰岛素,终浓度为5μg/mL的转铁蛋白;
通过诱导培养后,使胚胎干细胞向肝细胞和胆管上皮细胞同时分化。
实施例5肝脏组织结构形成及鉴定
利用RT-PCR检测BALB/c系小鼠普通胚胎干细胞(实施例4)和E-cadher in-ESC(实施例1)不同分化时期E-cadherin基因表达水平,其中,RT-PCR引物如下所示:QPCR-F:GCAGGTCTCCTCATGGCTTTGC,QPCR-R:CCTTCAAATCTCACTCTGCCCAGG;
利用免疫细胞(组织)化学检测E-cadherin-ESC细胞和普通胚胎干细胞E-cadherin表达情况;
利用免疫细胞(组织)化学、FCM和放射免疫(RIA)技术检测:肝脏组织功能标记物(如AFP、ALB、CK8、CK19、GGT、TAT等)表达和ALB、尿素合成;肝细胞紧密层状排列;有无肝细胞、胆管上皮细胞和血管结构共同存在于培养系统中。综合判定是否达到肝脏组织化标准。
实验结果分析:
(1)胚胎干细胞分化中上皮型钙粘蛋白(E-cad)对分化细胞黏附及生长状态的影响
经QPCR检测,发现BALB/c系小鼠普通胚胎干细胞分化组E-cadherin在胚胎干细胞分化1~5d(EB期)表达水平最高,其后减弱至17d时不能检测到;将E-cadherin基因转染入胚胎干细胞并使其稳定表达,分化细胞黏附较普通胚胎干细胞分化组明显增加,19d时仍保持三维多层立体生长,这种多层立体的生长状态为后续肝脏组织分化研究提供了组织结构形态学基础;而普通胚胎干细胞分化组呈单层生长。
(2)E-cadherin增强胚胎干细胞分化的肝系细胞功能和黏附状态
胚胎干细胞稳定表达E-cadherin后,联合EMT抑制剂sFRP-1和肝性细胞因子HGF等诱导向肝细胞、胆管上皮细胞分化,发现分化细胞表达AFP、ALB、CK8、CK19、GGT、TAT等肝性标记物,证明分化系统中出现肝系细胞。同时,分化肝系细胞功能增强并保持三维立体结构生长状态,而普通胚胎干细胞分化组(实施例4)细胞呈单层生长。
(3)胚胎干细胞在E-cad、EMT抑制剂和肝系细胞因子联合诱导下,向肝脏组织结构分化:
在上述分化系统中,除观察到分化肝细胞呈三维状态生长,还检测了血管细胞标记物VEGFR等,发现血管结构成分的分化时间延长至19d与肝细胞成熟期同步,而普通胚胎干细胞分化组在13d后即已无法检测到血管结构成分。最后,分化系统中形成类血管结构并分布于ALB阳性的肝细胞之间,这体现了与体内肝脏组织发育相同的的形态结构特点,证明分化系统中出现肝脏组织(图2)。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Figure IDA0000901584770000011
Figure IDA0000901584770000021

Claims (3)

1.一种胚胎干细胞向肝脏组织结构诱导分化的方法,其特征在于包含如下步骤:
(1)将E-cadherin基因作为外源基因转染小鼠胚胎干细胞,得到高效表达E-cadherin基因的胚胎干细胞;
(2)将步骤(1)得到的高效表达E-cadherin基因的胚胎干细胞进行培养分化,得到包含三胚层结构的拟胚体;
(3)将步骤(2)得到的包含三胚层结构的拟胚体移植至含有EMT抑制剂的细胞培养系统中进行诱导培养,得到三维生长的肝脏组织结构;
步骤(3)中所述的EMT抑制剂为EMT抑制剂sFRP-1;
在胚胎干细胞分化第7~19天,即拟胚体转入细胞培养系统中开始,加入0.5μg/mL的sFRP-1;
步骤(3)中所述的细胞培养系统为半开放胶原支架颗粒三维培养系统;
所述的半开放胶原支架颗粒三维培养系统通过如下方法制备得到:对胶原支架颗粒进行切割,使其形成裂隙;得到半开放胶原支架颗粒三维培养系统;
步骤(3)中所述的拟胚体位于上述胶原支架颗粒切割后形成的裂隙中;
步骤(3)中所述的诱导培养过程中添加肝性生长因子;
所述的肝性生长因子加入时间和用量为:
胚胎干细胞分化第7天~19天,加入终浓度为30ng/mL的EGF和终浓度为30ng/mL的TGF;
胚胎干细胞分化第7天~10天,加入终浓度为20ng/mL的HGF;
胚胎干细胞分化第11~19天,加入终浓度为40ng/mL的HGF;
胚胎干细胞分化第15~19天,加入终浓度为10ng/mL的OSM,终浓度为10-7M的地塞米松、终浓度为5μg/mL的胰岛素、终浓度为5μg/mL的转铁蛋白。
2.根据权利要求1所述的胚胎干细胞向肝脏组织结构诱导分化的方法,其特征在于:
步骤(1)中所述的转染的方法,包含如下操作:
将E-cadherin-cDNA全序列和真核细胞表达载体连接,得到含有E-cadherin-cDNA全序列和CAG启动子的重组载体,然后将重组载体转染胚胎干细胞并筛选阳性克隆胚胎干细胞,得到高效表达E-cadherin基因的胚胎干细胞。
3.根据权利要求1所述的胚胎干细胞向肝脏组织结构诱导分化的方法,其特征在于:
步骤(3)中所述的诱导培养的培养基由基础培养基和添加物组成;
所述的基础培养基为DMEM培养基;所述的添加物包含如下组分:体积分数为20%的胎牛血清、终浓度为0.1M的2-巯基乙醇、终浓度为25mM的HEPES、终浓度为100U/mL的青霉素和终浓度为100μg/mL的链霉素。
CN201610013206.7A 2016-01-06 2016-01-06 一种胚胎干细胞向肝脏组织结构诱导分化的方法 Active CN105543175B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610013206.7A CN105543175B (zh) 2016-01-06 2016-01-06 一种胚胎干细胞向肝脏组织结构诱导分化的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610013206.7A CN105543175B (zh) 2016-01-06 2016-01-06 一种胚胎干细胞向肝脏组织结构诱导分化的方法

Publications (2)

Publication Number Publication Date
CN105543175A CN105543175A (zh) 2016-05-04
CN105543175B true CN105543175B (zh) 2020-07-03

Family

ID=55822733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610013206.7A Active CN105543175B (zh) 2016-01-06 2016-01-06 一种胚胎干细胞向肝脏组织结构诱导分化的方法

Country Status (1)

Country Link
CN (1) CN105543175B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110373380B (zh) * 2019-06-14 2022-01-28 中国科学院生态环境研究中心 一种肝脏类器官模型及其建立方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101962630A (zh) * 2009-07-23 2011-02-02 北京大学 诱导人胚胎干细胞或人诱导形成的多潜能干细胞向肝细胞分化的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101962630A (zh) * 2009-07-23 2011-02-02 北京大学 诱导人胚胎干细胞或人诱导形成的多潜能干细胞向肝细胞分化的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Epithelial-Mesenchymal Transition Delayed by E-cad to Promote Tissue Formation in Hepatic Differentiation of Mouse Embryonic Stem Cells in Vitro";Anbin Hu 等;《STEM CELLS AND DEVELOPMENT》;20131124;第23卷(第8期);摘要,第877页右栏第1段,第878页左栏最后1段-第879页左栏最后1段,第880页右栏第2段 *
"上皮型钙黏蛋白诱导小鼠胚胎干细胞向类肝脏组织分化的研究";胡安斌 等;《中华实验外科杂志》;20121031;第29卷(第10期);第1961-1963页 *

Also Published As

Publication number Publication date
CN105543175A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
US10435710B2 (en) Engineering a heterogeneous tissue from pluripotent stem cells
US6030836A (en) Vitro maintenance of hematopoietic stem cells
CA2717962C (en) Human cardiovascular progenitor cells
Cai et al. Protocol for directed differentiation of human pluripotent stem cells toward a hepatocyte fate
JP5745423B2 (ja) 幹細胞から肝細胞への分化誘導方法
US20130071365A1 (en) Induced hepatocytes
CA2328425A1 (en) Production of megakaryocytes by co-culturing human mesenchymal stem cells with cd34+ cells
TW200902716A (en) Complexes of hyaluronans, other matrix components, hormones and growth factors for maintenance, expansion and differentiation of hepatic cells
JPWO2004104184A1 (ja) 内胚葉系幹細胞の調製
US20070148767A1 (en) Method of forming multicellular spheroids from the cultured cells
CA2441571A1 (en) Methods for identifying and purifying smooth muscle progenitor cells
WO2014168157A1 (ja) 肝幹前駆様細胞の培養方法及びその培養物
CN105543175B (zh) 一种胚胎干细胞向肝脏组织结构诱导分化的方法
JP2007135593A (ja) 細胞クラスターの生成法
JP6884967B2 (ja) ヒトミエロイド系血液細胞及び該細胞の作製方法
JP6095272B2 (ja) 上皮系体性幹細胞の製造方法
JP2018183137A (ja) 多能性幹細胞から樹状分岐した集合管を伴う腎臓構造を作製する方法
WO2013186264A1 (en) Immortalized mesenchymal stem cells that can be killed through an inducible apoptosis system
WO2005108557A1 (ja) 前駆間葉系幹細胞
CN113897331B (zh) 一种诱导人源动脉内皮细胞的分化方法
Wang et al. Promoter-defined isolation and identification of hepatic progenitor cells from the human fetal liver
EP2719759A1 (en) Production method for artificial cancer stem cell and induced differentiation method therefor
JP7148134B2 (ja) 肝芽細胞から胆管上皮前駆細胞への段階的誘導方法
JP2007014273A (ja) 肝組織・臓器及びその製造方法
CN114480253B (zh) 多能干细胞定向诱导分化为肝细胞的培养基及培养方法和用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant