CN105514460B - 一种高导电率金属双极板的高效轧制成形工艺 - Google Patents

一种高导电率金属双极板的高效轧制成形工艺 Download PDF

Info

Publication number
CN105514460B
CN105514460B CN201511019234.1A CN201511019234A CN105514460B CN 105514460 B CN105514460 B CN 105514460B CN 201511019234 A CN201511019234 A CN 201511019234A CN 105514460 B CN105514460 B CN 105514460B
Authority
CN
China
Prior art keywords
rolling
milling train
tension force
roll
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511019234.1A
Other languages
English (en)
Other versions
CN105514460A (zh
Inventor
王开坤
马春梅
付金龙
李孝威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201511019234.1A priority Critical patent/CN105514460B/zh
Publication of CN105514460A publication Critical patent/CN105514460A/zh
Application granted granted Critical
Publication of CN105514460B publication Critical patent/CN105514460B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/221Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Metal Rolling (AREA)

Abstract

本发明涉及一种高导电率金属双极板的高效轧制成形工艺,将厚度为0.3~1mm退火态基材,采用微型纵列式孔型冷轧机组,经过3~15个道次,轧制到目标厚度0.1~0.2mm;轧制力为500~1000kN,道次变形量为5%~30%,轧制前后具有张力控制,出口张力为入口张力的1~1.5倍;在轧制前,先让轧机空转5~10min,使轧机进入较为稳定的工作状态,然后调整到相应的辊缝值,设置轧机稳定轧制速度为0.05~1m/s。本发明有益效果是:该工艺是利用金属板为基材,采用冷轧工艺加工燃料电池金属双极板,加工简单,易于大批量生产,制造费用大幅度降低,生产效率高、成材率高、能耗低。

Description

一种高导电率金属双极板的高效轧制成形工艺
技术领域
本发明涉及一种高导电率金属双极板的轧制成形工艺,属于金属材料制备加工技术领域,特别提供了一种金属双极板的高效制备加工工艺方法。
背景技术
质子交换膜燃料电池(PEMFC)除具有燃料电池的一般特点(如能量转化率高、环境友好等)外,同时具有可在室温快速启动、寿命长、比功率和比能量高等特点,用途十分广泛,可以用作一切车、船等运载工具的动力系统,也可以作为发电系统用作底面固定式发电站、可移动电源等,已成为世界各国研究的热点之一;双极板是将PEMFC单电池串联起来组成电池对堆的关键部件,对于电池的成本和性能有着重要影响,主要用于分隔氧化剂和还原剂、收集输送电流、使生成的水能顺利的流出、确保电池堆的温度分布均匀。当前制备双极板的材料主要包括石墨、金属和复合材料等,金属材料以其固有的高电导率和热导率、耐高温、气密性好、好强度、容易加工等优点,成为最佳的双极板材料。
目前,国内外针对金属双极板制备成形工艺相关报道较少,主要有:
上海交通大学发明的一种基于辊压成形的双极板制造方法,能实现单极板流道辊压成形、双极板连接的集成及在一条生产线多个连续工位的制造工艺,生产效率较高。但是辊压时,接触面积变小,压力不均匀,辊子制备难度大,双极板成形精度差,而且破坏了原有材料的形变织构,使材料导电率降低;台湾元智大学研究电化学刻蚀成形工艺得出在电极上覆盖一层绝缘层对于减小扩散电流密度有重要影响的结论,但该工艺效率较低,而且成形的流道表面光洁度不高,需要后续处理;美国弗吉利亚联邦大学研制出的液压胀形与压力焊成形工艺能在一个工步上完成阴阳极板的液压胀形和焊接成形,但只适用于阴、阳极板对称的情况;日本东北大学材料研究所研究的对镍基金属玻璃在过冷状态下采用热压铸成形工艺,此工艺技术含量较高,不易于标准化生产操作;此外,机加工和激光加工等方法也可制备金属双极板,但该方法耗时长、成本高;冲压成形的方法可降低金属双极板的加工成本,但是对薄金属双极板来说,容易出现颈缩、拉伸、变薄和随之发生的破裂,很难满足其对通道强度和深度的要求。
综上所述,目前制备金属双极板的工艺方法均具有一定的局限性,开发一种易于实现大规模生产的轻型、薄型双极板对于提高电堆比功率,降低生产成本,进而推动PEMFC商业化具有重要意义。
发明内容
为解决上述全部或部分问题,本发明提供了一种高导电率金属双极板的轧制成形工艺,该工艺是利用金属板为基材,采用冷轧工艺加工燃料电池金属双极板,加工简单,易于大批量生产,制造费用大幅度降低,生产效率高、成材率高、能耗低,而且可以很好的保持材料的形变织构,提高材料的导电率。
本发明提供的一种高导电率金属双极板的轧制成形工艺:将厚度为0.3~1mm退火态基材,采用微型纵列式孔型冷轧机组,经过3~15个道次,轧制到目标厚度0.1~0.2mm;轧制力为500~1000kN,道次变形量为5%~30%,轧制前后具有张力控制,出口张力为入口张力的1~1.5倍;在轧制前,先让轧机空转5~10min,使轧机进入较为稳定的工作状态,然后调整到相应的辊缝值,设置轧机稳定轧制速度为0.05~1m/s。
所述轧制金属双极板的退火态基材选用奥氏体不锈钢、钛材、钛合金材、铝材或铝合金材。
所述轧制金属双极板的退火态基材宽度为100~300mm。
所述微型纵列式孔型冷轧机组的上轧辊具有外凸形状,下轧辊具有对应的内凹形状,上下轧辊闭合形成金属双极板的形状。
本发明相对于现有技术,具有如下的优点及效果:
(1)本发明提供了一种高导电率金属双极板的轧制成形工艺,采用轧制技术加工流场通道,其加工工艺简单,易于大批量生产,制造费用大幅度降低;
(2)通过轧制工艺加工金属双极板,可以使基材组织致密,力学性能得到改善。
附图说明
图1为本发明轧制金属双极板结构示意图;
图2为本发明中轧辊结构示意图;
图3为本发明中轧制最后一道工序轧辊与基材接触示意图。
图中附图标记表示为:1-上轧辊,2-基材,3-下轧辊。
具体实施方式
以下结合附图对本发明的技术方案作进一步描述。
实施例1
如图1所示,金属双极板尺寸为:槽宽0.6mm,槽深0.4mm,厚度0.1mm,如图2所示,基材选用退火态304奥氏体不锈钢,宽度100mm,厚度0.3mm,采用微型纵列式孔型冷轧机组进行轧制,首先,先让轧机空转8min,使轧机进入较为稳定的工作状态,然后调整到相应的辊缝值,设置轧机稳定轧制速度为0.5m/s,导卫装置调整好后,将不锈钢带材借助导卫装置送入轧机进行9机架连续轧制,轧制力为600kN,道次变形量控制在5%~30%,道次变形量逐级递减,出口张力为入口张力的1.2倍。
实施例2
如图1所示,金属双极板尺寸为:槽宽0.6mm,槽深0.4mm,厚度0.15mm,如图2所示,基材选用退火态铝合金,宽度100mm,厚度0.5mm,采用微型纵列式孔型冷轧机组进行轧制,首先,先让轧机空转5min,使轧机进入较为稳定的工作状态,然后调整到相应的辊缝值,设置轧机稳定轧制速度为0.3m/s,导卫装置调整好后,将不锈钢带材借助导卫装置送入轧机进行5机架连续轧制,轧制力为600kN,道次变形量控制在5%~30%,道次变形量逐级递减,出口张力为入口张力的1.1倍。
实施例3
如图1所示,金属双极板尺寸为:槽宽0.6mm,槽深0.4mm,厚度0.2mm,如图2所示,基材选用退火态钛合金,宽度100mm,厚度1mm,采用微型纵列式孔型冷轧机组进行轧制,首先,先让轧机空转8min,使轧机进入较为稳定的工作状态,然后调整到相应的辊缝值,设置轧机稳定轧制速度为0.2m/s,导卫装置调整好后,将不锈钢带材借助导卫装置送入轧机进行11机架连续轧制,轧制力为1000kN,道次变形量控制在5%~30%,道次变形量逐级递减,出口张力为入口张力的1.4倍。

Claims (3)

1.一种金属双极板的轧制成形工艺,其特征在于:将厚度为0.3~1mm退火态基材,采用微型纵列式孔型冷轧机组,经过3~15个道次,轧制到目标厚度0.1~0.2mm,所述微型纵列式孔型冷轧机组的上轧辊具有外凸形状,下轧辊具有对应的内凹形状,上下轧辊闭合形成金属双极板的形状;轧制力为500~1000kN,道次变形量为5%~30%,轧制前后具有张力控制,出口张力为入口张力的1~1.5倍;在轧制前,先让轧机空转5~10min,使轧机进入较为稳定的工作状态,然后调整到相应的辊缝值,设置轧机稳定轧制速度为0.05~1m/s。
2.根据权利要求1所述一种金属双极板的轧制成形工艺,其特征在于:所述轧制金属双极板的退火态基材选用奥氏体不锈钢、钛材、钛合金材、铝材或铝合金材。
3.根据权利要求1所述一种金属双极板的轧制成形工艺,其特征在于:所述轧制金属双极板的退火态基材宽度为100~300mm。
CN201511019234.1A 2015-12-29 2015-12-29 一种高导电率金属双极板的高效轧制成形工艺 Active CN105514460B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511019234.1A CN105514460B (zh) 2015-12-29 2015-12-29 一种高导电率金属双极板的高效轧制成形工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511019234.1A CN105514460B (zh) 2015-12-29 2015-12-29 一种高导电率金属双极板的高效轧制成形工艺

Publications (2)

Publication Number Publication Date
CN105514460A CN105514460A (zh) 2016-04-20
CN105514460B true CN105514460B (zh) 2017-12-08

Family

ID=55722267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511019234.1A Active CN105514460B (zh) 2015-12-29 2015-12-29 一种高导电率金属双极板的高效轧制成形工艺

Country Status (1)

Country Link
CN (1) CN105514460B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031147A1 (de) * 2021-08-30 2023-03-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und vorrichtung zur umformung von folien in dreidimensional strukturierte flächenbauteile

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106001111A (zh) * 2016-05-18 2016-10-12 北京科技大学 一种制备高比容铝箔电极的微成形轧制工艺
CN107470385A (zh) * 2017-08-02 2017-12-15 安徽骏达起重机械有限公司 悬吊轨道加工方法
CN109841865A (zh) * 2017-11-29 2019-06-04 吕伟 一种超薄金属双极板及其制备方法和包含其的燃料电池
CN110125216B (zh) * 2019-04-23 2023-09-29 太原科技大学 一种燃料电池金属极板流道纵向辊轧成形设备及方法
CN112264486B (zh) * 2020-10-22 2022-11-04 中国航发贵州黎阳航空动力有限公司 一种金属长条密封带的成型方法
CN112959725B (zh) * 2021-02-02 2022-09-06 上海神力科技有限公司 一种燃料电池柔性石墨极板的辊压成型方法
WO2022194322A1 (de) 2021-03-16 2022-09-22 Schaeffler Technologies AG & Co. KG Dünnblech und verfahren zum walzen von dünnblech für eine elektrochemische zelle
DE102022104250A1 (de) 2021-03-16 2022-09-22 Schaeffler Technologies AG & Co. KG Dünnblech und Verfahren zum Walzen von Dünnblech für eine elektrochemische Zelle
CN114156492B (zh) * 2021-11-19 2024-01-19 上海实达精密不锈钢有限公司 一种燃料电池金属双极板用精密带材及其加工工艺
CN116833263B (zh) * 2023-09-01 2023-10-31 太原科技大学 燃料电池金属双极板辊冲复合成形工艺及精度调控方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424920C (zh) * 2003-09-22 2008-10-08 日产自动车株式会社 燃料电池用隔板、燃料电池组、燃料电池用隔板的制造方法、以及燃料电池车辆
JP2005293987A (ja) * 2004-03-31 2005-10-20 Daido Steel Co Ltd 金属セパレータ用の金属板材料及びこれを用いた金属セパレータ材料
CN101637780B (zh) * 2009-08-20 2011-04-13 湖南湘投金天钛金属有限公司 采用单机架十二辊可逆式冷轧机组生产钛带卷的方法
CN103706636B (zh) * 2013-12-20 2016-01-20 湖南湘投金天钛金属有限公司 二十辊冷轧机组生产0.3mm及以下金属钛卷的方法
CN104253280B (zh) * 2014-09-04 2017-01-25 华中科技大学 一种固体氧化物燃料电池阴极气体流场板及其制备方法
CN104998902A (zh) * 2015-07-10 2015-10-28 宝钛集团有限公司 一种宽幅纯镍带材冷轧工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031147A1 (de) * 2021-08-30 2023-03-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und vorrichtung zur umformung von folien in dreidimensional strukturierte flächenbauteile

Also Published As

Publication number Publication date
CN105514460A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
CN105514460B (zh) 一种高导电率金属双极板的高效轧制成形工艺
Jin et al. Fabrication of titanium bipolar plates by rubber forming and performance of single cell using TiN-coated titanium bipolar plates
CN105702968B (zh) 一种简单结构的金属冲压双极板
CN104253280A (zh) 一种固体氧化物燃料电池阴极气体流场板及其制备方法
CN210443621U (zh) 金属基质双极板
US20220077474A1 (en) Method for forming flow channel on metal bipolar plate of fuel cell
CN100388540C (zh) 一种冲压金属双极板结构及其制备方法
CN107146898A (zh) 一种质子交换模燃料电池金属双极板湿磨温压烧结方法
CN204189878U (zh) 一种固体氧化物燃料电池阴极气体流场板
CN202172104U (zh) 一种熔融碳酸盐燃料电池双极板
CN110644022A (zh) 一种电解压延联用生产锂离电子池用超薄铜箔及其制备方法
CN102280645B (zh) 一种熔融碳酸盐燃料电池双极板及其制作方法
CN100588015C (zh) 一种板料冲压成型金属双极板
CN211161193U (zh) 一种金属双极板流道纵-横辊轧设备
JP2004269969A (ja) 固体高分子型燃料電池用セパレータおよびその製造方法
US20130330656A1 (en) Conducting plates for fuel cell elements
CN212011140U (zh) 大功率质子交换膜燃料电池双极板的冷却结构
CN202045253U (zh) 金属双极板夹压成形加工模具
CN111146465B (zh) 一种提高质子交换膜燃料电池钛基双极板耐蚀性的方法
CN108511773A (zh) 在双极板中制造通道的系统和方法
CN109286022B (zh) 一种耐腐蚀的熔融碳酸盐燃料电池双极板材料的制造工艺
CN112968189A (zh) 一种空冷型燃料电池阳极板
CN101459253A (zh) 一种大面积熔融碳酸盐燃料电池
CN200993983Y (zh) 一种燃料电池带流场改性金属电极
CN108155396A (zh) 一种燃料电池模压阴极单板和阳极单板成对生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant