CN105504248A - 可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备及应用 - Google Patents

可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备及应用 Download PDF

Info

Publication number
CN105504248A
CN105504248A CN201610013211.8A CN201610013211A CN105504248A CN 105504248 A CN105504248 A CN 105504248A CN 201610013211 A CN201610013211 A CN 201610013211A CN 105504248 A CN105504248 A CN 105504248A
Authority
CN
China
Prior art keywords
shape memory
memory effect
caprolactone
linear
controllable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610013211.8A
Other languages
English (en)
Other versions
CN105504248B (zh
Inventor
王小莺
汤顺清
邓海钦
林卉恒
武征
何留民
罗丙红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201610013211.8A priority Critical patent/CN105504248B/zh
Publication of CN105504248A publication Critical patent/CN105504248A/zh
Application granted granted Critical
Publication of CN105504248B publication Critical patent/CN105504248B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/06At least partially resorbable materials
    • A61L17/10At least partially resorbable materials containing macromolecular materials
    • A61L17/105Polyesters not covered by A61L17/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/30Materials or treatment for tissue regeneration for muscle reconstruction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2280/00Compositions for creating shape memory

Abstract

本发明公开了一种可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备及应用。该可调控弹性和形状记忆效应的线性可降解聚酯弹性体由含侧环醚结构单元的己内酯单体与己内酯共聚得到,所用含侧环醚结构单元的己内酯单体与己内酯的摩尔比为5:95~25:75,其结构式如式(1)所示:

Description

可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备及应用
技术领域
本发明属于生物可降解弹性聚酯制备技术领域,特别涉及一种可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备及应用。该类线性弹性聚酯具有良好的弹性特征,形状记忆特性和良好的生物降解性,通过调控该弹性聚酯的组分和分子量能方便的调控所得材料的力学特性,形状记忆行为及生物降解行为,在外科微创手术以及医疗器械植入体方面具有重要的应用前景,可广泛应用于手术缝线,骨固定材料,组织工程和药物控制释放体系。
背景技术
生物医用高分子材料在临床医学技术水平的提高中扮演了极其重要的角色,其中可生物降解的植入材料是未来生物医用材料研究的重要方向。可降解的生物材料作为人工的细胞外基质支持组织再生,在组织构建中起关键性的作用。人体大部分的组织都是具有弹性的,已有的研究表明,植入材料的机械性能,如弹性模量、杨氏模量及强度等要和周围组织的相匹配在治疗过程中才能达到最佳的负载传递和应力支撑的作用,避免出现应力遮挡不良的情况。对于人体组织如软骨、血管、心肌、肌腱、皮肤、神经、韧带等大部分具有弹性特性的组织修复来说,可降解弹性支架材料研究显得尤为具有重要意义;特别是针对一些具有各向异性的组织来说,如心脏的搏动和心肌的取向特性,血管的支架必须要有足够的强度以抵抗动脉壁的回弹力。与此同时,已有的研究还表明,支架材料的硬度和弹性对细胞的生长具有一定的影响,人体弹性组织如血管,心脏,软骨和肌腱的在修复过程中,与人体自然组织具有相似生物力学性能的弹性支架与非弹性支架材料相比,弹性支架承载的细胞在再生过程中能分泌更多的弹性蛋白并且其在再生过程中具有较高的基因表达水平;并且随着组织工程技术对支架材料要求的不断提高,人们逐渐发现了支架材料的力学刺激作用对组织再造具有意义,合适的机械性能能促进组织的再生并且能在组织再生的过程中逐渐的将应力传递到重塑的天然组织中去。不同的软组织的修复对支架材料的生物力学的要求不同,对于大多数软组织的再生修复来说,修复过程中材料与人体组织复杂伸缩张力的力学顺应性,材料在降解过程中的力学支撑作用和组织再生的力学匹配作用和应力传递的研究越来越深入。
在这些研究基础的支持下,可降解的弹性组织工程支架材料的研究与发展在组织工程和再生医学的发展中具有战略意义。因此很多研究小组将研究重点集中在生物可降解弹性高分子材料的制备,结构与性能的构效关系及其应用上,目前已有的可降解弹性支架材料主要有聚羟基烷基酸酯(PHB)类,YDWang等首次获得的网络型聚癸二酸甘油酯(PGS)及其改性物,YangJ等主要研究的基于柠檬酸的网络性聚柠檬酸辛二醇酯(POC)及其改性物,天然的脱细胞基质类材料、丝素蛋白及基于聚乳酸聚己内酯与聚碳酸酯类的共聚物,如P(LLA-CL)、P(TMC/CL)、P(TMC/DLLA)等。其中,PHB类材料作为微生物合成的可降解材料,发酵法是获得其的主要手段,材料的性质取决于生物合成过程中微生物的种类、限制性碳源的种类及浓度、培养条件、发酵时间、提取方法等,因此PHB类产物的产量有限,生产成本较高。网络型的PGS与POC类材料,其交联网络中存在大量的羟基,具有优良的生物相容性和生物降解性能,但是其存在制备的可重复性差,降解过快,在使用过程中强度损失过快的缺点;从生物体内获得的天然材料的脱细胞基质材料存在制备的可重复性差,价格昂贵,免疫排斥,疾病污染等问题;丝素蛋白作为一种极具潜力的细胞生长基质材料,其力学强度不够高和弹性性能有限,通常需要与合成材料共混来制备软组织工程支架材料。
脂肪族聚酯材料因其良好的生物相容性、可降解吸收性及良好的力学和加工性能而广泛应用于组织工程和药物缓释领域,是目前被美国FDA认证能应用于人体内的具有广泛应用前景的一类生物可吸收高分子。但是此类材料的力学性能单一,过于坚硬,为了改善其力学性能,各国研究者做了大量的研究工作,通过共聚获得了一系列力学性能获得改善的共聚酯材料,如:P(LLA-CL)、P(TMC/CL)、P(TMC/DLLA),并研究了该类材料结构与性能之间的构效关系,已有的研究表明通过将丙交酯(LA)与己内酯(CL)共聚可以获得模量下降,弹性获得提高的可降解聚酯材料,但是其弹性与人体天然组织的弹性仍有差距;将碳酸酯与丙交酯或己内酯共聚,能获得具有较高弹性的线性聚酯,但是由于碳酸酯单体与环酯单体开环聚合的竞聚率差异较大,所得产物的分子量不高,在获得弹性的同时失去了材料的强度,通常需要进行进一步的交联来达到支架材料的强度要求。
经过对现有技术的文献检索发现,ChenQZ等(Elastomericbiomaterialsfortissueengineering.ProgPolymSci.2013;38:584-671)及SerranoMC等(AdvancesandApplicationsofBiodegradableElastomersinRegenerativeMedicine.AdvFunctMater.2010;20:192-208)综述了可降解弹性支架材料在生物医用高分子材料中发展的重要意义及其目前取得的进展,但是目前所获得的可降解弹性体支架的不足之处在于:1、目前存在的线性可降解弹性支架材料的强度不够,需进行交联处理;2、目前存在的网络型的可降解弹性支架材料在使用过程中存在强度损失过快的缺点;3、从生物体内获得的弹性支架材料,如脱细胞基质材料,弹性蛋白等又存在制备的可重复性差,价格昂贵,免疫排斥,疾病污染等问题。
综上所述,不同的组织修复对支架材料的生物力学性能要求不同,目前存在的可降解弹性支架尚不能满足人体内复杂的生物力学的要求。开发新的制备可降解弹性支架材料的方法,研究其组成结构与其力学性能、降解性能的构效关系,实现可降解弹性支架材料的力学性能与降解性能方便可调,具有重要的科学意义和临床使用价值。
材料的弹性往往伴随着形状记忆效应,形状记忆生物可吸收聚酯作为医用形状记忆材料在微创介入支架、血管接合、手术缝合线、骨折固定等方面有广泛的应用。PCL是一类具有良好力学性能的形状记忆聚合物,作为医用形状记忆材料获得了广泛的应用研究,其形状记忆的效应源于结晶部分及大分子链之间的缠结点共同作为固定相,无定型部分作为可逆相;但是由于PCL类材料结晶度高,导致其可逆相含量较低,形状恢复率低,同时其熔点约为60-63℃,导致其形状变形温度区间较高,不适合应用于人体,因此将己内酯与其它单体共聚降低材料的熔点实现材料的熔点可调,即直接影响到形状变形温度区间可调;同时降低材料的结晶性,增加无定型可逆相的含量,实现较高的形状恢复率,是当前形状记忆聚己内酯材料研究的方向。即通过调节共聚酯共聚组成比调节共聚酯的结晶度和结晶温度,能调节所得共聚酯的形状记忆效应及其形状记忆转变温度。
发明内容
为了实现可降解弹性支架材料的弹性及形状记忆效应可调控,满足人体不同组织复杂的生物力学要求,本发明的首要目的在于提供一种可调控弹性和形状记忆效应的线性可降解聚酯弹性体,其具有与硅橡胶相似的弹性特征,可生物降解,具有可调控的弹性及形状记忆效应,线性结构适于加工成型及大规模生产。
本发明另一目的在于提供一种上述可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备方法。该制备方法通过将含侧环醚结构单元的己内酯单体与己内酯共聚,通过控制共聚投料比获得组分不同的共聚酯材料,共聚酯材料的链结构的不同,从而导致材料具有不同的结晶度及结晶温度,获得具有不同力学性能的共聚酯材料;该方法通过控制共聚投料比的共引发剂含量控制所得共聚酯的分子量,从而获得具有不同拉伸强度与伸长率的共聚酯材料;同时该方法通过在共聚单体中引入不同含量的侧环醚取代,获得具有不同熔融温度的共聚酯材料,实现形状记忆变形温度的可调控,以及同时实现共聚酯材料具有不同的结晶度,实现材料具有不同的形状恢复率。
本发明再一个目的在于提供上述可调控弹性和形状记忆效应的线性可降解聚酯弹性体的应用,本发明提供的共聚酯材料在形状记忆行为和力学性能上的可调控,能满足不同软组织复杂的生物力学需求,应用在软组织工程支架、组织修复和再生医学中。
本发明的目的通过下述方案实现:
一种可调控弹性和形状记忆效应的线性可降解聚酯弹性体,所述可调控弹性和形状记忆效应的线性可降解聚酯弹性体由含侧环醚取代的功能性己内酯单体(TOSUO)与己内酯(ε-CL)共聚得到,其数均分子量在5万以上,结构式如式(1)所示:
式(1)中,x:y=5:95~25:75,m>500。
该类共聚酯材料的弹性受分子量大小影响,共聚酯材料数均分子量在5万以上,共聚酯材料才具有弹性特征,即m需大于500。
所述的含侧环醚结构单元的己内酯单体优选为4-(乙二醇缩酮)-ε-己内酯。
所述可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备方法,所述制备方法为本体熔融封管聚合法,包括以下步骤:将含侧环醚结构单元的己内酯单体(TOSUO)与己内酯(ε-CL)混合,然后加入催化剂,或者是加入催化剂和共引发剂;于68~130℃下共聚反应12~72h,得到所述可调控弹性和形状记忆效应的线性可降解聚酯弹性体。
本发明可通过控制含侧环醚结构单元的己内酯单体(TOSUO)与己内酯(ε-CL)的投料比,获得具有不同共聚组成比的共聚酯材料poly(CL-co-TOSUO)(PCT);通过控制加入的含羟基材料的羟基含量,控制所得共聚酯材料的分子量,获得具有不同分子量的共聚酯材料。
上述共聚反应中所述的催化剂可选择为任何可催化己内酯开环聚合的催化剂,如异辛酸亚锡、三氟甲烷磺酸锡Sn(OTf)2、叔丁醇铝等。所述催化剂的摩尔量为上述含侧环醚结构单元的己内酯单体和己内酯摩尔总量的1/1000到1/10000,最佳的催化剂用量为摩尔总量的1/2000到1/8000。
上述共聚反应中所述的共引发剂优选为含羟基的醇,如十六醇、聚乙二醇、聚乙烯醇等。本发明通过控制共引发剂的羟基含量控制制备得到的共聚酯材料的分子量。所述共引发剂的摩尔量为上述含侧环醚结构单元的己内酯单体和己内酯摩尔总量的1/100到1/8000,最佳用量为摩尔总量的1/200到1/5000。
所述共聚反应的条件优选为115℃下反应36h。
上述共聚反应优选在真空条件下进行,真空度优选小于200pa。
上述共聚反应得到的产物优选使用二氯甲烷/乙醇(体积比1:1~2)体系进行沉降纯化。
所述可调控弹性和形状记忆效应的线性可降解聚酯弹性体在软组织工程支架、组织修复和再生医学中的应用。
本发明所述的可调控弹性和形状记忆效应的线性可降解聚酯弹性体可满足不同软组织复杂的生物力学需求,可广泛应用于手术缝线,骨固定材料,组织工程和药物控制释放体系中,特别适用于小口径血管、心肌、软骨、神经和肌腱的修复。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)本发明所述的可调控弹性和形状记忆效应的线性可降解聚酯弹性体的粘弹性显著改善,断裂伸长率可达到1600%以上,满足临床上各具有弹性组织,如血管,心脏,皮肤,软骨和肌腱再生过程中对支架材料的生物力学应用要求,促进组织重塑并在组织再生的过程中逐渐的将应力传递到重塑的天然组织中去,在组织工程支架上有广阔的应用前景,能填补国内外在此领域的空白,具有重大的产业化价值。
(2)本发明针对现有可降解的组织工程支架材料存在的力学顺应性与人体力学顺应性不匹配的问题,设计将含侧环醚基的己内酯单体(TOSUO)与己内酯共聚获得共聚酯poly(CL-co-TOSUO)(PCT)。共聚物中侧环醚的引入,一方面能调节共聚酯材料的结晶性和熔融温度,达到调控共聚酯材料力学性能和形状记忆效应的目的,获得一系列具有不同力学性能的线性可生物吸收的生物弹性体,满足复杂的人体生物力学的各类需求。另一方面侧环醚的存在能提高弹性共聚酯材料的亲水性,从而达到提高支架材料的生物相容性和加速支架材料的降解性的目的。
(3)本发明制备方法涉及两种结构类似从而开环共聚竞聚率相近的环状单体的开环聚合,具有工艺简单,流程短,价廉,利于大规模生产及生产过程易于控制等优点。通过控制单体的投料比和共引发剂的用量,可以方便的控制共聚产物分子链的柔韧性及其分子量,从而控制所得产物的强度、模量和降解时间,为制备能满足人体复杂生物力学要求的线性共聚酯材料提供了一种简单而有效的途径,设计合理,操作方便,有望适用于工业化生产。
(4)本发明制备方法通过控制共聚酯PCT的共聚比调控所得共聚酯的熔融温度和结晶度,获得形状转变温度为人体体温37℃附近且具有良好的形状恢复率(形状恢复率可达98%以上)的材料,其热致性的形状记忆性能在手术缝线、小口径血管构建,外科微创手术以及医疗器械植入体方面具有重要的应用前景。
(5)与现有的生物弹性体材料比,本发明的高弹性线性可生物降解的聚酯弹性体,与现有的交联型的可降解弹性体的相比具有强度高,生产的可重复性,加工性好的优点;与现有的线性可降解弹性体相比,具有断裂伸长率高,弹性可调控,亲水性强,生物相容性好的优点。该类线性弹性共聚酯可在丙酮、六氟异丙醇、二氯甲烷等多种常规溶剂中高效溶解,可以方便的通过静电纺丝、三维打印、相分离等多孔支架的构建技术构建三维多孔支架,良好的亲水性和溶解性还能在支架构建的过程中方便的包覆生长因子和多种生物活性分子,进一步提高支架材料的生物相容性。
附图说明
图1为不同组分可调控弹性和形状记忆效应的线性可降解聚酯弹性体的1HNMR曲线。
图2为不同组分可调控弹性和形状记忆效应的线性可降解聚酯弹性体的DSC曲线。
图3为不同组分可调控弹性和形状记忆效应的线性可降解聚酯弹性体的应力应变拉伸曲线及其放大图。
图4为不同分子量的PCT8-2的应力应变拉伸曲线。
图5为不同组分可调控弹性和形状记忆效应的线性可降解聚酯弹性体的动态黏弹谱。
图6为不同组分可调控弹性和形状记忆效应的线性可降解聚酯弹性体的接触角。
图7为不同组分可调控弹性和形状记忆效应的线性可降解聚酯弹性体的降解质量损失曲线。
图8为不同组分可调控弹性和形状记忆效应的线性可降解聚酯弹性体的细胞毒性CCK-8测试结果。
图9为可调控弹性和形状记忆效应的线性可降解聚酯弹性体PCT8-2(200kMa)的形状记忆测试实物图片。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
以下实施例中所使用的4-(乙二醇缩酮)-ε-己内酯通过Baeyer-villager氧化还原反应合成,具体步骤如下:
称取21.31g(0.105mol)间氯过氧苯甲酸(m-CPBA)溶于250mL二氯甲烷中,搅拌至完全溶解后,加入无水MgSO4干燥,备用。称取15.58g(0.1mol)环己二酮单乙二醇醚C8H12O3溶于二氯甲烷中搅拌使其完全溶解后加入少量无水MgSO4干燥过滤。在冰浴的条件下将间氯过氧苯甲酸的二氯甲烷溶液逐渐滴加到环己二酮单乙二醇醚的二氯甲烷溶液中,滴加完毕后在40℃下回流反应16h以上。反应结束后,将反应产物冷却至0℃过滤除去白色沉淀,取滤液,将5g(约0.05mol)NaHSO3的水溶液加入其中,激烈搅拌反应3h,还原过量的间氯过氧苯甲酸。随后在反应液中滴加饱和碳酸氢钠(NaHCO3)的水溶液,直致产物没有气泡产生,除去过量的NaHSO3及反应产生的间氯苯甲酸。分液除去水相,加入无水硫酸镁(MgSO4)干燥,过滤取滤液,并旋转蒸发除去溶剂得微黄的初产物。将初产物使用无水乙醚重结晶2~4次至产物为白色晶体后,采用气相层析质谱分析仪GS-MC分析所得单体的纯度在99.9%以上,真空干燥密封保存备用。
实施例1:可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备
取ε-己内酯9.0g、4-(乙二醇缩酮)-ε-己内酯1.0g,将上述原料混合均匀后在惰性气氛保护下,加入异辛酸亚锡2mg,然后在真空条件下(低于50Pa)于115℃反应24小时。反应进行完后,利用二氯甲烷/乙醇体系(体积比1:2)进行沉降纯化,得到共聚物,标记为PCT9-1,通过GPC测得其数均分子量为10.4万,重均分子量为19.3万,由二氯甲烷所铸成的薄膜的杨氏模量为146.2MPa,断裂伸长率为676.8%,拉伸强度为9.79MPa。
实施例2:可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备
取ε-己内酯8.0g、4-(乙二醇缩酮)-ε-己内酯2.0g,将上述原料混合均匀后在惰性气氛保护下,加入异辛酸亚锡2mg,然后在真空条件下(低于50Pa)于115℃反应24小时。反应进行完后,利用二氯甲烷/乙醇体系(体积比1:2)进行沉降纯化,得到共聚物,标记为PCT8-2,通过GPC测得其数均分子量为13.9万,重均分子量为26.9万,由二氯甲烷所铸成的薄膜的杨氏模量为18.3MPa,断裂伸长率为1663.3%,拉伸强度为11.5MPa。
实施例3:可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备
取ε-己内酯7.0g、4-(乙二醇缩酮)-ε-己内酯3.0g,将上述原料混合均匀后在惰性气氛保护下,加入异辛酸亚锡2mg,然后在真空条件下(低于50Pa)于115℃反应24小时。反应进行完后,利用二氯甲烷/乙醇体系(体积比1:2)进行沉降纯化,得到共聚物,标记为PCT7-3,通过GPC测得其数均分子量为13.0万,重均分子量为22.4万,由二氯甲烷所铸成的薄膜的杨氏模量为1.2MPa,断裂伸长率为244.7%,拉伸强度为0.05MPa。
实施例4:对比共聚物的制备
取ε-己内酯10g,在惰性气氛保护下,加入异辛酸亚锡2mg,然后在真空条件下(低于50Pa)于115℃反应24小时。反应进行完后,利用二氯甲烷/乙醇体系(体积比1:2)进行沉降纯化,得到对比共聚物,标记为PCT,通过GPC测得其数均分子量为14.4万,重均分子量为25.1万,由二氯甲烷所铸成的薄膜的杨氏模量为239.2MPa,断裂伸长率为391.0%,拉伸强度为8.2MPa。
对实施例1~4制备得到的共聚酯材料进行性能测定,具体数值列于表1,性能曲线见图1~3。
表1不同组分共聚酯材料的分子量及其力学性能
聚合物 Mn×104 Mw×104 杨氏模量/MPa 断裂伸长率(%) 拉伸强度/MPa
PCL 14.4 25.1 239.2±37.2 391.0±165.9 8.16±6.1
PCT 9-1 10.4 19.3 146.2±11.2 676.8±82.9 9.79±2.0
PCT 8-2 13.9 26.9 18.3±3.4 1663.3±509.4 11.5±2.9
PCT 7-3 13.0 22.4 1.2±0.2 244.7±60.8 0.05±0.02
实施例5:可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备
取ε-己内酯8.0g、4-(乙二醇缩酮)-ε-己内酯2.0g、十六醇48mg,将上述原料混合均匀后在惰性气氛保护下,加入三氟甲烷磺酸锡2mg,然后在真空条件下(低于50Pa)于115℃反应24小时。反应进行完后,利用二氯甲烷/乙醇体系(体积比1:2)进行沉降纯化,得到共聚物,标记为PCT8-2(5kDa)(5kDa是目标分子量)通过GPC测得其数均分子量为6.4万,重均分子量为11.6万,由二氯甲烷所铸成的薄膜的杨氏模量为34.0MPa,断裂伸长率为722.9%,拉伸强度为5.7MPa。
实施例6:可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备
取ε-己内酯8.0g、4-(乙二醇缩酮)-ε-己内酯2.0g、十六醇24mg,将上述原料混合均匀后在惰性气氛保护下,加入三氟甲烷磺酸锡2mg,然后在真空条件下(低于50Pa)于115℃反应24小时。反应进行完后,利用二氯甲烷/乙醇体系(体积比1:2)进行沉降纯化,得到共聚物,标记为PCT8-2(10kDa),通过GPC测得其数均分子量为8.4万,重均分子量为14.2万,由二氯甲烷所铸成的薄膜的杨氏模量为36.9MPa,断裂伸长率为859.8%,拉伸强度为8.0MPa。
实施例7:可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备
取ε-己内酯8.0g、4-(乙二醇缩酮)-ε-己内酯2.0g、十六醇12mg,将上述原料混合均匀后在惰性气氛保护下,加入三氟甲烷磺酸锡2mg,然后在真空条件下(低于50Pa)于115℃反应24小时。反应进行完后,利用二氯甲烷/乙醇体系(体积比1:2)进行沉降纯化,得到共聚物,标记为PCT8-2(20kDa),通过GPC测得其数均分子量为12.6万,重均分子量为22.7万,由二氯甲烷所铸成的薄膜的杨氏模量为43.0MPa,断裂伸长率为1137.3%,拉伸强度为9.3MPa。
实施例8:可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备
取ε-己内酯8.0g、4-(乙二醇缩酮)-ε-己内酯2.0g、十六醇6mg,将上述原料混合均匀后在惰性气氛保护下,加入三氟甲烷磺酸锡2mg,然后在真空条件下(低于50Pa)于115℃反应24小时。反应进行完后,利用二氯甲烷/乙醇体系(体积比1:2)进行沉降纯化,得到共聚物,标记为PCT8-2(40kDa),通过GPC测得其数均分子量为17.5万,重均分子量为33.3万,由二氯甲烷所铸成的薄膜的杨氏模量为69.3MPa,断裂伸长率为1382.7%,拉伸强度为10.2MPa。
实施例5~8的产品参数见表2。
表2不同分子量弹性聚酯PCT8-2的参数及其力学性能
聚合物 Mn×104 Mw×104 杨氏模量/MPa 断裂伸长率(%) 拉伸强度/MPa
PCT 8-2(5kDa) 6.4 11.6 34.0±2.9 722.9±50.6 5.7±0.9
PCT 8-2(10kDa) 8.4 14.2 36.9±2.6 859.8±47.2 8.0±0.9
PCT 8-2(20kDa) 12.6 22.7 43.0±3.7 1137.3±58.3 9.3±0.5
PCT 8-2(40kDa) 17.5 33.3 69.3±2.8 1382.7±82.8 10.2±0.5
实施例9:组织工程血管支架材料
选用PCT8-2(20kDa),用二氯甲烷和六氟异丙醇1:1的混合溶剂为溶剂,得到浓度为8~14wt%的纺丝液,采用同轴静电纺丝的工艺,将生物活性分子胶原(I型胶原,创尔生物)与弹性共聚酯PCT8-2(20kDa)同轴共混静电纺丝(电压18kv,距离15cm,挤出速度为1mL每小时,纺丝时间为3小时。)制备多孔纳米管状支架,支架的纳米尺寸为200~1200nm,直径2~12mm,厚4mm,环氧乙烷消毒备用。该支架的孔隙率为80%,断裂伸长率为516%,杨氏模量为7.9MPa,满足血管支架材料的生物力学需求。
实施例10:心肌补片
选用PCT8-2(40kDa),用二氯甲烷和六氟异丙醇1:1的混合溶剂为溶剂,得到浓度为8~14wt%的纺丝液,采用同轴静电纺丝的工艺,将生物活性分子胶原及层粘连蛋白与弹性共聚酯PCT8-2(40kDa)同轴共混静电纺丝(电压18kv,距离15cm,挤出速度为1mL每小时,纺丝时间为3小时。)制备壳-核结构的取向纳米纤维支架,支架的纳米纤维的尺寸为200~1200nm,厚度为约40~120um,环氧乙烷消毒备用。该支架的孔隙率为70%,断裂伸长率为523%,杨氏模量为7.9MPa,满足心肌补片支架材料的生物力学需求。
实施例11:神经组织工程支架
选用PCT8-2(40kDa),用二氯甲烷和六氟异丙醇1:1的混合溶剂为溶剂,得到浓度为8~14wt%的纺丝液,采用静电纺丝的工艺(电压18kv,距离15cm,挤出速度为1mL每小时,纺丝时间为3小时。)制得纳米纤维支架。该支架的孔隙率为70%,断裂伸长率为367%,杨氏模量为5.9MPa,满足神经组织工程支架材料的生物力学需求。
图1为不同组分可调控弹性和形状记忆效应的线性可降解聚酯弹性体的1HNMR曲线,说明材料的结构可由共聚组成比进行调控;
图2为不同组分可调控弹性和形状记忆效应的线性可降解聚酯弹性体的DSC曲线,说明不同共聚酯组分的材料具有可调控的结晶度及结晶温度;
图3为不同组分可调控弹性和形状记忆效应的线性可降解聚酯弹性体的应力应变拉伸曲线及其放大图,结果表明随着侧环醚含量的升高,材料的模量下降,在结晶性没有完全消失的情况下,断裂伸长率增加,共聚酯材料PCT8-2的断裂伸长率可达2400%;
图4为不同分子量的PCT8-2的应力应变拉伸曲线,结果表明材料的拉伸强度及断裂伸长率随着分子量的增大而增大,弹性模量随分子量的变化不大;
图5为不同组分可调控弹性和形状记忆效应的线性可降解聚酯弹性体的动态黏弹谱,结果表明随着共聚酯材料侧环醚含量的升高,材料的模量下降,弹性模量增大;
图6为不同组分可调控弹性和形状记忆效应的线性可降解聚酯弹性体的接触角,结果表明随着共聚酯材料侧环醚含量的升高,材料的亲水性增强;
图7为不同组分可调控弹性和形状记忆效应的线性可降解聚酯弹性体的降解质量损失曲线,结果表明随着共聚酯材料侧环醚含量的升高,材料的速度加快;
图8为不同组分可调控弹性和形状记忆效应的线性可降解聚酯弹性体的细胞毒性CCK-8测试结果,结果表明随着共聚酯材料侧环醚含量的升高,材料的细胞相容性获得了提高;
图9为可调控弹性和形状记忆效应的线性可降解聚酯弹性体PCT8-2(200kMa)的形状记忆测试实物图片,说明该类材料的体温下的形状恢复过程。A:起期形态;B:拉伸的形态;CtoF:在37℃下,从拉伸的形态恢复到期始形态的过程。
但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种可调控弹性和形状记忆效应的线性可降解聚酯弹性体,其特征在于,所述可调控弹性和形状记忆效应的线性可降解聚酯弹性体由含侧环醚取代的功能性己内酯单体与己内酯共聚得到,其数均分子量在5万以上,结构式如式(1)所示:
式(1)中,x:y=5:95~25:75,m>500。
2.根据权利要求1所述的可调控弹性和形状记忆效应的线性可降解聚酯弹性体,其特征在于,所述的含侧环醚结构单元的己内酯单体为4-(乙二醇缩酮)-ε-己内酯。
3.权利要求1或2所述的可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备方法,其特征在于,所述制备方法为本体熔融封管聚合法,包括以下步骤:将含侧环醚结构单元的己内酯单体与己内酯混合,然后加入催化剂,或者是加入催化剂和共引发剂;于68~130℃下共聚反应12~72h,得到所述可调控弹性和形状记忆效应的线性可降解聚酯弹性体。
4.根据权利要求3所述的可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备方法,其特征在于,所述的催化剂为异辛酸亚锡、三氟甲烷磺酸锡或叔丁醇铝;所用催化剂的摩尔量为所述含侧环醚结构单元的己内酯单体和己内酯摩尔总量的1/1000~1/10000。
5.根据权利要求3所述的可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备方法,其特征在于,所用催化剂的摩尔量为所述含侧环醚结构单元的己内酯单体和己内酯摩尔总量的1/2000~1/8000。
6.根据权利要求3所述的可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备方法,其特征在于,所述的共引发剂为含羟基的醇;所用共引发剂的摩尔量为所述含侧环醚结构单元的己内酯单体和己内酯摩尔总量的1/100~1/8000。
7.根据权利要求3所述的可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备方法,其特征在于,所述的共引发剂为十六醇、聚乙二醇或聚乙烯醇;所用共引发剂的摩尔量为所述含侧环醚结构单元的己内酯单体和己内酯摩尔总量的1/200~1/5000。
8.根据权利要求3所述的可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备方法,其特征在于,所述共聚反应在真空条件下进行。
9.根据权利要求3所述的可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备方法,其特征在于,所述共聚反应得到的产物使用二氯甲烷/乙醇体系进行沉降纯化。
10.权利要求1或2所述的可调控弹性和形状记忆效应的线性可降解聚酯弹性体在软组织工程支架、组织修复和再生医学中的应用。
CN201610013211.8A 2016-01-05 2016-01-05 可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备及应用 Expired - Fee Related CN105504248B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610013211.8A CN105504248B (zh) 2016-01-05 2016-01-05 可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610013211.8A CN105504248B (zh) 2016-01-05 2016-01-05 可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备及应用

Publications (2)

Publication Number Publication Date
CN105504248A true CN105504248A (zh) 2016-04-20
CN105504248B CN105504248B (zh) 2018-03-20

Family

ID=55712589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610013211.8A Expired - Fee Related CN105504248B (zh) 2016-01-05 2016-01-05 可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备及应用

Country Status (1)

Country Link
CN (1) CN105504248B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105907059A (zh) * 2016-04-29 2016-08-31 哈尔滨工业大学 基于形状记忆复合材料的封堵器及其制备和应用方法
CN106310370A (zh) * 2016-08-09 2017-01-11 东华大学 一种弹性可降解生物医用材料的制备方法
CN110404122A (zh) * 2018-04-27 2019-11-05 哈尔滨工业大学 一种形状记忆载药智能复合疝气修补片及其制备方法
CN110524861A (zh) * 2019-08-26 2019-12-03 中山大学 一种制备形状记忆产品的加工方法
CN109621002B (zh) * 2018-12-04 2021-08-31 东华大学 一种具有生物活性的自愈合形状记忆多孔支架及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864065A (zh) * 2010-06-13 2010-10-20 天津大学 含环醚侧基的可生物降解两亲性嵌段共聚物及其制备方法和应用
US20150290344A1 (en) * 2014-04-11 2015-10-15 Clemson University Biodegradable polyester- and poly(ester amide) based x-ray imaging agents

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864065A (zh) * 2010-06-13 2010-10-20 天津大学 含环醚侧基的可生物降解两亲性嵌段共聚物及其制备方法和应用
US20150290344A1 (en) * 2014-04-11 2015-10-15 Clemson University Biodegradable polyester- and poly(ester amide) based x-ray imaging agents

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D.TIAN AT AL.: "Macromolecular Engineering of Polylactones and Polylactides.22. Copolymerization of ε-Caprolactone and 1,4,8-Trioxaspiro[4.6]-9-undecanone Initiated by Aluminum Isopropoxide", 《MACROMOLECULES》 *
JOSHUA S. KATZ ET AL.: "Soft biodegradable polymersomes from caprolactone-derived polymers", 《SOFT MATTER》 *
LONGLONG CHANG ET AL.: "Poly(ethyleneglycol)-b-Poly(ε-caprolactone-co-γ-hydroxyl-ε-caprolactone) Bearing Pendant Hydroxyl Groups as Nanocarriers for Doxorubicin Delivery", 《BIOMACROMOLECULES》 *
XIAOYING WANG ET AL.: "Amphiphilic block copolyesters bearing pendant cyclic ketal groups as nanocarriers for controlled release of camptothecin", 《J BIOMATER SCI POLYM ED.》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105907059A (zh) * 2016-04-29 2016-08-31 哈尔滨工业大学 基于形状记忆复合材料的封堵器及其制备和应用方法
CN105907059B (zh) * 2016-04-29 2017-12-01 哈尔滨工业大学 基于形状记忆复合材料的封堵器及其制备和应用方法
CN106310370A (zh) * 2016-08-09 2017-01-11 东华大学 一种弹性可降解生物医用材料的制备方法
CN110404122A (zh) * 2018-04-27 2019-11-05 哈尔滨工业大学 一种形状记忆载药智能复合疝气修补片及其制备方法
CN109621002B (zh) * 2018-12-04 2021-08-31 东华大学 一种具有生物活性的自愈合形状记忆多孔支架及其制备方法和应用
CN110524861A (zh) * 2019-08-26 2019-12-03 中山大学 一种制备形状记忆产品的加工方法

Also Published As

Publication number Publication date
CN105504248B (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
Gupta et al. Poly (lactic acid) fiber: An overview
CN105504248A (zh) 可调控弹性和形状记忆效应的线性可降解聚酯弹性体的制备及应用
CN105999419B (zh) 一种仿生型可吸收硬脑膜补片及其制备方法与应用
Abd Alsaheb et al. Recent applications of polylactic acid in pharmaceutical and medical industries
CN101623517B (zh) 一种医用防粘连膜及其制备方法
EP2760911B1 (en) Controlled hydrolysis of poly-4-hydroxybutyrate and copolymers
CN105536055B (zh) 一种形状记忆型高弹性活性纳米纤维支架及其应用
EP0696605A1 (de) Biokompatibles Blockcopolymer
Shah et al. Electrospinning of L-tyrosine polyurethanes for potential biomedical applications
JPH0912689A (ja) 高強度、急速被吸収性、溶融加工性のグリコリド高含有ポリ(グリコリド−コ−p−ジオキサノン)共重合体
CN105237714A (zh) 水响应形状记忆聚氨酯及其制备方法
CN109954166A (zh) 一种3d打印人工生物可降解硬脑膜及其制备方法
JPH03502651A (ja) 反復カーボネート単位を含むホモポリマーおよびコポリマーから製造された医療用具
CN102174203A (zh) 一种丝素蛋白/共聚物水凝胶的制备方法
US20030215483A1 (en) Medical materials and porous scaffolds for tissue engineering made from the biodegradable glycolide/epsilon-caprolactone copolymer
CN109464168A (zh) 封堵器
CN107185053A (zh) 一种降解速率可控的肠胃吻合支架及其制备方法
KR101616345B1 (ko) 나노섬유 및 나노입자를 포함하는 인공피부 및 충전제용 복합지지체, 및 이의 제조방법
WO2015043496A1 (zh) 一种骨损伤修复固定器械及其制备方法
Cipurković et al. Biodegradable Polymers: Production, properties and application in medicine
Revati et al. Biodegradable poly (lactic acid) scaffold for tissue engineering: A brief review
US20170369628A1 (en) Biodegradable polymer
CN104313789B (zh) 一种增强电纺丝膜机械性能的方法
CN116139344A (zh) 一种促进成骨细胞生成的骨修复材料及其制备方法
CN109851744B (zh) 一种可降解聚氨酯生物材料及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180320

Termination date: 20220105

CF01 Termination of patent right due to non-payment of annual fee