CN105524492A - 一种简易低成本的磁性微粒表面活性基团引入方法 - Google Patents

一种简易低成本的磁性微粒表面活性基团引入方法 Download PDF

Info

Publication number
CN105524492A
CN105524492A CN201610015102.XA CN201610015102A CN105524492A CN 105524492 A CN105524492 A CN 105524492A CN 201610015102 A CN201610015102 A CN 201610015102A CN 105524492 A CN105524492 A CN 105524492A
Authority
CN
China
Prior art keywords
cas
particle
magnetic
acid
submicron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610015102.XA
Other languages
English (en)
Inventor
杨坤
王倍
伍娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201610015102.XA priority Critical patent/CN105524492A/zh
Publication of CN105524492A publication Critical patent/CN105524492A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties

Abstract

本发明提供了一种简易低成本的磁性纳米(亚微米)颗粒表面活性基团的引入方法。本方法将以金属或过渡金属的氧化物为基质的磁性纳米(亚微米)颗粒以超声形式分散在有机磷酸化合物的溶液中,保温反应数小时至数十小时,即得到表面带有活性基团的磁性纳米(亚微米)颗粒。本方法所涉及的过程操作简单,所使用的有机磷化合物品种繁多、价格便宜;所获得的带有活性基团的磁性纳米(亚微米)颗粒具有广泛的应用领域:蛋白提纯、致病菌检测、药物靶向输送、细胞分离、疾病诊疗、酶固定化、食品安全、污水净化及环境监测等。

Description

一种简易低成本的磁性微粒表面活性基团引入方法
技术领域
本发明涉及功能化磁性微粒的制备领域,具体而言,涉及一种简单易行的磁性微粒表面活化及功能化方法。
背景技术
磁性纳米(亚微米)颗粒因其具有磁性,小于一定尺寸的磁性纳米颗粒还具有超顺磁性,可以利用外加磁场(电磁场)对其进行便利的操作,在生物医学、食品安全及环境保护方面具有广阔的应用前景。其制备方法包括:
①共沉淀法(Co-precipitation);
②热分解法(Thermaldecomposition);
③基于微乳化及纳乳化的合成方法(Microemulsionornanoemulsion-basedsynthesis);
④金属还原法(Metalreductionmethod);
⑤水热及溶剂热合成法(Hydrothermalandsolvothermalsynthesis);
⑥流动注射合成法(Flowinjectionsynthesis);
⑦气溶胶/气相法(Aerosol/vapor-phasemethod)。
上述合成的磁性纳米颗粒因颗粒微小、比表面积大,具有较高的表面能,磁性颗粒因表面部分疏水,在水相容易聚集,分散性差。部分金属氧化物基(如Fe3O4)的磁性纳米颗粒在空气中还会缓慢氧化,转化成不具有磁性的高氧化态氧化物(Fe2O3)。根据不同的应用领域,还需对磁性纳米微粒进行表面功能化。随着现代生物技术的发展,表面功能化的磁性纳米(亚微米)颗粒在蛋白提纯、致病菌检测、药物靶向输送、细胞分离、疾病诊疗、酶固定化、食品安全、污水净化及环境监测等领域的应用日益广泛。但磁性颗粒的表面功能化通常涉及繁琐的反应过程及有毒有害化学试剂的使用。
本发明提供了一种磁性微粒表面功能化的简易低成本方法,基于该方法可以在磁性微粒表面引入羧基、氨基、羟基、巯基等活性基团,接入的活性基团能够稳定存在,磁性微粒借助活性基团可进一步功能化,以实现多方面的应用。目前未发现有专利对该方法进行过报道。
发明内容
本发明提供了一种简易低成本的磁性微粒表面活性基团的引入方法,发明通过以下技术方案实现,除特别说明外,所涉及的份数均为质量分数,百分比均为质量百分比:
(1)配制pH为(7~11)的有机磷酸溶液;
(2)向上述有机磷酸溶液中加入磁性纳米粒;
(3)超声5~30分钟,之后保温反应5~20小时。
在上述技术方案中,磁性纳米(亚微米)颗粒以金属或过渡金属的氧化物为基质,包含但不限于Fe3O4、γFe2O3、CoFe2O4、Co3O4、MnO、Cr2O3、NiO、SmCO5.2等中的任意一种或几种的混合物。
在上述技术案中,作为键合分子的有机磷酸(酰)化合物指含有磷酸(酰)基团的有机化合物及其衍生物,包含但不限于双甘膦(CAS:5994-61-6)、氨甲基膦酸(CAS:1066-51-9)、2-氨基乙基膦酸(CAS:2041-14-7)、3-氨基丙基膦酸(CAS:13138-33-5)、4-氨基丁基膦酸(CAS:35622-27-6)、膦酰基乙酸(CAS:4408-78-0)、3-膦酰基丙酸(CAS:5962-42-5)、6-膦酰基己酸(CAS:5662-75-9)、DL-2-氨基-3-膦酰基丙酸(CAS:20263-06-3)、草甘膦(CAS:1071-83-6)、甲基草甘膦(CAS:24569-83-3)、N-(2-羟基乙基)亚氨基双(甲基膦酸)(CAS:89187-27-9)、N,N-双(膦酰基甲基)甘氨酸(CAS:2439-99-8)、L-(+)-2-氨基-3-膦酰基丙酸(CAS:23052-80-4)、L-(+)-2-氨基-4-膦酰基丁酸(CAS:23052-81-5)、4-硝基苄基膦酸(CAS:1205-62-5)、11-羟基十一烷基膦酸(CAS:83905-98-0)、1,10-癸基二膦酸(CAS:5943-21-5)、11-巯基十一烷基膦酸(CAS:156125-36-9)等中的任意一种或几种的混合物。
在上述技术案中,磁性纳米粒和有机磷酸(酰)化合物的比例按干重计为1:(1~10)
本发明提供了一种磁性微粒表面功能化的简易低成本方法,基于该方法可以在磁性微粒表面引入羧基、氨基、羟基、巯基等活性基团,接入的活性基团能够稳定存在,磁性微粒借助活性基团可进一步功能化,以实现多方面的应用。
本发明与已有技术相比,具有多方面的积极效果和优点,具体可归纳概括如下:
(1)本方法所涉及的过程操作简单,通过磁性微粒与有机磷酸化合物的水溶液在常温常压下一步反应,在磁性微粒表面引入羧基、氨基、羟基、巯基等活性基团,接入的活性基团能够稳定存在。
(2)本发明中使用有机磷酸化合物品种繁多、价格便宜,大大降低了成本。且相较于传统的活化试剂,毒性较小。
(3)所获得的带有活性基团的磁性纳米(亚微米)颗粒在病菌检测、药物靶向输送、细胞分离、疾病诊疗、酶固定化、食品安全、污水净化、环境监测及蛋白提纯等方面具有广泛的应用,有广阔的潜在市场,对磁性微粒的应用推广具有极重要的作用,具有较高的经济效益和社会效益。
附图说明
图1是菌体吸附原理图;图2是重组蛋白分离提纯。
实施例1:菌体吸附
称取5份双甘膦,溶于蒸馏水中,加入NaOH调整pH至碱性。同时称取1份Fe3O4纳米粒子,加入上述配制好的双甘膦溶液中。超声探头超声15min,再将其置于30℃摇床保温反应10h,即得表面带有活性基团羧基的纳米颗粒。
将制得的纳米颗粒用蒸馏水洗3次,加入pH=5.0的MES(4-Morpholineethanesulfonicacid)缓冲液,分别按磁性纳米粒:EDC=5:3、磁性纳米粒:NHS=5:1的比例加入EDC(1-Ethyl-3-(3'-dimethylaminopropyl)carbodiimide)和NHS(N-Hydroxysuccinimide),超声探头超声3min,30oC摇床保温反应1h后,用pH=5的MES缓冲液洗3次,再按磁性纳米粒:万古霉素素=1:1的比例加入万古霉素,30℃摇床保温反应24h。所得Fe3O4-PMIDA-Van粒子对革兰氏阴性(大肠杆菌)及革兰氏阳性(肠球菌)细菌均有较好吸附作用,可用于菌体的富集,应用于致病菌检测、食品安全、环境监测、水体净化等领域,具体原理如图1。
实施例2:重组蛋白分离提纯
按Fe3O4纳米粒子:双甘膦=1:5的比例称取纳米粒子和双甘膦,蒸馏水溶解,调节pH值至碱性,间歇超声(30s开/30s关,10w,22.5kHz)15min产生Fe3O4-PMIDA粒子。该粒子表面可以螯合金属离子(Cu2+、Ni2+等),将制备的Fe3O4-PMIDA粒子与NiCl2溶液混合,使得粒子表面螯合上金属离子Ni2+,从而实现对带有聚组氨酸标记的重组蛋白的亲和分离提纯,可实现一步从菌体裂解液中分离提纯目标蛋白,甚至不需要去除细胞碎片,其原理如图2。
实施例3:重组蛋白分离提纯
Fe3O4先和3-膦酰基丙酸(CEPA)按1:3的比例在超声条件下反应15min,Fe3O4-CEPA再与Na,Na-bis(caboxymethyl)lysine在EDC存在的条件下于室温反应3h,即获得Fe3O4-CEPA-NTA。这种磁性纳米颗粒也具有金属螯合性能,而且其金属螯合性能较Fe3O4-PMIDA更强,因此亦可以作为重组蛋白亲和分离介质。其原理与实施例2类似。
具体实施方式
下面给出本发明的三个实施例,通过实施例对本发明进行具体描述。有必要在此指出的是,实施例只用于对本发明进行进一步的说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据上述本发明的内容做出一些非本质的改进和调整。
在以下实施例中,除特别说明外,所涉及的份数均为重量份数,百分比均为重量百分数。

Claims (5)

1.一种简易低成本的磁性微粒表面活性基团引入方法,其特征是制备方法如下:
(1)配制pH为(7~11)的有机磷酸(酰)化合物溶液;
(2)向上述有机磷酸(酰)化合物溶液中加入磁性纳米(亚微米)颗粒;
(3)超声5~30分钟,之后保温反应5~20小时,即得带有表面活性基团的纳米颗粒。
2.根据权利要求1所述的磁性纳米(亚微米)颗粒表面活性基团引入方法,其特征是所述磁性纳米(亚微米)颗粒以金属或过渡金属的氧化物为基质,包含但不限于Fe3O4、γFe2O3、CoFe2O4、Co3O4、MnO、Cr2O3、NiO、SmCO5.2等中的任意一种或几种的混合物。
3.根据权利要求1所述的磁性纳米(亚微米)颗粒表面活性基团引入方法,其特征是作为键合分子的有机磷酸(酰)化合物指含有磷酸(酰)基团的有机化合物及其衍生物,包含但不限于双甘膦(CAS:5994-61-6)、氨甲基膦酸(CAS:1066-51-9)、2-氨基乙基膦酸(CAS:2041-14-7)、3-氨基丙基膦酸(CAS:13138-33-5)、4-氨基丁基膦酸(CAS:35622-27-6)、膦酰基乙酸(CAS:4408-78-0)、3-膦酰基丙酸(CAS:5962-42-5)、6-膦酰基己酸(CAS:5662-75-9)、DL-2-氨基-3-膦酰基丙酸(CAS:20263-06-3)、草甘膦(CAS:1071-83-6)、甲基草甘膦(CAS:24569-83-3)、N-(2-羟基乙基)亚氨基双(甲基膦酸)(CAS:89187-27-9)、N,N-双(膦酰基甲基)甘氨酸(CAS:2439-99-8)、L-(+)-2-氨基-3-膦酰基丙酸(CAS:23052-80-4)、L-(+)-2-氨基-4-膦酰基丁酸(CAS:23052-81-5)、4-硝基苄基膦酸(CAS:1205-62-5)、11-羟基十一烷基膦酸(CAS:83905-98-0)、1,10-癸基二膦酸(CAS:5943-21-5)、11-巯基十一烷基膦酸(CAS:156125-36-9)等中的任意一种或几种的混合物;有机磷酸(酰)化合物特征结构如下式所示,其中的R代表任意取代基。
4.合成过程中可以将带有活性基团的有机磷键合分子直接与磁性颗粒反应以获得表面有活性基团的磁性颗粒,也可以将有机磷化合物在液相与其他功能分子反应后,将反应产物与磁性颗粒接触反应以实现磁性颗粒的表面功能化。
5.根据前述任一权利要求所述的磁性纳米(亚微米)颗粒表面活性基团引入方法,其特征是所述方法可以在磁性微粒表面引入羧基、氨基、羟基、巯基等活性基团,接入的活性基团能够稳定存在,磁性微粒借助活性基团可进一步功能化,以实现多方面的应用。
CN201610015102.XA 2016-01-12 2016-01-12 一种简易低成本的磁性微粒表面活性基团引入方法 Pending CN105524492A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610015102.XA CN105524492A (zh) 2016-01-12 2016-01-12 一种简易低成本的磁性微粒表面活性基团引入方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610015102.XA CN105524492A (zh) 2016-01-12 2016-01-12 一种简易低成本的磁性微粒表面活性基团引入方法

Publications (1)

Publication Number Publication Date
CN105524492A true CN105524492A (zh) 2016-04-27

Family

ID=55767032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610015102.XA Pending CN105524492A (zh) 2016-01-12 2016-01-12 一种简易低成本的磁性微粒表面活性基团引入方法

Country Status (1)

Country Link
CN (1) CN105524492A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110215921A (zh) * 2019-06-26 2019-09-10 重庆大学 一种核壳结构磁性纳米复合催化剂的制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1744920A (zh) * 2002-12-20 2006-03-08 古尔比特公司 被偕二膦酸酯衍生物覆盖的新型磁性颗粒组合物
CN103396503A (zh) * 2013-07-17 2013-11-20 浙江大学 新的含多膦酸端基的两性离子聚合物及其制备方法和用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1744920A (zh) * 2002-12-20 2006-03-08 古尔比特公司 被偕二膦酸酯衍生物覆盖的新型磁性颗粒组合物
CN103396503A (zh) * 2013-07-17 2013-11-20 浙江大学 新的含多膦酸端基的两性离子聚合物及其制备方法和用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110215921A (zh) * 2019-06-26 2019-09-10 重庆大学 一种核壳结构磁性纳米复合催化剂的制备方法及应用
CN110215921B (zh) * 2019-06-26 2022-02-22 重庆大学 一种核壳结构磁性纳米复合催化剂的制备方法及应用

Similar Documents

Publication Publication Date Title
Cui et al. Shielding effects of Fe3+-tannic acid nanocoatings for immobilized enzyme on magnetic Fe3O4@ silica core shell nanosphere
Lin et al. Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal
Atacan et al. Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk
Bezerra et al. Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors
Sahoo et al. A novel approach for efficient immobilization and stabilization of papain on magnetic gold nanocomposites
Okoli et al. Application of magnetic iron oxide nanoparticles prepared from microemulsions for protein purification
Lee et al. Immobilization of lipase on hydrophobic nano-sized magnetite particles
Wang et al. Magnetic nanoparticles coated with immobilized alkaline phosphatase for enzymolysis and enzyme inhibition assays
Ibrahim et al. Enhancement of alkaline protease activity and stability via covalent immobilization onto hollow core-mesoporous shell silica nanospheres
Li et al. Affinity adsorption of lysozyme with Reactive Red 120 modified magnetic chitosan microspheres
CN102884595A (zh) 用于获得具有超顺磁特性的材料的方法
Schwaminger et al. Immobilization of PETase enzymes on magnetic iron oxide nanoparticles for the decomposition of microplastic PET
Song et al. Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles
CN102850599B (zh) 磁性壳聚糖/纳米Fe3O4复合材料及其制备方法和用途
Suo et al. Enhanced catalytic performance of lipase covalently bonded on ionic liquids modified magnetic alginate composites
Bhattacharya et al. Development of phosphonate modified Fe (1− x) MnxFe2O4 mixed ferrite nanoparticles: Novel peroxidase mimetics in enzyme linked immunosorbent assay
Liu et al. Progress of recyclable magnetic particles for biomedical applications
Zhang et al. Magnetic cellulose nanocrystals: Synthesis by electrostatic self-assembly approach and efficient use for immobilization of papain
Farhan et al. Various type immobilizations of Isocitrate dehydrogenases enzyme on hyaluronic acid modified magnetic nanoparticles as stable biocatalysts
Deng et al. A magnetic biocatalyst based on mussel-inspired polydopamine and its acylation of dihydromyricetin
Li et al. A green deep eutectic solvent modified magnetic titanium dioxide nanoparticles for the solid-phase extraction of chymotrypsin
CN102250868A (zh) 一种利用磁性离子液体复合材料固定化酶的方法
Ibrahim et al. Development of novel robust nanobiocatalyst for detergents formulations and the other applications of alkaline protease
Chen et al. Excellent performance separation of trypsin by novel ternary magnetic composite adsorbent based on betaine-urea-glycerol natural deep eutectic solvent modified MnFe2O4-MWCNTs
Wang et al. Affinity immobilization of a bacterial prolidase onto metal-ion-chelated magnetic nanoparticles for the hydrolysis of organophosphorus compounds

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160427