CN105536846A - 一种用于有机污水处理的光降解催化剂及其制备方法 - Google Patents

一种用于有机污水处理的光降解催化剂及其制备方法 Download PDF

Info

Publication number
CN105536846A
CN105536846A CN201610033590.7A CN201610033590A CN105536846A CN 105536846 A CN105536846 A CN 105536846A CN 201610033590 A CN201610033590 A CN 201610033590A CN 105536846 A CN105536846 A CN 105536846A
Authority
CN
China
Prior art keywords
catalyst
titanium dioxide
sheet
nano
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610033590.7A
Other languages
English (en)
Other versions
CN105536846B (zh
Inventor
江国栋
杨霄霄
沈晓冬
崔升
林本兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suqian Nanjing University Of Technology New Material Research Institute
Nanjing Tech University
Original Assignee
Suqian Nanjing University Of Technology New Material Research Institute
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suqian Nanjing University Of Technology New Material Research Institute, Nanjing Tech University filed Critical Suqian Nanjing University Of Technology New Material Research Institute
Priority to CN201610033590.7A priority Critical patent/CN105536846B/zh
Publication of CN105536846A publication Critical patent/CN105536846A/zh
Application granted granted Critical
Publication of CN105536846B publication Critical patent/CN105536846B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种用于有机污水处理的光降解催化剂及其制备方法,该光降解催化剂是由纳米片状二氧化钛负载在氮化碳纳米片上,具有高效、多次重复使用、无二次污染等优点。本发明的用于有机污水处理的光降解催化剂为二氧化钛/氮化碳复合光降解催化剂,所述的二氧化钛为纳米片状,纳米片状二氧化钛负载在氮化碳纳米片上,所述的复合光降解催化剂粒径为1-10um,其中纳米片状二氧化钛与氮化碳纳米片的质量比为15:1-5:1。

Description

一种用于有机污水处理的光降解催化剂及其制备方法
技术领域
本发明涉及一种催化剂及其制备方法,更具体地说涉及一种用于有机污水处理的光降解催化剂及其制备方法。
背景技术
目前全世界地面水体中检出的有机物达到二千多种,其中具有致癌,致畸的达到数百中之多,随着工农业生产的发展,越来越多的有机污染物通过三废排放,大气降雨,对水体环境造成不同程度的污染,引起了一系列社会问题。目前,有机废水的处理技术主要包括:生物处理技术,化学处理技术以及吸附过滤等物理处理技术。近年来发展出了光催化氧化法处理水体中有机污染物的新技术。光催化降解能有效去除有机污染物,并且避免对水体的二次污染。为了提高光催化降解效率,拓宽光谱吸收带,过渡金属及贵金属掺杂半导体氧化物被用于可见光光催化研究,但其成本较高。近年来出现了一种非金属石墨烯状氮化碳半导体光催化剂,由于该催化剂光生电子与正电荷复合能力强,极大的降低了光催化氧化效率,如果将TiO2负载在氮化碳上形成异相结,从而有效提高光生电子与正电荷分离能力。
发明内容
本发明的目的是解决现有技术中存在的问题与不足,提供一种用于有机污水处理的光降解催化剂及其制备方法,该光降解催化剂是由纳米片状二氧化钛负载在氮化碳纳米片上,具有高效、多次重复使用、无二次污染等优点。
本发明是通过以下技术方案实现的:
本发明的用于有机污水处理的光降解催化剂为二氧化钛/氮化碳复合光降解催化剂,所述的二氧化钛为纳米片状,纳米片状二氧化钛负载在氮化碳纳米片上,所述的复合光降解催化剂粒径为1~10um,其中纳米片状二氧化钛与氮化碳纳米片的质量比为15:1~5:1。
本发明上述的光降解催化剂,其进一步的技术方案是所述的二氧化钛为锐钛晶型,二氧化钛纳米片厚度约1~20nm,二氧化钛纳米片边长为5~50nm。
本发明上述的光降解催化剂,其进一步的技术方案还可以是所述的氮化碳纳米片为由1~50单层二维氮化碳堆积,氮化碳纳米片的二维粒径为1~10um。
本发明上述的光降解催化剂的制备方法,其包括以下步骤:
将烷氧基类钛酸酯、氮化碳、催化剂、溶剂混合后置于聚四氟乙烯内衬的水热反应器中,在150~200℃条件下,通过溶剂热反应12~24h,将所得悬浮液经分离后,用水多次清洗,经烘干得到浅黄色粉末即二氧化钛/氮化碳复合光降解催化剂。
本发明上述的光降解催化剂的制备方法,其进一步的技术方案是所述的烷氧基类钛酸酯为钛酸正丁酯或钛酸四异丙酯。
本发明上述的光降解催化剂的制备方法,其进一步的技术方案还可以是所述的催化剂为HF。
本发明上述的光降解催化剂的制备方法,其进一步的技术方案还可以是所述的溶剂为正丁醇或异丙醇。
本发明上述的光降解催化剂的制备方法,其进一步的技术方案还可以是所述的复合光降解催化剂中纳米片状二氧化钛与纳米片状氮化碳的质量比为15:1~5:1。
本发明与现有技术相比具有以下有益效果:
本发明的光降解催化剂是由纳米片状二氧化钛负载在氮化碳纳米片上,具有高效、多次重复使用、无二次污染等优点。本发明的光降解催化剂其二氧化钛/纳米片状氮化碳复合后的荧光效率降低90%以上,二氧化钛/氮化碳复合光降解催化剂分散在有机污水中,通过可见光照射,污水中的有机物可以降解为无机小分子或二氧化碳。二氧化钛/氮化碳复合光降解催化剂的使用浓度为0.1~1mg/L,在催化剂循环使用10次后的催化效率降低率不大于20%。
附图说明
图1为本发明实施例1的二氧化钛纳米片/氮化碳纳米片复合光催化剂的SEM形貌图
图2为本发明实施例1的二氧化钛纳米片/氮化碳纳米片复合光催化剂的TEM形貌图
具体实施方式:
实施例1
100g三聚氰胺在520℃条件下煅烧3h,取出后碾磨成粉末,得到氮化碳粉末。
将8ml钛酸正丁酯,1ml的HF溶液(40wt%)0.2g的氮化碳粉末,150ml异丙醇混合后倒入水热反应器中,在180℃条件下,反应24h,将所得悬浮液经分离后,用水多次清洗,在90℃下烘干得到浅黄色粉末。
将0.2g以上催化剂粉末球磨分散在10mL的水中制备成分散浆料,然后将该浆料按加入1L的溶度为10mg/mL有机污染的水体中(污染物为甲基兰),置于关照强度为0.51W/m2340nm的Q-SUN老化箱体中2h,有机污染物残留量为初始溶度的3.5%。
实施例2
100g三聚氰胺在520℃条件下煅烧3h,取出后碾磨成粉末,得到氮化碳粉末,然后将该粉末在550℃条件下煅烧0.5h。
将8ml钛酸正丁酯,1ml的HF溶液(40wt%)0.1g的氮化碳粉末,150ml异丙醇混合后倒入水热反应器中,在180℃条件下,反应24h,将所得悬浮液经分离后,用水多次清洗,在90℃下烘干得到浅黄色粉末。
将0.2g以上催化剂粉末球磨分散在10mL的水中制备成分散浆料,然后将该浆料按加入1L的溶度为10mg/mL有机污染的水体中(污染物为甲基兰),置于关照强度为0.51W/m2340nm的Q-SUN老化箱体中2h,有机污染物残留量为初始溶度的3.0%。
实施例3
100g三聚氰胺在520℃条件下煅烧3h,取出后碾磨成粉末,得到氮化碳粉末。
将8ml钛酸四异丙酯,1ml的HF溶液(40wt%),0.1g的氮化碳粉末,150ml异丁醇混合后倒入水热反应器中,在180℃条件下,反应24h,将所得悬浮液经分离后,用水多次清洗,在90℃下烘干得到浅黄色粉末。
将0.3g以上催化剂粉末球磨分散在10ml的水中制备成分散浆料,然后将该浆料按加入1L的溶度为20mg/mL有机污染的水体中(污染物为苯酚),置于关照强度为0.51W/m2340nm的Q-SUN老化箱体中2h,有机污染物残留量为初始溶度的3.6%。
实施例4
100g三聚氰胺在520℃条件下煅烧3h,取出后碾磨成粉末,得到氮化碳粉末。
将8ml钛酸正丁酯,2ml的HF溶液(40wt%),0.3g的氮化碳粉末,150ml正丁醇混合后倒入水热反应器中,在200℃条件下,反应24h,将所得悬浮液经分离后,用水多次清洗,在90℃下烘干得到浅黄色粉末。
将0.5g以上催化剂粉末球磨分散在10L的水中制备成分散浆料,然后将该浆料按加入1L的溶度为2mg/mL有机污染的水体中(污染物为硝基苯),置于关照强度为0.51W/m2340nm的Q-SUN老化箱体中2h,有机污染物残留量为初始溶度的5.0%。

Claims (8)

1.一种用于有机污水处理的光降解催化剂,其特征在于该光降解催化剂为二氧化钛/氮化碳复合光降解催化剂,所述的二氧化钛为纳米片状,纳米片状二氧化钛负载在氮化碳纳米片上,所述的复合光降解催化剂粒径为1~10um,其中纳米片状二氧化钛与氮化碳纳米片的质量比为15:1~5:1。
2.根据权利要求1所述的光降解催化剂,其特征在于所述的二氧化钛为锐钛晶型,二氧化钛纳米片厚度约1~20nm,二氧化钛纳米片边长为5~50nm。
3.根据权利要求1所述的光降解催化剂,其特征在于所述的氮化碳纳米片为由1~50单层二维氮化碳堆积,氮化碳纳米片的二维粒径为1~10um。
4.一种如权利要求1-3任一所述的光降解催化剂的制备方法,其特征在于包括以下步骤:
将烷氧基类钛酸酯、氮化碳、催化剂、溶剂混合后置于聚四氟乙烯内衬的水热反应器中,在150~200℃条件下,通过溶剂热反应12~24h,将所得悬浮液经分离后,用水多次清洗,经烘干得到浅黄色粉末即二氧化钛/氮化碳复合光降解催化剂。
5.根据权利要求4所述的光降解催化剂的制备方法,其特征在于所述的烷氧基类钛酸酯为钛酸正丁酯或钛酸四异丙酯。
6.根据权利要求4所述的光降解催化剂的制备方法,其特征在于所述的催化剂为HF。
7.根据权利要求4所述的光降解催化剂的制备方法,其特征在于所述的溶剂为正丁醇或异丙醇。
8.根据权利要求4所述的光降解催化剂的制备方法,其特征在于所述的复合光降解催化剂中纳米片状二氧化钛与纳米片状氮化碳的质量比为15:1~5:1。
CN201610033590.7A 2016-01-19 2016-01-19 一种用于有机污水处理的光降解催化剂及其制备方法 Expired - Fee Related CN105536846B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610033590.7A CN105536846B (zh) 2016-01-19 2016-01-19 一种用于有机污水处理的光降解催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610033590.7A CN105536846B (zh) 2016-01-19 2016-01-19 一种用于有机污水处理的光降解催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN105536846A true CN105536846A (zh) 2016-05-04
CN105536846B CN105536846B (zh) 2018-05-04

Family

ID=55816682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610033590.7A Expired - Fee Related CN105536846B (zh) 2016-01-19 2016-01-19 一种用于有机污水处理的光降解催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN105536846B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108295885A (zh) * 2018-02-24 2018-07-20 张静娟 一种用于制备石墨烯材料的光催化块的制备方法
CN109590007A (zh) * 2018-12-24 2019-04-09 天津城建大学 g-C3N4纳米片插层花状TiO2微球及其制备方法
CN110743604A (zh) * 2019-11-21 2020-02-04 佛山科学技术学院 一种有机污水高效光降解催化剂的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143380A (zh) * 2013-03-21 2013-06-12 哈尔滨工业大学 溶剂挥发法制备石墨相氮化碳/{001}面暴露锐钛矿相二氧化钛纳米复合材料
CN104084229A (zh) * 2014-06-25 2014-10-08 华南理工大学 氮化碳改性二氧化钛超亲水多孔薄膜及其制备方法与应用
KR101466648B1 (ko) * 2013-05-22 2014-12-01 한국에너지기술연구원 제올라이트-질화탄소화합물 복합체의 제조방법 및 이를 이용한 이산화탄소의 선택적 흡착
CN104209136A (zh) * 2014-09-15 2014-12-17 浙江大学 TiO2/多孔g-C3N4复合材料的制备方法
CN104772157A (zh) * 2015-01-13 2015-07-15 华东理工大学 一种g-C3N4表面生长TiO2纳米晶的方法与应用
CN104998672A (zh) * 2015-06-03 2015-10-28 华南理工大学 一种g-C3N4/{001}TiO2复合可见光催化剂及其制备方法与应用
CN105214708A (zh) * 2015-10-14 2016-01-06 黑龙江大学 一种二氧化钛-硼改性氮化碳光催化剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143380A (zh) * 2013-03-21 2013-06-12 哈尔滨工业大学 溶剂挥发法制备石墨相氮化碳/{001}面暴露锐钛矿相二氧化钛纳米复合材料
KR101466648B1 (ko) * 2013-05-22 2014-12-01 한국에너지기술연구원 제올라이트-질화탄소화합물 복합체의 제조방법 및 이를 이용한 이산화탄소의 선택적 흡착
CN104084229A (zh) * 2014-06-25 2014-10-08 华南理工大学 氮化碳改性二氧化钛超亲水多孔薄膜及其制备方法与应用
CN104209136A (zh) * 2014-09-15 2014-12-17 浙江大学 TiO2/多孔g-C3N4复合材料的制备方法
CN104772157A (zh) * 2015-01-13 2015-07-15 华东理工大学 一种g-C3N4表面生长TiO2纳米晶的方法与应用
CN104998672A (zh) * 2015-06-03 2015-10-28 华南理工大学 一种g-C3N4/{001}TiO2复合可见光催化剂及其制备方法与应用
CN105214708A (zh) * 2015-10-14 2016-01-06 黑龙江大学 一种二氧化钛-硼改性氮化碳光催化剂及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108295885A (zh) * 2018-02-24 2018-07-20 张静娟 一种用于制备石墨烯材料的光催化块的制备方法
CN109590007A (zh) * 2018-12-24 2019-04-09 天津城建大学 g-C3N4纳米片插层花状TiO2微球及其制备方法
CN110743604A (zh) * 2019-11-21 2020-02-04 佛山科学技术学院 一种有机污水高效光降解催化剂的制备方法
CN110743604B (zh) * 2019-11-21 2022-07-08 佛山科学技术学院 一种有机污水高效光降解催化剂的制备方法

Also Published As

Publication number Publication date
CN105536846B (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
Lu et al. Visible-light-driven g-C3N4/Ti3+-TiO2 photocatalyst co-exposed {0 0 1} and {1 0 1} facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr (VI) reduction
Sano et al. Activation of graphitic carbon nitride (gC 3 N 4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase
Wang et al. Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals
Wang et al. Promoted photocatalytic degradation and detoxication performance for norfloxacin on Z-scheme phosphate-doped BiVO4/graphene quantum dots/P-doped g-C3N4
Li et al. AgBr-loaded hollow porous carbon nitride with ultrahigh activity as visible light photocatalysts for water remediation
Al-Hamdi et al. Photocatalytic degradation of phenol in aqueous solution by rare earth-doped SnO 2 nanoparticles
Viet et al. Noble metal-doped graphitic carbon nitride photocatalyst for enhancement photocatalytic decomposition of antibiotic pollutant in wastewater under visible light
Zhang et al. Development of novel α-Fe2O3/NiTiO3 heterojunction nanofibers material with enhanced visible-light photocatalytic performance
Babu et al. Enhanced solar light–driven photocatalytic degradation of tetracycline and organic pollutants by novel one–dimensional ZnWO4 nanorod–decorated two–dimensional Bi2WO6 nanoflakes
Chakraborty et al. Preparation and characterization of WO 3/Bi 3 O 4 Cl nanocomposite and its photocatalytic behavior under visible light irradiation
Khanmohammadi et al. Insights into mesoporous MCM-41-supported titania decorated with CuO nanoparticles for enhanced photodegradation of tetracycline antibiotic
Kaplan et al. Enhanced photocatalytic activity of single-phase, nanocomposite and physically mixed TiO2 polymorphs
Senthilnanthan et al. Visible light responsive ruthenium-doped titanium dioxide for the removal of metsulfuron-methyl herbcide in aqueous phase
CN101773827A (zh) 高活性载铂TiO2纳米管光催化剂的制备方法
Adhikari et al. Effect of particle size on the photocatalytic activity of BiNbO4 under visible light irradiation
CN105536846A (zh) 一种用于有机污水处理的光降解催化剂及其制备方法
Cui et al. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite
Meng et al. Fabrication of novel p-CuO/n-ZnO heterojunction nanofibers by electrospinning for enhanced photocatalytic performance in the denitrification of fuel oil
Zhu et al. Synthesis of Ag-coated on a wrinkled SiO2@ TiO2 architectural photocatalyst: new method of wrinkled shell for use of semiconductors in the visible light range and penicillin antibiotic degradation
Zhang et al. Raspberry-like TiO 2 hollow spheres consisting of small nanocrystals towards efficient NO removal
Padervand et al. CQDs/BiOCl photocatalysts for the efficient treatment of congo red aqueous solution under visible light
Almojil et al. A novel g-C3N4-nanosheets/Ni3V2O8 np heterojunction nanocomposite: A promising photocatalyst with enhanced photocatalytic degradation of tetracycline under visible light irradiation
Khan et al. Synthesis of mesoporous composites based on α-Fe 2 O 3/NiO nanowires for the photocatalytic degradation of rhodamine B dye
Li et al. Construction of S-scheme heterostructured TiO2/g-C3N4 composite microspheres with sunlight-driven photocatalytic activity
Liao et al. Constructing MXene-derived Z-Scheme g-C3N4/Ti3C2TX/Ag3PO4 photocatalysts with enhanced charge transfer for aquatic organic pollutants removal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180504

Termination date: 20190119

CF01 Termination of patent right due to non-payment of annual fee