CN105445440A - 一种基于岩屑微观特征的页岩可压裂性评价方法 - Google Patents

一种基于岩屑微观特征的页岩可压裂性评价方法 Download PDF

Info

Publication number
CN105445440A
CN105445440A CN201510799922.8A CN201510799922A CN105445440A CN 105445440 A CN105445440 A CN 105445440A CN 201510799922 A CN201510799922 A CN 201510799922A CN 105445440 A CN105445440 A CN 105445440A
Authority
CN
China
Prior art keywords
landwaste
index
shale
rock
rock debris
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510799922.8A
Other languages
English (en)
Other versions
CN105445440B (zh
Inventor
陶雷
朱海燕
姚志
龙雯
赵芙蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201510799922.8A priority Critical patent/CN105445440B/zh
Publication of CN105445440A publication Critical patent/CN105445440A/zh
Application granted granted Critical
Publication of CN105445440B publication Critical patent/CN105445440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种基于岩屑微观特征的页岩可压裂性评价方法,该方法包括以下步骤:①取油气井中储层特定深度岩屑;②通过岩屑的X射线衍射实验得到全岩矿物的相对含量,计算矿物脆性指数I1;③对岩屑纳米压痕微观力学参数测试,计算其微观力学脆性指数I2;④通过电镜扫描计算岩屑表面裂缝分形参数,并求得分形脆性指数I3;⑤对岩屑进行3D激光扫描,计算表面粗糙脆性指数I4;⑥根据油田实际情况对以上4种脆性指数加权得到综合可压裂性指数I;⑦重复①-⑥步骤,计算不同深度岩屑可压裂性指数,绘制全井综合可压裂性指数纵向展布图。本发明可得到页岩岩屑的综合可压裂性指数,为取岩心困难或没有岩心页岩储层的压裂选层提供必要依据。

Description

一种基于岩屑微观特征的页岩可压裂性评价方法
技术领域
本发明涉及一种基于岩屑微观特征的页岩可压裂性评价方法,属于非常规油气开发的技术领域,尤其针对于页岩气开发领域。
背景技术
随着我国国民经济的持续高速发展,我国成为世界第二大原油进口国,对外依存度已逼近60%。因此,在加大油气新区新领域的勘探开发力度的同时,寻找新型接替能源已经成为保障国家能源安全和国家安全的重要战略举措。为了实现我国能源工业的可持续发展,需加强页岩油气、煤层气和天然气水合物等非常规油气资源的勘探开发和利用。我国主要盆地地区的页岩气资源量约为15万亿~30万亿立方米,经济价值巨大,可开发利用的潜力大。
与常规的油气开采不同,页岩的开发手段主要依靠长水平井大规模水力压裂。页岩的脆性和初始损伤程度对压裂的效果影响显著,也是评价页岩储层力学特性的关键指标,对井壁的稳定性也会产生显著的影响。因此对页岩储层的可压裂性进行科学准确地评价直接关系到页岩油气的开发效果。
现有的页岩可压裂性室内评价技术考虑因素较为简单。常见的方法主要基于岩石矿物组分、岩石力学参数和岩石断裂面特征等。上述方法难以反映页岩的初始损伤复杂、层理极为发育、成分非均质等特性,导致在压裂设计时层位选择盲目,施工过程中井下事故频发、体积压裂效果差等后果。而且,破碎性地层取芯率低,能用于力学实验的全直径岩样少,总实验成本高、代表性差。故急需一种新型的综合评价页岩可压裂性的方法用以指导页岩气压裂开发设计,该方法简单有效,成本低。
另一方面,相关岩石组分定量分析测试、室内力学测试、激光和电子扫描岩石表面裂缝成像技术发展迅猛,为本方法奠定了实验基础。本方法涉及到相关技术有:X射线衍射技术、纳米压痕技术、扫描电镜测试技术、3D激光扫描技术。
X射线衍射技术经过多年的研究,已经标定了各种矿物的标准图谱,包括石英、钾长石、斜长石、方解石、白云石、黄铁矿等近30种矿物成分。相关X射线图谱分析软件商业化程度高,能快速、准确地分析得到岩石样品的矿物种类及其相对含量。
纳米压痕技术也称深度敏感压痕技术,特别适用于测量微小体积材料力学参数,可在纳米尺度上测量材料的各种力学性质,如载荷-位移曲线、弹性模量等,是现阶段最准确最常用的测试材料力学性质的方法之一。VikasKumar,CarlH.Sondergeld和ChandraS.Rai等人曾成功地利用纳米压痕技术测得了页岩的硬度、弹性模量等一系列参数(KumarV,SondergeldCH,RaiCS.Nanotomacromechanicalcharacterizationofshale[C]//SPEAnnualTechnicalConferenceandExhibition.SocietyofPetroleumEngineers,2012.)。其工作原理为将一特定形状和尺寸的压头在计算机控制的垂直压力作用下压入试样,通过压头载荷的连续变化,实时监测压深量,可以获得小到纳米级的压深。当压力撤除后,通过测量压痕的断截面面积,人们可以得到被测材料的硬度和其他力学参数。近年来,该技术在岩石材料力学参数测量方面也应用广泛,只需较小的岩样碎片即可测得对应岩样的力学性质。纳米压痕技术与传统井下取芯和野外露头取样进行力学实验相比,具有处理方法简单快捷,且准确度高,代表性强,费用更低等优点。
扫描电镜测试技术在石油工程领域,被大量应用于与岩石微观形貌有关的研究,是一项成熟的微观观察分析技术。通过此技术,研究人员可获得岩石裂缝的具体形态特征。大量研究人员通过实验和理论研究,认为岩石微观裂缝的形态近似符合分形理论相关特征。岩石裂缝的形态、内在的复杂程度、不规则等特性在统计学上均具有自相似性(陆冰洋.岩石类材料损伤演化的分形几何行为特征及其分形机理研究[D].贵州大学,2007.)。自二十世纪七十年代法裔美国数学家曼德尔布罗特(MandelbrotBB.)创立分形几何学以来(MandelbrotBB.Thefractalgeometryofnature[M].Macmillan,1983.),分形在理论和应用方面都取得了很大的发展。在地层石油裂缝研究领域,分形为石油能源的充分开采提供了新的方法,且应用随机分形描述页岩裂缝形态的发展已经比较成熟。故可引入分形理论对岩石形成裂缝的复杂程度进行科学定量评价。
3D激光扫描技术是20世纪90年代中期发展起来的高新技术,利用激光测距原理,记录被测物体表面大量密集的点的三维坐标、反射率、纹理等信息,复建出被测物体表面准确起伏模型。3D激光扫描技术具有精度高,扫描速度快等特点。在岩石表面特征和裂缝特征研究方面,复建得到被测岩样表面模型后,经过软件处理即可计算得出物体表面真实表面积,并结合断裂面投影面积求得粗糙度。粗糙度也是实际材料破坏时的临界扩展力与理想脆性材料的临界扩展力之比的脆性指数。粗糙度越大,其开裂消耗的非弹性能越大,岩石的脆性就越小(严安,吴科如,张东,姚武.高强混凝土的脆性与断裂面特征的关系[J].同济大学学报(自然科学版),2002,01:66-70.)。
上述技术、理论已经被多次应用于石油相关领域,尤其是非常规油气开发领域,且基础研究充分,技术规范完善,基础设备商用化程度高。本专利方法将上述研究手段有机地结合起来,针对取芯碎屑、钻井岩屑进行系统地评价,用以指导非常规油气资源的开发。
发明内容
本发明的目的在于有效地评价页岩储层的可压裂性,克服现有技术仅针对影响缝网形成的单一因素进行分析、实验成本昂贵、钻井取芯率低且耗时长等缺陷,提出一种基于岩屑微观特征的页岩可压裂性评价方法。本方法综合岩石矿物组分、微观力学性质、裂缝分形特征、岩屑表面粗糙度四方面因素。评价方法直观可靠,准确有效,需要岩石样品少,有利于现场推广和应用,对于页岩气或致密砂岩气开发的理论研究和现场应用都具有积极的指导意义。
本发明的目的通过以下技术方案来实现:
本发明一种基于岩屑微观特征的页岩可压裂性评价方法,该方法包括以下步骤:
①取油气井中储层特定深度的页岩岩屑,准确捞取岩屑,并按规定的时间距实测迟到时间,保证岩屑的连续性和代表性,剔除假岩屑(非目的层的岩屑);或直接采用已取心的井下岩心的碎屑。
②对岩屑进行X射线衍射实验,得到岩样的X射线衍射图谱,通过计算机软件分析得出全岩矿物的相对含量,根据刘致水等(刘致水,孙赞东.新型脆性因子及其在泥页岩储集层预测中的应用[J].石油勘探与开发,2015,01:117-124.)提出的基于矿物组成的脆性评价方法,计算出该层段岩屑矿物脆性指数I1
③对岩屑进行纳米压痕测试,根据测试结果求得岩屑硬等微观力学参数。定义了一个页岩微观力学参数评价因子G,G与页岩弹性模量及泊松比有关,计算方法见公式(1),再根据类似于Rickman基于岩石力学参数的脆性评价方法(RickmanR,MullenM,PetreE,etal.APracticalUseofShalePetrophysicsforStimulationDesignOptimization:AllShalePlaysAreNotClonesoftheBarnettShale.SPE115258,SPEAnnualTechnicalConferenceandExhibition,21-24September,Denver,Colorado,USA,2008),求得微观力学脆性指数I2,相关计算公式如下:
G = E ν 2 - 1 - - - ( 1 )
I 2 = ( H - H min H m a x - H min + G - G min G m a x - G min ) × 50 - - - ( 2 )
式中:G为页岩微观力学参数评价因子,MPa;Gmax,Gmin分别为研究区域岩样的G值的最大值和最小值,MPa;E为被测材料的弹性模量,MPa;ν为被测材料的泊松比,无因次;H为被测材料的硬度,GPa/m2;Hmax,Hmin为研究区域岩样硬度的最大值和最小值,GPa/m2;I2为岩石微观力学脆性指数,无因次,取值范围0-100;该式乘以50是为了将计算结果换算到1-100,方便运算。
④对岩屑进行扫描电镜测试,得到岩样裂缝的微观形态,根据裂缝分形特征结合盒维数法计算微观裂缝分形维数,得到岩屑的表面微观分形脆性指数I3
⑤对岩屑进行3D激光扫描,复建得到岩屑表面等值高图,通过软件转换为计算机可识别的二值图,并计算得出所扫描断裂面的总面积与其投影面面积,根据所得结果计算得到表面粗糙脆性指数I4
⑥对以上求取的矿物脆性指数、微观力学脆性指数、表面微观分形脆性指数、表面粗糙脆性指数取加权平均得到综合可压裂性指数,即公式(3),其值越大,该试样所代表的页岩储层可压裂性越好,缝网形成能力越强,综合可压裂性指数计算如下:
I = Σ i = 1 4 α i I i - - - ( 3 )
式中:I为综合可压裂性指数,无因次;αi为脆性指数的加权系数,无因次;Ii为单项的脆性指数,i=1,2,3,4。
⑦重复进行①-⑥步骤,
对不同储层特定深度的岩屑进行综合可压裂性评价实验,最终得到全井基于岩屑微观特征的综合可压裂性指数纵向展布图,分析得出可进行压裂改造增产的最佳层位,优选最优的射孔簇位置。
本发明用于综合评价页岩可压裂性,具有以下优点:1、考虑页岩矿物组分、微观力学性质、裂缝分形特征、岩屑表面粗糙度四方面因素,并对四个因素进行科学量化评价。2、采用X射线衍射技术、纳米压痕技术、扫描电镜测试技术、3D激光扫描技术四项前沿技术,评价过程精度高。3、本发明为室内实验评价方法,操作方便快捷,通过大量计算机软件辅助,大大提高评价的速度。4、本发明以钻井岩屑作为实验样品,无需密闭取实验岩心,因而成本远低于基于井下岩心的实验评价方法。5、数据处理过程方便,没有异常复杂的操作。6、本发明成本低,操作简单,评价迅速,具有较高的推广价值,可在现场推广。
附图说明
图1为本发明一种基于岩屑微观特征的页岩可压裂性评价方法的流程图;
图2为本发明纳米压痕实验原理示意图;
图3为本发明纳米压痕加载与卸载曲线示意图;
图4为本发明扫描电子显微镜下的页岩裂缝图像;
图5为本发明盒维数法计算微观裂缝分形维数示意图;
图6为本发明基于岩屑综合可压裂性指数的储层可压裂性纵向展布特征图。
具体实施方式
下面结合附图及实施例对本发明做进一步的描述:
以某区域R井有关数据为例,如图1图2、图3、图4、图5、图6所示,本发明一种基于岩屑微观特征的页岩可压裂性评价方法,该方法包括以下步骤:
①取储层特定深度的页岩岩屑,准确捞取岩屑,并按规定的时间距实测迟到时间,保证岩屑的连续性和代表性。剔除色调模糊、棱角不明显、个体较大的(非层位)假岩屑;或直接采用已取心的井下岩心的碎屑。获得实验岩屑后对岩屑进行清洗烘干,去除表面附着的钻井液。根据后续实验要求,提前筛选好后续实验的碎屑岩样。
②对岩屑试样进行X射线衍射实验,得到岩屑矿物组分及其相对含量,并计算其矿物脆性指数。
通过软件分析X射线衍射图谱,得到被测岩样每种矿物的相对含量αi,见表1,根据刘致水等提出的基于矿物组成的脆性评价方法,进行岩石矿物脆性评价:根据每种矿物的相对脆性指数fi和被测岩样每种矿物的相对含量αi,由公式(4)计算得到矿物脆性指数I1
I1=100×∑αifi(4)
式中:I1为矿物脆性指数,无因次,取值范围0-100;αi为矿物的相对含量,无因次;fi为矿物的相对脆性指数;式中乘以100是为了将计算结果换算到1-100,方便运算。
通过计算,即可得到各层段的矿物脆性指数表,如表1所示。
表1.各层段页岩的矿物脆性指数计算表
经过比较,可知所测目标岩石矿物脆性由大到小的顺序如下:881m-895m>810m-836m>752m-762m>921m-930m>520m-533m。
③对岩屑进行纳米压痕测试。校准纳米压痕仪后在步骤①所得的岩样中筛选出符合实验标准的岩样碎屑,固定于纳米压痕仪的载物台,开始加载实验,期间通过软件实时监测压深量、载荷及其他实验数据。
完成测试后试样上将出现图2所示的微小压痕。在数据处理之前需获取该研究区域岩样的弹性模量极值、泊松比以及硬度的极值,由公式(1)计算得到该研究区域岩样G值的极值。根据测试结果及加载卸载曲线(图3)计算岩石微观力学参数,如等效弹性模量、硬度(见公式6)。在此定义G为区块页岩的微观力学参数评价因子,与材料的泊松比和弹性模量相关,如公式(1)所示。由公式(5)可得到被测材料的页岩微观力学参数评价因子G:
G = E ν 2 - 1 - - - ( 1 )
G = 1 1 - ν i 2 E i - 2 β A S π - - - ( 5 )
式中:A为接触投影面积,mm2;S为接触刚度,N/mm;β为与压头形状有关的常数,无因次;E为被测材料的弹性模量,MPa;ν为被测材料的泊松比,无因次;Ei为压头的弹性模量,MPa;νi为压头的泊松比,无因次。
H = P m a x A - - - ( 6 )
式中:H为被测岩样的硬度,MPa/mm2;Pmax为最大压入载荷,MPa;A为接触投影面积,mm2
将计算得到的页岩微观力学参数评价G值和硬度H与研究区域岩样的G的极值和硬度H的极值进行归一化处理后,使用类似于Rickman提出的基于岩石力学表示脆性的方法定义岩石微观力学脆性指数I2。通过公式(2)即可得到岩石微观力学脆性指数I2
I 2 = ( H - H min H m a x - H min + G - G min G m a x - G min ) × 50 - - - ( 2 )
式中:G为被测材料页岩微观力学参数评价因子,MPa;Gmax,Gmin为研究区域岩样的G值的极值,无因次;H为被测材料的硬度,GPa/m2;Hmax,Hmin为研究区域岩样的泊松比的极值,GPa/m2;I2为岩石微观力学脆性指数,无因次,取值范围0-100;式中乘以50是为了将计算结果换算到1-100,方便运算。
具体数据处理过程如下:
岩石微观力学脆性指数计算如表2所示。将页岩岩样经过纳米压痕实验后,得到5个层段岩样的G值和硬度;结合区域地质数据,得到研究区域岩样的G值和硬度的极值;由公式(2)得到每个层段的微观力学脆性指数。
表2.各层段岩石微观力学脆性指数计算表
经过比较,可知所测目标岩石微观力学脆性由大到小的顺序如下:881m-895m>810m-836m>921m-930m>520m-533m>752m-762m。
④对岩屑进行扫描电镜测试,可以得到岩样的裂缝分布图(图4),引入分形理论来表示岩屑裂缝的复杂程度,用分维值D来定量评价。D值越大,岩屑的脆性越大。
已有研究表明岩石的裂缝扩展与断裂具有分形特征,且满足公式(7)(李玮,张凤民,闫铁,等.油气钻井中上返岩屑的分形分析.钻采工艺.2008,31(5):142-144.)。
lgN(δ)=lgA-Dlgδ(7)
式中:δ为盒维数计算时正方形网格的边长,无因次;N(δ)为包含有裂缝的方格数,无因次;A为裂缝面分布初值,无因次。
实际操作过程如图5所示,采用边长为δ的正方形网格覆盖所有裂缝,统计包含有裂缝的方格数,记为N(δ)。改变正方形方格的边长δ统计相应的N(δ),对结果取对数,将得到lgN(δ)-lgδ曲线,采用最小二乘法对数据做回归分析,其回归直线斜率的相反数即为岩样上裂缝分布的分维值D。根据公式(8)可得表面微观分形脆性指数I3
I3=D×50(8)
式中:I3为表面微观分形脆性指数,无因次,取值范围50-100;D为岩样上裂缝分布的分维值,无因次,取值范围1-2;式中乘以50是为了将计算结果换算到1-100,方便运算。
对不同层段页岩岩样进行扫描电镜分析,对得到的裂缝分布图分析处理可得如表3所示实验结果:
表3.各层段岩样表面微观分形脆性指数计算表
层段井深(m) 分维值 表面微观分形脆性指数I3
520-533 1.12 56.00
752-762 1.22 61.00
810-836 1.54 77.00
881-895 1.31 65.50
921-930 1.55 77.50
经过比较,可知所测目标岩石表面微观分形脆性由大到小的顺序如下:921m-930m>810m-836m>881m-895m>752m-762m>520m-533m。
⑤对岩屑进行3D激光扫描实验,得到岩屑的表面等值高图,可计算得到岩屑的表面粗糙度。粗糙度也是实际材料破坏时的临界扩展力与理想脆性材料的临界扩展力之比的脆性指数。粗糙度越大,其开裂消耗的非弹性能越大,岩石的脆性就越小(严安,吴科如,张东,姚武.高强混凝土的脆性与断裂面特征的关系[J].同济大学学报(自然科学版),2002,01:66-70.)。
实验首先对岩屑进行3D激光扫描,可复建岩屑表面模型。通过软件将模型转化为计算机可识别的二值图,再经处理即可得到岩屑表面等值高图(梁豪.页岩储层岩石脆性破裂机理及评价方法[D].西南石油大学2014),经相关软件分析可得出岩屑真实表面积和断裂面投影面积,则由公式(9)可求得表面粗糙脆性指数I4。不同层位相关参数及表面粗糙脆性指数计算结果如表4所示。由于粗糙度越大,其开裂消耗的非弹性能越大,岩石的脆性就越小,在此以粗糙度的倒数来定义被测岩样的表面粗糙脆性指数。
I 4 = 300 × S 0 S 1 - - - ( 9 )
式中:I4为表面粗糙脆性指数,无因次;S1为岩屑断裂面的表面积,mm2;S0为岩屑断裂面投影面面积,mm2;式中乘以300是为了方便运算。
表4.各层段页岩岩样表面粗糙脆性指数计算表
对上诉计算结果比较分析,可知所测不同层段岩石表面粗糙脆性由大到小的顺序如下:921m-930m>752m-762m>520m-533m>810m-836m>881m-895m。
⑥根据得到的矿物脆性指数、岩石微观力学脆性指数、表面微观分形脆性指数和表面粗糙脆性指数以及被评价油气藏的实际情况,合理选择每个脆性指数的加权系数αi。在没有特殊要求或者实际现场资料不充足情况下,各项脆性指数的加权系数均取0.25。本实施方式中α1=α2=α3=α4=0.25,由公式3最后得到综合可压裂性指数I。
I = Σ i = 1 4 α i I i - - - ( 3 )
式中:I为综合可压裂性指数,无因次;αi为脆性指数的加权系数,无因次;Ii为单项的脆性指数,i=1,2,3,4。
将实施步骤中所有脆性系数计算结果代入式(3)计算可得下表5。
表5.各层段页岩岩样综合可压裂性指数计算表
经过比较,可知所测不同深度页岩的综合可压裂性由大到小的顺序如下:810m-836m>881m-895m>921m-930m>752m-762m>520m-533m。
⑦钻井过程中取不同深度页岩岩屑,重复步骤①至⑥,得到每一深度层位的页岩综合可压裂性指数I,绘制如图6所示的岩石可压裂性纵向展布特征图。对该图分析可知,图中所示的595m-621m层段、810m-842m层段、880m-900m层段和920m-930m层段具有较好的可压裂性,在压裂设计选层时应当尤为关注该类储层段。

Claims (1)

1.一种基于岩屑微观特征的页岩可压裂性评价方法,其特征在于,该方法包括以下步骤:
①取油气井中储层特定深度的页岩岩屑,准确捞取岩屑,并按规定的时间距实测迟到时间,保证岩屑的连续性和代表性;
②对岩屑进行X射线衍射实验,得到岩样的X射线衍射图谱,分析得出全岩矿物的相对含量,根据刘致水提出的基于矿物组成的脆性评价方法,计算出该层段岩屑矿物脆性指数I1
③对岩屑进行纳米压痕测试,根据测试结果求得岩屑硬度等微观力学参数,再根据类似于Rickman提出的基于岩石力学参数的脆性评价方法,求得微观力学脆性指数I2,相关计算公式如下:
G = E v 2 - 1 - - - ( 1 )
I 2 = ( H - H min H m a x - H min + G - G min G m a x - G min ) × 50 - - - ( 2 )
式中:G为页岩微观力学参数评价因子,MPa;Gmax,Gmin分别为研究区域岩样的G值的最大值和最小值,MPa;E为被测材料的弹性模量,MPa;ν为被测材料的泊松比,无因次;H为被测材料的硬度;Hmax,Hmin为研究区域岩样的硬度的极值,MPa/mm2;I2为岩石微观力学脆性指数,无因次,取值范围0-100;式中乘以50是为了将计算结果换算到1-100,方便运算;
④对岩屑进行扫描电镜测试,得到岩样裂缝的微观形态,根据裂缝分形特征结合盒维数法计算微观裂缝分形维数,得到岩屑的表面微观分形脆性指数I3
⑤对岩屑进行3D激光扫描,复建得到岩屑表面等值高图,通过软件转换为二值图,并计算得出所扫描断裂面的总面积与其投影面面积,根据所得结果计算得到表面粗糙脆性指数I4
⑥对以上求取的矿物脆性指数、微观力学脆性指数、表面微观分形脆性指数和表面粗糙脆性指数按照油田区块情况加权,得到页岩岩屑的综合可压裂性指数,其值越大,该试样所代表的页岩储层可压裂性越好,综合可压裂性指数计算如下:
I = Σ i = 1 4 α i I i - - - ( 3 )
式中:I为综合可压裂性指数,无因次;αi为脆性指数的加权系数,无因次;Ii为单项的脆性指数,i=1,2,3,4;
⑦重复进行①-⑥步骤,对不同储层特定深度的岩屑进行综合可压裂性评价实验,最终得到全井基于岩屑微观特征的综合可压裂性指数纵向展布图,分析得出可进行压裂改造增产的最佳层位,优选最优的射孔簇位置。
CN201510799922.8A 2015-11-19 2015-11-19 一种基于岩屑微观特征的页岩可压裂性评价方法 Active CN105445440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510799922.8A CN105445440B (zh) 2015-11-19 2015-11-19 一种基于岩屑微观特征的页岩可压裂性评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510799922.8A CN105445440B (zh) 2015-11-19 2015-11-19 一种基于岩屑微观特征的页岩可压裂性评价方法

Publications (2)

Publication Number Publication Date
CN105445440A true CN105445440A (zh) 2016-03-30
CN105445440B CN105445440B (zh) 2017-06-16

Family

ID=55555878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510799922.8A Active CN105445440B (zh) 2015-11-19 2015-11-19 一种基于岩屑微观特征的页岩可压裂性评价方法

Country Status (1)

Country Link
CN (1) CN105445440B (zh)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356489A (zh) * 2017-07-04 2017-11-17 湖北工业大学 一种基于纳米压痕试验测定花岗岩宏观力学性质的试验方法
CN108535112A (zh) * 2017-03-03 2018-09-14 中国石油化工股份有限公司 一种用于页岩样品可压性研究的实验分析方法
CN108665545A (zh) * 2018-05-10 2018-10-16 中国石油集团西部钻探工程有限公司 录井参数三维地质模型建立方法
CN108760504A (zh) * 2018-07-30 2018-11-06 中国矿业大学(北京) 一种煤岩微观尺度力学测试方法及装置
CN108868756A (zh) * 2018-06-22 2018-11-23 西南石油大学 一种基于测井信息的煤储层岩石结构复杂度评价方法
CN109870376A (zh) * 2019-02-03 2019-06-11 浙江大学 一种基于纳米压痕和数值模拟反演岩石矿物参数的方法
CN109916754A (zh) * 2019-02-26 2019-06-21 成都理工大学 一种基于岩屑微观特征和钻井参数的储层脆性评价方法
CN110186755A (zh) * 2019-04-23 2019-08-30 陕西国防工业职业技术学院 一种随钻页岩脆性评价方法
CN110529088A (zh) * 2019-08-30 2019-12-03 西南石油大学 一种基于薄片鉴定的岩石可压裂性剖面建立方法
US10520407B2 (en) 2018-03-01 2019-12-31 Saudi Arabian Oil Company Nano-indentation tests to characterize hydraulic fractures
CN110637223A (zh) * 2017-05-11 2019-12-31 沙特阿拉伯石油公司 井筒钻屑的实时现场力学表征
CN111257536A (zh) * 2020-01-20 2020-06-09 中国科学院武汉岩土力学研究所 一种岩石力学与储层工程参数评估方法
CN111999163A (zh) * 2019-05-27 2020-11-27 中国石油天然气集团有限公司 评价岩石脆性的方法及装置
CN112085305A (zh) * 2019-06-13 2020-12-15 中国石油天然气集团有限公司 评价储层缝网性能的方法及装置
CN112179770A (zh) * 2020-09-29 2021-01-05 西南石油大学 基于岩屑微纳米压痕实验的页岩单轴抗压强度评价方法
CN112198020A (zh) * 2020-08-31 2021-01-08 中国石油大学(北京) 用于矿物元素分析的岩样制备方法和系统
CN112282723A (zh) * 2020-08-31 2021-01-29 中国石油大学(北京) 井筒压裂分析方法、装置、电子设备及计算机存储介质
CN113138107A (zh) * 2021-04-15 2021-07-20 东北石油大学 基于随钻岩屑录井资料的岩石脆性评价方法
US11236020B2 (en) 2017-05-02 2022-02-01 Saudi Arabian Oil Company Synthetic source rocks
CN114021821A (zh) * 2021-11-08 2022-02-08 四川省科源工程技术测试中心 一种基于多元回归的气藏采收率预测方法
US11268373B2 (en) 2020-01-17 2022-03-08 Saudi Arabian Oil Company Estimating natural fracture properties based on production from hydraulically fractured wells
US11282183B1 (en) * 2021-04-29 2022-03-22 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Rock brittleness analysis method and system based on mineral content and distribution and device
US11319478B2 (en) 2019-07-24 2022-05-03 Saudi Arabian Oil Company Oxidizing gasses for carbon dioxide-based fracturing fluids
US11339321B2 (en) 2019-12-31 2022-05-24 Saudi Arabian Oil Company Reactive hydraulic fracturing fluid
CN114544367A (zh) * 2022-02-21 2022-05-27 西北大学 基于岩心实验的储层可压裂性评价及压裂方案设计方法
US11352548B2 (en) 2019-12-31 2022-06-07 Saudi Arabian Oil Company Viscoelastic-surfactant treatment fluids having oxidizer
US11365344B2 (en) 2020-01-17 2022-06-21 Saudi Arabian Oil Company Delivery of halogens to a subterranean formation
CN114763741A (zh) * 2021-01-14 2022-07-19 中国石油天然气股份有限公司 致密砂岩储层压裂评价方法及装置
US11390796B2 (en) 2019-12-31 2022-07-19 Saudi Arabian Oil Company Viscoelastic-surfactant fracturing fluids having oxidizer
US11473009B2 (en) 2020-01-17 2022-10-18 Saudi Arabian Oil Company Delivery of halogens to a subterranean formation
US11473001B2 (en) 2020-01-17 2022-10-18 Saudi Arabian Oil Company Delivery of halogens to a subterranean formation
US11492541B2 (en) 2019-07-24 2022-11-08 Saudi Arabian Oil Company Organic salts of oxidizing anions as energetic materials
US11542815B2 (en) 2020-11-30 2023-01-03 Saudi Arabian Oil Company Determining effect of oxidative hydraulic fracturing
US11549894B2 (en) 2020-04-06 2023-01-10 Saudi Arabian Oil Company Determination of depositional environments
CN115584963A (zh) * 2022-09-20 2023-01-10 西南石油大学 一种非常规储层可压裂性综合评价方法
US11573159B2 (en) 2019-01-08 2023-02-07 Saudi Arabian Oil Company Identifying fracture barriers for hydraulic fracturing
US11578263B2 (en) 2020-05-12 2023-02-14 Saudi Arabian Oil Company Ceramic-coated proppant
US11885790B2 (en) 2021-12-13 2024-01-30 Saudi Arabian Oil Company Source productivity assay integrating pyrolysis data and X-ray diffraction data
CN117491592A (zh) * 2023-10-23 2024-02-02 中国石油天然气股份有限公司吉林油田分公司 基于钻井岩石样品确定水平井压裂位置的方法
US11905804B2 (en) 2022-06-01 2024-02-20 Saudi Arabian Oil Company Stimulating hydrocarbon reservoirs
CN117935970A (zh) * 2024-01-29 2024-04-26 成都理工大学 一种基于干热岩破裂面分形特征的岩石力学特征预测方法
US12012550B2 (en) 2021-12-13 2024-06-18 Saudi Arabian Oil Company Attenuated acid formulations for acid stimulation
US12025589B2 (en) 2021-12-06 2024-07-02 Saudi Arabian Oil Company Indentation method to measure multiple rock properties
US12050297B2 (en) 2020-09-11 2024-07-30 Saudi Arabian Oil Company Method and system for determining energy-based brittleness
US12071589B2 (en) 2021-10-07 2024-08-27 Saudi Arabian Oil Company Water-soluble graphene oxide nanosheet assisted high temperature fracturing fluid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1506388A1 (fr) * 2002-05-15 2005-02-16 Institut Francais Du Petrole Methode d evaluation de la courbe de pression capillaire des roches d un gisement souterrain a partir de mesures sur des debris de roche
CN103982178A (zh) * 2014-04-16 2014-08-13 孙赞东 一种基于矿物含量的页岩气储层脆性评价方法
CN104406849A (zh) * 2014-11-21 2015-03-11 中国石油天然气股份有限公司 一种储层岩石脆性的预测方法及装置
CN104775810A (zh) * 2015-03-03 2015-07-15 西南石油大学 一种页岩气储层可压性评价方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1506388A1 (fr) * 2002-05-15 2005-02-16 Institut Francais Du Petrole Methode d evaluation de la courbe de pression capillaire des roches d un gisement souterrain a partir de mesures sur des debris de roche
CN103982178A (zh) * 2014-04-16 2014-08-13 孙赞东 一种基于矿物含量的页岩气储层脆性评价方法
CN104406849A (zh) * 2014-11-21 2015-03-11 中国石油天然气股份有限公司 一种储层岩石脆性的预测方法及装置
CN104775810A (zh) * 2015-03-03 2015-07-15 西南石油大学 一种页岩气储层可压性评价方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘致水等: ""新型脆性因子及其在泥页岩储集层预测中的应用"", 《石油勘探与开发》 *
李庆辉等: ""页岩脆性的室内评价方法及改进"", 《岩石力学与工程学报》 *
梁豪: """页岩储层岩石脆性破裂机理及评价方法""", 《中国优秀学位论文全文数据库 工程科技Ⅰ辑》 *
袁俊亮等: ""页岩气储层可压裂性评价技术"", 《石油学报》 *

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535112A (zh) * 2017-03-03 2018-09-14 中国石油化工股份有限公司 一种用于页岩样品可压性研究的实验分析方法
CN108535112B (zh) * 2017-03-03 2021-11-30 中国石油化工股份有限公司 一种用于页岩样品可压性研究的实验分析方法
US11236020B2 (en) 2017-05-02 2022-02-01 Saudi Arabian Oil Company Synthetic source rocks
US10711606B2 (en) 2017-05-11 2020-07-14 Saudi Arabian Oil Company Real-time onsite mechanical characterization of wellbore cuttings
CN110637223A (zh) * 2017-05-11 2019-12-31 沙特阿拉伯石油公司 井筒钻屑的实时现场力学表征
CN107356489B (zh) * 2017-07-04 2018-10-26 湖北工业大学 一种基于纳米压痕试验测定花岗岩宏观力学性质的试验方法
CN107356489A (zh) * 2017-07-04 2017-11-17 湖北工业大学 一种基于纳米压痕试验测定花岗岩宏观力学性质的试验方法
US10908056B2 (en) 2018-03-01 2021-02-02 Saudi Arabian Oil Company Nano-indentation tests to characterize hydraulic fractures
US10520407B2 (en) 2018-03-01 2019-12-31 Saudi Arabian Oil Company Nano-indentation tests to characterize hydraulic fractures
US11680882B2 (en) 2018-03-01 2023-06-20 Saudi Arabian Oil Company Nano-indentation tests to characterize hydraulic fractures
CN108665545B (zh) * 2018-05-10 2022-03-18 中国石油天然气集团有限公司 录井参数三维地质模型建立方法
CN108665545A (zh) * 2018-05-10 2018-10-16 中国石油集团西部钻探工程有限公司 录井参数三维地质模型建立方法
CN108868756A (zh) * 2018-06-22 2018-11-23 西南石油大学 一种基于测井信息的煤储层岩石结构复杂度评价方法
CN108760504A (zh) * 2018-07-30 2018-11-06 中国矿业大学(北京) 一种煤岩微观尺度力学测试方法及装置
US11573159B2 (en) 2019-01-08 2023-02-07 Saudi Arabian Oil Company Identifying fracture barriers for hydraulic fracturing
CN109870376A (zh) * 2019-02-03 2019-06-11 浙江大学 一种基于纳米压痕和数值模拟反演岩石矿物参数的方法
CN109870376B (zh) * 2019-02-03 2020-10-23 浙江大学 一种基于纳米压痕和数值模拟反演岩石矿物参数的方法
CN109916754A (zh) * 2019-02-26 2019-06-21 成都理工大学 一种基于岩屑微观特征和钻井参数的储层脆性评价方法
CN110186755A (zh) * 2019-04-23 2019-08-30 陕西国防工业职业技术学院 一种随钻页岩脆性评价方法
CN111999163A (zh) * 2019-05-27 2020-11-27 中国石油天然气集团有限公司 评价岩石脆性的方法及装置
CN112085305A (zh) * 2019-06-13 2020-12-15 中国石油天然气集团有限公司 评价储层缝网性能的方法及装置
US11713411B2 (en) 2019-07-24 2023-08-01 Saudi Arabian Oil Company Oxidizing gasses for carbon dioxide-based fracturing fluids
US11499090B2 (en) 2019-07-24 2022-11-15 Saudi Arabian Oil Company Oxidizers for carbon dioxide-based fracturing fluids
US11492541B2 (en) 2019-07-24 2022-11-08 Saudi Arabian Oil Company Organic salts of oxidizing anions as energetic materials
US11319478B2 (en) 2019-07-24 2022-05-03 Saudi Arabian Oil Company Oxidizing gasses for carbon dioxide-based fracturing fluids
CN110529088A (zh) * 2019-08-30 2019-12-03 西南石油大学 一种基于薄片鉴定的岩石可压裂性剖面建立方法
US11713413B2 (en) 2019-12-31 2023-08-01 Saudi Arabian Oil Company Viscoelastic-surfactant fracturing fluids having oxidizer
US11390796B2 (en) 2019-12-31 2022-07-19 Saudi Arabian Oil Company Viscoelastic-surfactant fracturing fluids having oxidizer
US11999904B2 (en) 2019-12-31 2024-06-04 Saudi Arabian Oil Company Reactive hydraulic fracturing fluid
US11339321B2 (en) 2019-12-31 2022-05-24 Saudi Arabian Oil Company Reactive hydraulic fracturing fluid
US11718784B2 (en) 2019-12-31 2023-08-08 Saudi Arabian Oil Company Reactive hydraulic fracturing fluid
US11352548B2 (en) 2019-12-31 2022-06-07 Saudi Arabian Oil Company Viscoelastic-surfactant treatment fluids having oxidizer
US11597867B2 (en) 2019-12-31 2023-03-07 Saudi Arabian Oil Company Viscoelastic-surfactant treatment fluids having oxidizer
US11473009B2 (en) 2020-01-17 2022-10-18 Saudi Arabian Oil Company Delivery of halogens to a subterranean formation
US11268373B2 (en) 2020-01-17 2022-03-08 Saudi Arabian Oil Company Estimating natural fracture properties based on production from hydraulically fractured wells
US11473001B2 (en) 2020-01-17 2022-10-18 Saudi Arabian Oil Company Delivery of halogens to a subterranean formation
US11719091B2 (en) 2020-01-17 2023-08-08 Saudi Arabian Oil Company Estimating natural fracture properties based on production from hydraulically fractured wells
US11365344B2 (en) 2020-01-17 2022-06-21 Saudi Arabian Oil Company Delivery of halogens to a subterranean formation
CN111257536A (zh) * 2020-01-20 2020-06-09 中国科学院武汉岩土力学研究所 一种岩石力学与储层工程参数评估方法
US11549894B2 (en) 2020-04-06 2023-01-10 Saudi Arabian Oil Company Determination of depositional environments
US11578263B2 (en) 2020-05-12 2023-02-14 Saudi Arabian Oil Company Ceramic-coated proppant
CN112198020A (zh) * 2020-08-31 2021-01-08 中国石油大学(北京) 用于矿物元素分析的岩样制备方法和系统
CN112282723A (zh) * 2020-08-31 2021-01-29 中国石油大学(北京) 井筒压裂分析方法、装置、电子设备及计算机存储介质
US12050297B2 (en) 2020-09-11 2024-07-30 Saudi Arabian Oil Company Method and system for determining energy-based brittleness
CN112179770A (zh) * 2020-09-29 2021-01-05 西南石油大学 基于岩屑微纳米压痕实验的页岩单轴抗压强度评价方法
US11542815B2 (en) 2020-11-30 2023-01-03 Saudi Arabian Oil Company Determining effect of oxidative hydraulic fracturing
CN114763741A (zh) * 2021-01-14 2022-07-19 中国石油天然气股份有限公司 致密砂岩储层压裂评价方法及装置
CN113138107A (zh) * 2021-04-15 2021-07-20 东北石油大学 基于随钻岩屑录井资料的岩石脆性评价方法
CN113138107B (zh) * 2021-04-15 2022-08-26 东北石油大学 基于随钻岩屑录井资料的岩石脆性评价方法
US11282183B1 (en) * 2021-04-29 2022-03-22 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Rock brittleness analysis method and system based on mineral content and distribution and device
US12071589B2 (en) 2021-10-07 2024-08-27 Saudi Arabian Oil Company Water-soluble graphene oxide nanosheet assisted high temperature fracturing fluid
CN114021821B (zh) * 2021-11-08 2023-07-14 四川省科源工程技术测试中心有限责任公司 一种基于多元回归的气藏采收率预测方法
CN114021821A (zh) * 2021-11-08 2022-02-08 四川省科源工程技术测试中心 一种基于多元回归的气藏采收率预测方法
US12025589B2 (en) 2021-12-06 2024-07-02 Saudi Arabian Oil Company Indentation method to measure multiple rock properties
US12012550B2 (en) 2021-12-13 2024-06-18 Saudi Arabian Oil Company Attenuated acid formulations for acid stimulation
US11885790B2 (en) 2021-12-13 2024-01-30 Saudi Arabian Oil Company Source productivity assay integrating pyrolysis data and X-ray diffraction data
CN114544367B (zh) * 2022-02-21 2024-02-09 西北大学 基于岩心实验的储层可压裂性评价及压裂方案设计方法
CN114544367A (zh) * 2022-02-21 2022-05-27 西北大学 基于岩心实验的储层可压裂性评价及压裂方案设计方法
US11905804B2 (en) 2022-06-01 2024-02-20 Saudi Arabian Oil Company Stimulating hydrocarbon reservoirs
CN115584963B (zh) * 2022-09-20 2024-05-31 西南石油大学 一种非常规储层可压裂性综合评价方法
CN115584963A (zh) * 2022-09-20 2023-01-10 西南石油大学 一种非常规储层可压裂性综合评价方法
CN117491592A (zh) * 2023-10-23 2024-02-02 中国石油天然气股份有限公司吉林油田分公司 基于钻井岩石样品确定水平井压裂位置的方法
CN117491592B (zh) * 2023-10-23 2024-08-30 中国石油天然气股份有限公司吉林油田分公司 基于钻井岩石样品确定水平井压裂位置的方法
CN117935970A (zh) * 2024-01-29 2024-04-26 成都理工大学 一种基于干热岩破裂面分形特征的岩石力学特征预测方法
CN117935970B (zh) * 2024-01-29 2024-08-23 成都理工大学 一种基于干热岩破裂面分形特征的岩石力学特征预测方法

Also Published As

Publication number Publication date
CN105445440B (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
CN105445440A (zh) 一种基于岩屑微观特征的页岩可压裂性评价方法
CN109653725B (zh) 基于沉积微相和岩石相的混积储层水淹程度测井解释方法
CN103278436B (zh) 特低渗透双重介质砂岩油藏微观孔隙结构的定量表征方法
CN101344001B (zh) 石油钻井中x射线荧光陆源碎屑岩孔隙度的分析方法
CN104345346B (zh) 一种获取裂缝宽度的方法
CN100449296C (zh) 一种计算岩石ⅱ型断裂韧性的方法
CN103823038A (zh) 一种裂隙岩体工程稳定性分级方法
CN107367520B (zh) 一种基于xrf识别细粒沉积岩岩性的方法
CN106769463A (zh) 一种岩心压后裂缝复杂程度定量表征方法
CN108590640A (zh) 一种复杂裂缝网络渗透率计算方法
Zhu et al. Fracability estimation for longmaxi shale: coupled brittleness, stress–strain and fracture
Bao et al. Applying data mining to the geosciences data
CN106383053A (zh) 一种与工程力学参数相关的脆性指数预测方法
CN104076020A (zh) 一种利用三维定量荧光纵向参数变化趋势识别储层流体性质的方法
CN104912547A (zh) 应用电阻率成像测井资料连续定量评价储层非均质特征的方法
CN105487136A (zh) 基于经验模态分解和能量熵判别的碳酸盐岩储集体测井识别方法
CN107389648A (zh) 一种三维定量荧光特征峰识别及流体类型判断方法
CN110288233A (zh) 一种基于模糊灰色关联法的深层页岩气可压性评价方法
CN106482674A (zh) 基于中智数函数的结构面粗糙度尺寸效应的近似表达方法
You et al. Evaluation of formation damage using microstructure fractal in shale reservoirs
Song et al. Shale softening degree and rate induced by fracturing fluid under THMC coupling condition
Zhao et al. Brittleness evaluation based on shale fracture morphology
KR101131517B1 (ko) 물리검층 자료의 통계학적 해석결과를 활용한 오일샌드 지역 지하정보의 처리시스템 및 이를 이용한 오일샌드 지역 지하정보의 처리방법
He et al. Quantitative evaluation and influencing factors analysis of the brittleness of deep shale reservoir based on multiply rock mechanics experiments
CN116263901A (zh) 页岩气开发评价方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Tao Lei

Inventor after: Zhu Haiyan

Inventor after: Liu Qingyou

Inventor after: Yao Zhi

Inventor after: Long Wen

Inventor after: Zhao Fulei

Inventor before: Tao Lei

Inventor before: Zhu Haiyan

Inventor before: Yao Zhi

Inventor before: Long Wen

Inventor before: Zhao Fulei