CN105484752B - 一种用于地铁运营隧道的地面纠偏回调方法 - Google Patents

一种用于地铁运营隧道的地面纠偏回调方法 Download PDF

Info

Publication number
CN105484752B
CN105484752B CN201510896063.4A CN201510896063A CN105484752B CN 105484752 B CN105484752 B CN 105484752B CN 201510896063 A CN201510896063 A CN 201510896063A CN 105484752 B CN105484752 B CN 105484752B
Authority
CN
China
Prior art keywords
subregion
tunnel
section
administered
slip casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510896063.4A
Other languages
English (en)
Other versions
CN105484752A (zh
Inventor
刘邦
李季
邓琳
唐勇
常彦博
梁晓亮
张健
王晓伟
张俊
雷振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinohydro Bureau 8 Co Ltd
Original Assignee
Sinohydro Bureau 8 Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinohydro Bureau 8 Co Ltd filed Critical Sinohydro Bureau 8 Co Ltd
Priority to CN201510896063.4A priority Critical patent/CN105484752B/zh
Publication of CN105484752A publication Critical patent/CN105484752A/zh
Application granted granted Critical
Publication of CN105484752B publication Critical patent/CN105484752B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/001Improving soil or rock, e.g. by freezing; Injections
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/001Improving soil or rock, e.g. by freezing; Injections
    • E21D9/002Injection methods characterised by the chemical composition used
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Abstract

本发明公开了一种用于地铁运营隧道的地面纠偏回调方法,步骤包括:1)卸载上方覆土;2)判断是否需要水平纠偏,如需水平纠偏则执行步骤3);否则执行步骤4);3)在待治理隧道区段水平移位侧指定距离处打孔,在地面采用袖阀管注浆工艺向孔内注浆以实现水平纠偏;4)判断待治理隧道区段是否需要进行竖向纠偏,如果需要进行竖向纠偏,则跳转执行步骤5);否则,跳转执行步骤6);5)在待治理隧道区段两侧向待治理隧道区段的下侧斜向打孔,在地面采用袖阀管注浆工艺向孔内注浆以实现竖向纠偏;6)纠偏结束并退出。本发明具有操作难度小、施工工艺简单、操作空间广、工序可控性强、实施效率高、安全性能高、不影响地铁运营的优点。

Description

一种用于地铁运营隧道的地面纠偏回调方法
技术领域
本发明涉及一种用于地铁运营隧道的地面纠偏回调方法,适用于淤泥、黏土层等复杂地质条件下、采用土方卸载和袖阀管注浆技术,对既有运营地铁盾构隧道区间产生的不均匀水平及竖向位移、管片应力状态进行纠偏治理。
背景技术
目前国内各大城市地铁隧道区间因地质、周边环境等影响出现不同程度沉降及位移,已出现过沉降地铁采用过洞内注浆进行的竖向回调,操作难度大,施工空间小,可施工时间短,只能在夜间地铁隧道停运阶段进行。
发明内容
本发明要解决的技术问题:针对现有技术的上述问题,提供一种操作难度小、施工工艺简单、操作空间广、工序可控性强、实施效率高、安全性能高、不影响地铁运营的用于地铁运营隧道的地面纠偏回调方法。
为了解决上述技术问题,本发明采用的技术方案为:
一种用于地铁运营隧道的地面纠偏回调方法,步骤包括:
1)在待治理隧道区段各个指定断面的预设监测点位布置传感器,并根据传感器定期检测的载荷建立用于监测待治理隧道区段载荷的有限元分析模型;卸载待治理隧道区段上方指定厚度的覆土;
2)判断待治理隧道区段是否需要水平纠偏,如果需要水平纠偏,则跳转执行步骤3);否则,跳转执行步骤4);
3)在待治理隧道区段水平移位侧指定距离处打孔,在地面采用袖阀管注浆工艺向孔内注浆以实现对待治理隧道区段的水平纠偏;
4)判断待治理隧道区段是否需要进行竖向纠偏,如果需要进行竖向纠偏,则跳转执行步骤5);否则,跳转执行步骤6);
5)在待治理隧道区段两侧向待治理隧道区段的下侧斜向打孔,在地面采用袖阀管注浆工艺向孔内注浆以实现对待治理隧道区段的竖向纠偏;
6)纠偏结束并退出。
优选地,所述步骤3)的详细步骤包括:
3.1)将待治理隧道区段沿长度方向划分为奇数个分区,最中间分区为水平移位最大的分区;根据所述分区被划分的总数量设定初始分区数量、分区调整步长,所述初始分区数量为奇数,分区调整步长为偶数;以中间分区为基准选择初始分区数量个分区作为当前施工分区;
3.2)在当前施工分区与待治理隧道区段水平移位侧指定距离设置至少一排钻孔位,且本轮钻孔分布于上一轮钻孔的内侧,分别对本轮的各个钻孔位打孔;
3.3)在地面采用袖阀管注浆工艺向当前施工分区的各个钻孔内同步注浆;
3.4)判断当前施工分区的分区数量是否为1,如果当前施工分区的分区数量不为1,则将分区数量减去分区调整步长作为新的分区数量,从中间分区为基准选择新的分区数量个分区作为当前施工分区,跳转执行步骤3.2);否则,判定对待治理隧道区段的水平纠偏完毕,跳转执行步骤4)。
优选地,所述步骤5)的详细步骤包括:
5.1)将待治理隧道区段沿长度方向划分为奇数个分区,最中间分区为沉降最大的分区;根据所述分区被划分的总数量设定初始分区数量、分区调整步长,所述初始分区数量为奇数,分区调整步长为偶数;以中间分区为基准选择初始分区数量个分区作为当前施工分区;
5.2)在当前施工分区与待治理隧道区段两侧指定距离设置至少一排钻孔位,且本轮钻孔分布于上一轮钻孔的内侧,分别对本轮的各个钻孔位向待治理隧道区段下侧斜向打孔至待治理隧道区段下侧;
5.3)在地面采用袖阀管注浆工艺向当前施工分区的各个钻孔内同步注浆;
5.4)判断当前施工分区的分区数量是否为1,如果当前施工分区的分区数量不为1,则将分区数量减去分区调整步长作为新的分区数量,从中间分区为基准选择新的分区数量个分区作为当前施工分区,跳转执行步骤5.2);否则,判定对待治理隧道区段的水平纠偏完毕,跳转执行步骤6)。
优选地,所述在地面采用袖阀管注浆工艺向当前施工分区的各个钻孔内同步注浆的详细步骤包括:
S1)在当前施工分区的各个钻孔成孔后通过钻杆由下向上注入套壳料;
S2)将当前施工分区的各个钻孔划分为多个注浆段,向钻孔内下放袖阀管,在袖阀管下放完成后通过泥浆泵从钻孔的孔口插入软管将套壳料注入孔内直至孔口返浆;选择自下而上的第一个注浆段作为当前注浆段;
S3)根据传感器检测到的载荷调节泥浆泵的注浆压力,在地面通过泥浆泵向当前施工分区的各个钻孔内的当前注浆段同步注浆;
S4)判断是否所有注浆段已经全部注浆作业完毕,如果尚未全部注浆作业完毕,则选择自下而上的下一个注浆段作为当前注浆段,跳转执行步骤S3);否则表示当前施工分区的各个钻孔注浆作业完毕,对注浆段上部的钻孔进行封堵,跳转执行下一步。
优选地,所述步骤S2)中将当前施工分区的各个钻孔划分为多个注浆段时,具体是指将当前施工分区的各个钻孔的注浆开孔段划分为五个注浆段,且五个注浆段从下往上的高度分别为2m、2m、2m、2m、1m。
优选地,所述步骤S1)中的套壳料由水泥、膨润土、水组成,且水泥、膨润土、水三者的质量配比为1.0:0.3:1.0。
优选地,所述步骤S2)中的套壳料由水泥、膨润土、水组成,且水泥、膨润土、水三者的质量配比为1.0:0.4:1.0。
优选地,所述步骤S3)中的同步注浆具体是指同步注入水泥水玻璃双液浆。
优选地,所述水泥水玻璃双液浆由水泥浆和水玻璃组成,且水泥浆和水玻璃的体积比为1:1,水泥浆的水灰质量比为1:1,水玻璃的波美度为40。
优选地,所述步骤1)中的指定断面具体是指针对待治理隧道区段每1.5m长度设置一个断面,且每一个断面布置有7个监测点位,所述监测点位包括拱顶监测点位、两个拱腰监测点位、两个道床监测点位、两个道床及拱腰间侧壁监测点位。
本发明用于地铁运营隧道的地面纠偏回调方法具有下述优点:
1、本发明在复杂地质条件下采用土方卸载和地面注浆施工方法实现地铁运营隧道进行纠偏治理,地面注浆采用袖阀管注浆工艺,选用袖阀管主要考虑到对土体深部的定点、定量、一孔多次注浆的特性,该方法确保地铁列车的运行安全,回调隧道区间产生的不均匀水平及竖向位移的同时也使极限状态的区间隧道管片应力得到释放,能够实现地铁运营隧道的水平位移及沉降的纠偏回调,而且施工全部为地面作业,具有操作难度小、施工工艺简单、操作空间广、工序可控性强、实施效率高的优点。
2、本发明还包括根据预先在待治理隧道区段各个指定断面的预设监测点位布置传感器检测的载荷建立待治理隧道区段的有限元分析模型,从而实现在施工过程中结合实时发布的监测数据,通过调整注浆压力、利用袖阀管调整注浆的竖向分段、同一时段注浆孔位横向的孔距等控制隧道单次变形量,有效的可控性也保证了运营区间隧道的安全,具有安全性能高、不影响地铁运营的优点。
附图说明
图1为本发明实施例方法的基本流程示意图。
图2 为本发明实施例中的水平纠偏注浆示意图。
图3为本发明实施例中的 竖向纠偏注浆示意图。
图4为本发明实施例中的注浆施工流程图。
图5为本发明实施例袖阀管的结构示意图。
图6为本发明实施例中监测点位的布置示意图。
图7 为本发明实施例的水平纠偏数值曲线对比图。
图8 为本发明实施例的竖向纠偏数值曲线对比图。
图9为应用本发明实施例方法后的某一特征断面回调示意图,其中监测点相对位移乘以50倍放大系数绘制。
具体实施方式
下文将以深圳地铁1号线受前海建设项目影响区段整治工程为例,对本发明用于地铁运营隧道的地面纠偏回调方法进行进一步的详细说明。深圳地铁1号线受前海建设项目影响区段位于深圳市深港前海合作区,地铁1号线鲤鱼门~前海湾区间隧道主要影响区域SK25+030~SK25+245段内隧道埋深12m~15m,所处地层自上至下依次为填土、淤泥、粘土、砂质粘土,其中隧道主要穿越粘土、砂质粘土,淤泥地层基本位于隧道拱部上方1m。纠偏前累计沉降最大值约78mm,水平移位最大值约35mm。深圳市地铁集团通过检测判定鲤鱼门~前海湾区间隧道管片结构受力处于极限状态。
如图1所示,本实施例用于地铁运营隧道的地面纠偏回调方法的步骤包括:
1)在待治理隧道区段各个指定断面的预设监测点位布置传感器,并根据传感器定期检测的载荷建立用于监测待治理隧道区段载荷的有限元分析模型;卸载待治理隧道区段上方指定厚度的覆土;
2)判断待治理隧道区段是否需要水平纠偏,如果需要水平纠偏,则跳转执行步骤3);否则,跳转执行步骤4);
3)在待治理隧道区段水平移位侧指定距离处打孔,在地面采用袖阀管注浆工艺向孔内注浆以实现对待治理隧道区段的水平纠偏;
4)判断待治理隧道区段是否需要进行竖向纠偏,如果需要进行竖向纠偏,则跳转执行步骤5);否则,跳转执行步骤6);
5)在待治理隧道区段两侧向待治理隧道区段的下侧斜向打孔,在地面采用袖阀管注浆工艺向孔内注浆以实现对待治理隧道区段的竖向纠偏;
6)纠偏结束并退出。
本实施例中建立待治理隧道区段的有限元分析模型时,具体是指利用Plaxis3D有限元方法建立待治理隧道区段的有限元分析模型,通过建立待治理隧道区段的有限元分析模型,在各阶段施工前后进行模拟分析,从而能够对注浆过程进行了简化,宏观上简化成作用于注浆范围内的均布荷载,模型经过实际监测数据检验,与实际结果是较为吻合,具体注浆过程的考虑及微观数值模拟,本实施例中把注浆考虑成均布荷载是较为简单有效的一种方式。且刷新有限元分析模型以监测待治理隧道区段的注浆过程中,监测为24小时实时监测,数据每半小时更新一次。本实施例卸载待治理隧道区段上方指定厚度的覆土时,具体是卸载待治理隧道区段上方2m的覆土,对隧道上方2m覆土先行卸载,局部释放和回调已达临界状态的管片内力和变形,并观测土体卸载对隧道回调的作用,本实施例中卸载完成后隧道水平位移无变化,竖向最大位移约3mm。
本实施例中,步骤1)中的指定断面具体是指针对待治理隧道区段每1.5m长度设置一个断面,且每一个断面布置有7个监测点位,监测点位包括拱顶监测点位G1、两个拱腰监测点位G2和G3、两个道床监测点位G4和G5、两个道床及拱腰间侧壁监测点位G6和G7,如图6所示。在隧道的纠偏回调过程中,随着隧道的位置发生变化,各个监测点位也会随着隧道的位置变化而发生变化。
本实施例中,步骤3)的详细步骤包括:
3.1)将待治理隧道区段沿长度方向划分为奇数个分区,最中间分区为水平移位最大的分区;根据分区被划分的总数量设定初始分区数量、分区调整步长,初始分区数量为奇数,分区调整步长为偶数;以中间分区为基准选择初始分区数量个分区作为当前施工分区;
3.2)在当前施工分区与待治理隧道区段水平移位侧指定距离设置至少一排钻孔位,且本轮钻孔分布于上一轮钻孔的内侧,分别对本轮的各个钻孔位打孔;
3.3)在地面采用袖阀管注浆工艺向当前施工分区的各个钻孔内同步注浆;
3.4)判断当前施工分区的分区数量是否为1,如果当前施工分区的分区数量不为1,则将分区数量减去分区调整步长作为新的分区数量,从中间分区为基准选择新的分区数量个分区作为当前施工分区,跳转执行步骤3.2);否则,判定对待治理隧道区段的水平纠偏完毕,跳转执行步骤4)。
本实施例中,步骤3.1)中具体将待治理隧道区段沿长度方向划分为7个分区,且设定初始分区数量为7、分区调整步长为1,因此共需要进行七轮钻孔注浆作业:第一轮为全部7个分区,第二轮为以中间分区为基准的6个分区,以此类推,第七轮为以中间分区为基准的1个分区。如图2所示,在第一轮钻孔注浆作业时,在全部7个分区一侧打孔形成1排钻孔A#1;在第二轮钻孔注浆作业时,在以中间分区为基准的6个分区一侧打孔形成1排钻孔A#2;在以中间分区为基准的5个分区一侧打孔形成1排钻孔A#3;在前三轮注浆作业完成后,钻孔A#1~A#3形成最外侧的止浆墙,止浆墙的作用一是形成帷幕防止浆液窜流,二是作为持力层对隧道附近土体造成反作用力以实现对隧道的回调,以便对第二轮及第三轮的注浆提供支持。第四轮钻孔注浆作业时,在中央的4个分区一侧打孔形成一排钻孔A#4,依次类推,最终第七轮钻孔注浆作业时,在中央的1个分区一侧打孔形成一排钻孔A#7。地铁隧道首次出现回调效果出现在第四轮钻孔注浆作业的结束阶段,验证了第一~三轮钻孔注浆作业构建止浆墙的效果足以形成持力层。第四轮钻孔注浆作业后,隧道已有灵敏的回调反应,为保证隧道安全,后续施工排通过减小注浆压力、增大单次注浆孔的孔距等措施。最终,经过你钻孔注浆作业,在注浆区域形成向上的作用力,以实现对待治理隧道区段的竖向纠偏,最终将水平纠偏后的待治理隧道区段从位置C纠偏回调到位置D。
本实施例中,步骤5)的详细步骤包括:
5.1)将待治理隧道区段沿长度方向划分为奇数个分区,最中间分区为沉降最大的分区;根据分区被划分的总数量设定初始分区数量、分区调整步长,初始分区数量为奇数,分区调整步长为偶数;以中间分区为基准选择初始分区数量个分区作为当前施工分区;
5.2)在当前施工分区与待治理隧道区段两侧指定距离设置一排钻孔位,且本轮钻孔分布于上一轮钻孔的内侧,分别对本轮的各个钻孔位向待治理隧道区段下侧斜向打孔至待治理隧道区段下侧;
5.3)在地面采用袖阀管注浆工艺向当前施工分区的各个钻孔内同步注浆;
5.4)判断当前施工分区的分区数量是否为1,如果当前施工分区的分区数量不为1,则将分区数量减去分区调整步长作为新的分区数量,从中间分区为基准选择新的分区数量个分区作为当前施工分区,跳转执行步骤5.2);否则,判定对待治理隧道区段的水平纠偏完毕,跳转执行步骤6)。
本实施例中,步骤5.1)中具体将待治理隧道区段沿长度方向划分为7个分区,且设定初始分区数量为5、分区调整步长为2,因此共需要进行三轮钻孔注浆作业:第一轮为以中间分区为基准的5个分区,第二轮为以中间分区为基准的3个分区,第三轮为以中间分区为基准的1个分区。如图3所示,(I)在第一轮钻孔注浆作业时,在中央的5个分区两侧打孔各形成一排钻孔A#3和A#4,且A#3和A#4同步施工;在第一轮注浆作业完成后,钻孔A#3和A#4形成最外侧的止浆墙,以便对第二轮及第三轮的注浆提供支持。(II)在第二轮钻孔注浆作业时,在中央的3个分区两侧打孔形成各一排钻孔A#2和A#5,地铁隧道首次出现回调效果出现在第二轮钻孔注浆作业的结束阶段,验证了第一轮钻孔注浆作业构建止浆墙的效果足以形成持力层。(III)在第三轮钻孔注浆作业时,在中央的1个分区两侧打孔各形成一排钻孔A#1和A#6,地铁隧道在本区域注浆施工时已有灵敏的回调反应,为保证隧道安全,后续施工排通过减小注浆压力、增大单次注浆孔的孔距等措施。最终,经过你钻孔注浆作业,在注浆区域形成向上的作用力,以实现对待治理隧道区段的竖向纠偏,最终将水平纠偏后的待治理隧道区段从位置D纠偏回调到位置E。需要说明的是,本实施例中仅仅是每一轮打一排钻孔进行示例性说明,在实际作业过程中,毫无疑问也可以根据需要打更多排的钻孔。
本实施例中,在地面采用袖阀管注浆工艺向当前施工分区的各个钻孔内同步注浆的详细步骤包括:
S1)在当前施工分区的各个钻孔成孔后通过钻杆由下向上注入套壳料,套壳料的主要目的是封闭袖阀管和钻孔之间的空隙,确保浆液不会顺着孔壁窜到钻孔的孔口;本实施例中,步骤S1)中的套壳料由水泥、膨润土、水组成,且水泥、膨润土、水三者的质量配比为1.0:0.3:1.0;
S2)将当前施工分区的各个钻孔划分为多个注浆段,向钻孔内下放袖阀管,在袖阀管下放完成后通过泥浆泵从钻孔的孔口插入软管将套壳料注入孔内直至孔口返浆;选择自下而上的第一个注浆段作为当前注浆段;本实施例中,步骤S2)中的套壳料由水泥、膨润土、水组成,且水泥、膨润土、水三者的质量配比为1.0:0.4:1.0;
S3)根据传感器检测到的载荷调节泥浆泵的注浆压力,在地面通过泥浆泵向当前施工分区的各个钻孔内的当前注浆段同步注浆;本实施例中,步骤S3)中的同步注浆具体是指同步注入水泥水玻璃双液浆。水泥水玻璃双液浆由水泥浆和水玻璃组成,且水泥浆和水玻璃的体积比为1:1,水泥浆的水灰质量比为1:1,水玻璃的波美度为40(40°Be’);S4)判断是否所有注浆段已经全部注浆作业完毕,如果尚未全部注浆作业完毕,则选择自下而上的下一个注浆段作为当前注浆段,跳转执行步骤S3);否则表示当前施工分区的各个钻孔注浆作业完毕,对注浆段上部的钻孔进行封堵,跳转执行下一步。
如图2、图3和图4所示,步骤S2)中将当前施工分区的各个钻孔划分为多个注浆段时,具体是指利用袖阀管的可控性,将当前施工分区的各个钻孔的注浆开孔段B(高度为9m)划分为五个注浆段B#1~B#5,且五个注浆段从下往上的高度分别为2m、2m、2m、2m、1m,B#1~B#4的高度均为2m,B#5的高度为1m,图4中标号F位置为袖阀管的未开孔段。本实施例中,袖阀管管径50mm。
参见步骤S1)~S4)以及图5,在注浆作业开始前,施工准备、钻孔、袖阀管安装、袖阀管开环、配置浆液的步骤,在本实施例针对当前施工分区各个钻孔的注浆作业开始时,首先针对当前施工分区各个钻孔注浆段B#1进行同步注浆作业,然后针对当前施工分区各个钻孔注浆段B#2进行同步注浆作业,以此类推,本实施例中对针对当前施工分区各个钻孔注浆段B#5进行同步注浆作业,最终对注浆段上部的钻孔进行封堵后,即可对当前施工分区的各个钻孔进行质量检验。
参见如图7所示纠偏前的水平位移曲线、水平纠偏后的水平位移曲线、纠偏后(水平纠偏+竖向纠偏后)的水平位移曲线可知,在水平纠偏注浆阶段隧道水平回调最大值达到19.1mm,最终隧道稳定后,水平回调最大值约23.0mm,最大位移量减小至20.7mm。参见如图8所示纠偏前的竖向位移曲线、竖向纠偏后的水平位移曲线、纠偏后(水平纠偏+竖向纠偏后)的竖向位移曲线可知,隧道竖向回调最大值达到15.6mm,最终隧道稳定后,竖向回调最大值约17.1mm,最大沉降量减小至61.3mm。由图7、图8所示曲线,反映出隧道整体产生的不均匀沉降和位移,通过地面注浆沉降和位移越大的断面越易回调。如图9所示,本实施例中,隧道管片初始状态为真圆状态,区间隧道受影响管片变成扁平圆状态,纠偏施工后,管片受力,形状趋于真圆,最大水平径向回缩9.46mm(拱腰收敛值),最大竖直径向拉伸10.02mm(垂直收敛值),管片应力得到释放,结构极限状态解除。综上所述,本实施例成功的完成了深圳地铁1号线受前海建设项目影响区段整治工程的纠偏任务,填补了我国在地面实现地铁隧道纠偏的空白,取得的成果具有指导性的意义。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种用于地铁运营隧道的地面纠偏回调方法,其特征在于步骤包括:
1)在待治理隧道区段各个指定断面的预设监测点位布置传感器,并根据传感器定期检测的载荷建立用于监测待治理隧道区段载荷的有限元分析模型;卸载待治理隧道区段上方指定厚度的覆土;
2)判断待治理隧道区段是否需要水平纠偏,如果需要水平纠偏,则跳转执行步骤3);否则,跳转执行步骤4);
3)在待治理隧道区段水平移位侧指定距离处打孔,在地面采用袖阀管注浆工艺向孔内注浆以实现对待治理隧道区段的水平纠偏;
4)判断待治理隧道区段是否需要进行竖向纠偏,如果需要进行竖向纠偏,则跳转执行步骤5);否则,跳转执行步骤6);
5)在待治理隧道区段两侧向待治理隧道区段的下侧斜向打孔,在地面采用袖阀管注浆工艺向孔内注浆以实现对待治理隧道区段的竖向纠偏;
6)纠偏结束并退出;
所述步骤3)的详细步骤包括:
3.1)将待治理隧道区段沿长度方向划分为奇数个分区,最中间分区为水平移位最大的分区;根据所述分区被划分的总数量设定初始分区数量、分区调整步长,所述初始分区数量为奇数,分区调整步长为偶数;以中间分区为基准选择初始分区数量个分区作为当前施工分区;
3.2)在当前施工分区与待治理隧道区段水平移位侧指定距离设置至少一排钻孔位,且本轮钻孔分布于上一轮钻孔的内侧,分别对本轮的各个钻孔位打孔;
3.3)在地面采用袖阀管注浆工艺向当前施工分区的各个钻孔内同步注浆;
3.4)判断当前施工分区的分区数量是否为1,如果当前施工分区的分区数量不为1,则将分区数量减去分区调整步长作为新的分区数量,从中间分区为基准选择新的分区数量个分区作为当前施工分区,跳转执行步骤3.2);否则,判定对待治理隧道区段的水平纠偏完毕,跳转执行步骤4)。
2.根据权利要求1所述的用于地铁运营隧道的地面纠偏回调方法,其特征在于,所述步骤5)的详细步骤包括:
5.1)将待治理隧道区段沿长度方向划分为奇数个分区,最中间分区为沉降最大的分区;根据所述分区被划分的总数量设定初始分区数量、分区调整步长,所述初始分区数量为奇数,分区调整步长为偶数;以中间分区为基准选择初始分区数量个分区作为当前施工分区;
5.2)在当前施工分区与待治理隧道区段两侧指定距离设置至少一排钻孔位,且本轮钻孔分布于上一轮钻孔的内侧,分别对本轮的各个钻孔位向待治理隧道区段下侧斜向打孔至待治理隧道区段下侧;
5.3)在地面采用袖阀管注浆工艺向当前施工分区的各个钻孔内同步注浆;
5.4)判断当前施工分区的分区数量是否为1,如果当前施工分区的分区数量不为1,则将分区数量减去分区调整步长作为新的分区数量,从中间分区为基准选择新的分区数量个分区作为当前施工分区,跳转执行步骤5.2);否则,判定对待治理隧道区段的水平纠偏完毕,跳转执行步骤6)。
3.根据权利要求2所述的用于地铁运营隧道的地面纠偏回调方法,其特征在于,所述在地面采用袖阀管注浆工艺向当前施工分区的各个钻孔内同步注浆的详细步骤包括:
S1)在当前施工分区的各个钻孔成孔后通过钻杆由下向上注入套壳料;
S2)将当前施工分区的各个钻孔划分为多个注浆段,向钻孔内下放袖阀管,在袖阀管下放完成后通过泥浆泵从钻孔的孔口插入软管将套壳料注入孔内直至孔口返浆;选择自下而上的第一个注浆段作为当前注浆段;
S3)根据传感器检测到的载荷调节泥浆泵的注浆压力,在地面通过泥浆泵向当前施工分区的各个钻孔内的当前注浆段同步注浆;
S4)判断是否所有注浆段已经全部注浆作业完毕,如果尚未全部注浆作业完毕,则选择自下而上的下一个注浆段作为当前注浆段,跳转执行步骤S3);否则表示当前施工分区的各个钻孔注浆作业完毕,对注浆段上部的钻孔进行封堵,跳转执行下一步。
4.根据权利要求3所述的用于地铁运营隧道的地面纠偏回调方法,其特征在于,所述步骤S2)中将当前施工分区的各个钻孔划分为多个注浆段时,具体是指将当前施工分区的各个钻孔的注浆开孔段划分为五个注浆段,且五个注浆段从下往上的高度分别为2m、2m、2m、2m、1m。
5.根据权利要求4所述的用于地铁运营隧道的地面纠偏回调方法,其特征在于,所述步骤S1)中的套壳料由水泥、膨润土、水组成,且水泥、膨润土、水三者的质量配比为1.0:0.3:1.0。
6.根据权利要求5所述的用于地铁运营隧道的地面纠偏回调方法,其特征在于,所述步骤S2)中的套壳料由水泥、膨润土、水组成,且水泥、膨润土、水三者的质量配比为1.0:0.4:1.0。
7.根据权利要求6所述的用于地铁运营隧道的地面纠偏回调方法,其特征在于,所述步骤S3)中的同步注浆具体是指同步注入水泥水玻璃双液浆。
8.根据权利要求7所述的用于地铁运营隧道的地面纠偏回调方法,其特征在于,所述水泥水玻璃双液浆由水泥浆和水玻璃组成,且水泥浆和水玻璃的体积比为1:1,水泥浆的水灰质量比为1:1,水玻璃的波美度为40。
9.根据权利要求1~8中任意一项所述的用于地铁运营隧道的地面纠偏回调方法,其特征在于,所述步骤1)中的指定断面具体是指针对待治理隧道区段每1.5m长度设置一个断面,且每一个断面布置有7个监测点位,所述监测点位包括拱顶监测点位、两个拱腰监测点位、两个道床监测点位、两个道床及拱腰间侧壁监测点位。
CN201510896063.4A 2015-12-08 2015-12-08 一种用于地铁运营隧道的地面纠偏回调方法 Active CN105484752B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510896063.4A CN105484752B (zh) 2015-12-08 2015-12-08 一种用于地铁运营隧道的地面纠偏回调方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510896063.4A CN105484752B (zh) 2015-12-08 2015-12-08 一种用于地铁运营隧道的地面纠偏回调方法

Publications (2)

Publication Number Publication Date
CN105484752A CN105484752A (zh) 2016-04-13
CN105484752B true CN105484752B (zh) 2018-06-15

Family

ID=55671997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510896063.4A Active CN105484752B (zh) 2015-12-08 2015-12-08 一种用于地铁运营隧道的地面纠偏回调方法

Country Status (1)

Country Link
CN (1) CN105484752B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105952462B (zh) * 2016-06-21 2018-11-13 中国电建集团华东勘测设计研究院有限公司 邻近工程建设过程中的盾构隧道变形控制方法
CN106193083B (zh) * 2016-08-01 2018-07-17 北京市政建设集团有限责任公司 一种多导洞隧道下穿桥桩的沉降控制方法
CN106761780B (zh) * 2016-11-28 2019-01-08 浙江大学城市学院 一种地面堆载作用下盾构隧道变形修复方法
CN108005672B (zh) * 2017-11-22 2019-07-23 天津大学 一种tbm水平纠偏轨迹规划方法
CN108222015B (zh) * 2018-01-25 2023-08-11 天津大学 一种采用主动式隔离桩控制基坑开挖影响的装置及方法
CN108868783B (zh) * 2018-06-05 2020-04-03 中船重型装备有限公司 一种用于顶管机纠偏的挤泥装置及其纠偏方法
CN110106883A (zh) * 2019-04-23 2019-08-09 天津大学 一种矫正地铁隧道水平变形的实时反馈注浆方法
CN113513342A (zh) * 2021-07-29 2021-10-19 广州地铁设计研究院股份有限公司 一种隧道结构沉降装置及隧道结构沉降纠偏方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635368A (zh) * 2011-05-09 2012-08-15 上海申通地铁集团有限公司 一种用于软土地铁隧道的双液微扰动注浆加固方法
CN103422864A (zh) * 2013-08-21 2013-12-04 国家电网公司 电力隧道穿越已有建筑过程微扰动施工控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635368A (zh) * 2011-05-09 2012-08-15 上海申通地铁集团有限公司 一种用于软土地铁隧道的双液微扰动注浆加固方法
CN103422864A (zh) * 2013-08-21 2013-12-04 国家电网公司 电力隧道穿越已有建筑过程微扰动施工控制方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
上海轨交运营隧道检修制度和沉降治理技术难题对策;刘建航等;《地下工程与隧道》;20130331(第1期);1-6 *
微扰动双液注浆纠偏技术在南京地铁盾构隧道病害治理中的应用;高永;《城市轨道交通研究》;20150630(第6期);109-112,129 *
浅埋隧道下穿浅基础建筑物注浆保护技术;卓越等;《隧道建设》;20100831;第30卷;318-323 *
深圳地铁盾构隧道施工技术与经验;刘建国;《隧道建设》;20120229;第32卷(第1期);72-87 *
盾构隧道注浆抬升施工对衬砌结构的影响;赵欣;《都市快轨交通》;20150831;第28卷(第4期);83-88 *
袖阀管注浆施工工艺及质量控制;宁湘;《中国铁路》;20110731(第7期);68-71 *
隧道地表袖阀管注浆施工技术;李孝才;《质量探索》;20120630(第6期);47-49 *

Also Published As

Publication number Publication date
CN105484752A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
CN105484752B (zh) 一种用于地铁运营隧道的地面纠偏回调方法
CN107762533B (zh) 一种高压富水软弱围岩山岭隧道的超前预注浆方法
CN104047623B (zh) 一种大跨洞室开挖施工方法
CN103628894B (zh) 一种基于变角伞状超前注浆的富水断层破碎带垮塌巷道巷修方法
CN109098733B (zh) 大断面隧道在断裂带岩层的快速注浆加固方法
CN105351001B (zh) 一种基于沿空留巷区域加固瓦斯抽采的方法
CN105443143B (zh) 一种煤矿采空区巷道支护装置及其施工方法
CN108301866B (zh) 近距离煤层群开采邻近层卸压瓦斯定向钻孔阻截抽采方法
CN103556623B (zh) 横跨深埋大型市政管线的连续墙施工方法
CN108797641A (zh) 一种地铁暗挖车站施工期间全车站止水的结构及其施工方法
WO2020147237A1 (zh) 一种横穿泉水渗透区域地层的地下空间修建方法
CN109899087A (zh) 一种洞柱暗挖逆筑地下结构及施工方法
CN101793154A (zh) 利用隧道围岩地质参数和设置分流孔的注浆堵水方法
CN108979644A (zh) 一种富水隧道溶洞坍塌处理及隧道开挖施工方法
CN105649092A (zh) 破碎岩层的边坡支护方法
CN104481555A (zh) 一种穿过软弱围岩进行钻注注浆施工的方法
CN104131566B (zh) 一种地下室无水平支撑基坑的施工方法
CN109184742B (zh) 一种高压富水软弱围岩山岭隧道的超前预注浆方法
CN109854285B (zh) 一种深立井支护结构和施工方法
CN103556646A (zh) 一种在砂卵石层形成堵水墙的方法
CN105909262B (zh) 一种暗挖隧道掘进方法
RU2403376C1 (ru) Способ ликвидации скважины со смятой эксплуатационной колонной
CN208252157U (zh) 一种隧道岩溶裂隙水的双重排水结构
CN108915705B (zh) 一种用于盾构进出洞漏水封堵的挡板注浆施工方法
CN106401591A (zh) 小角度下穿高速网格隧道施工方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant