CN105444340A - 一种带滤网堵塞检测功能的电器设备 - Google Patents

一种带滤网堵塞检测功能的电器设备 Download PDF

Info

Publication number
CN105444340A
CN105444340A CN201410439148.5A CN201410439148A CN105444340A CN 105444340 A CN105444340 A CN 105444340A CN 201410439148 A CN201410439148 A CN 201410439148A CN 105444340 A CN105444340 A CN 105444340A
Authority
CN
China
Prior art keywords
air
motor
electric equipment
power
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410439148.5A
Other languages
English (en)
Other versions
CN105444340B (zh
Inventor
王继忠
周一桥
张政
张先胜
孙海荣
赵勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Broad Ocean Motor Co Ltd
Original Assignee
Zhongshan Broad Ocean Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Broad Ocean Motor Co Ltd filed Critical Zhongshan Broad Ocean Motor Co Ltd
Priority to CN201410439148.5A priority Critical patent/CN105444340B/zh
Priority to MX2016008206A priority patent/MX2016008206A/es
Priority to CA2937558A priority patent/CA2937558C/en
Priority to PCT/CN2014/088272 priority patent/WO2016029531A1/zh
Priority to US14/986,715 priority patent/US9547974B2/en
Publication of CN105444340A publication Critical patent/CN105444340A/zh
Application granted granted Critical
Publication of CN105444340B publication Critical patent/CN105444340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • G01F15/061Indicating or recording devices for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B5/00Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied
    • G08B5/22Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/39Monitoring filter performance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F9/00Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/084Testing filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Air Conditioning Control Device (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

本发明公开了一种带滤网堵塞检测功能的电器设备,所述的电器设备包括进风口、出风口、风道、风扇或者风轮、风机电机和空气过滤网,空气过滤网安装在风道上,风机电机带动风扇或者风轮转动使空气从进风口进入风道并经过空气过滤网,然后从出风口输出,利用不带控制器的风机电机作为检测风量的元件,把微处理器、逆变电路和电机运行参数检测电路设置在电器设备控制器上,当检测风量低于设定风量,判断为空气过滤网堵塞并输出信号报警,无需增加任何硬件,结构简单紧凑,安装方便,成本低。

Description

一种带滤网堵塞检测功能的电器设备
技术领域:
本发明涉及一种带滤网堵塞检测功能的电器设备。
背景技术:
近几年,随着电器领域竞争日趋激烈,对产品技术要求不断提高,如要求产品节能环保、可控性智能化程度高、开发周期短、噪音小等。作为核心部件——电机,无疑成为解决上述技术问题的关键部件,传统的家用空调里面的电机普遍采用单相交流电机PSC,单相交流电机,效率低,比较耗能、噪音也大,可控性智能程度低。随着电机技术的发展,直流电机逐渐取代交流电机,直流电机带有电机控制器,利用电机控制器实现电流的电子换向的目的,所以行业里也有人简称ECM电机(electronicallycommutatedmotor)或者叫直流无刷电机(BLDCMOTOR),它具有节能环保、可靠性和可控性都比较高、噪音小、容易实现智能化等特点,可以解决单相交流电机的不足,因此,现有的空调里面的单相交流电机逐渐被直流无刷电机或者ECM电机所取替。
中国国内或者亚洲其它国家空调,其直流电机控制板跟空调主板连接,设置有5路的连接信号,分别为:GND端口、VDC端口、VCC端口、VSP端口、FG端口,这种接口基本成为标准的接口,空调主板通过输出VSP电压端口向直流电机控制板输入目标转速,电机通过FG端口反馈电机实际速度,实现直流电机的转速闭环控制。当空调的进、出风口过滤网或风道被堵塞时,空调的出风口风量会下降,影响空调制冷或制热效果。这是空调系统不期望的,为此,在传统BLDC电机上实现恒风量或风量监控/报警功能是必要的。
现有的解决方案:有的在出风口或者风道内加装风压计来判断风量的大小,有的安装风量计来测算风量,但是这样都需要增加格外的硬件,安装布线麻烦,增加额外的成本。
直流电机带有电机控制器,电机控制器安装在电机单体上,电机控制器随着电机单体一起安装在电器设备的风道里面,电机控制器会占据风道里面的部分空间,影响电器设备的送风效率,而且直流电机的体积相对较大,会造成安装麻烦,电机控制器的制造成本也相对较高,影响其市场竞争力。
发明内容:
本发明的目的是提供一种带滤网堵塞检测功能的电器设备,利用不带控制器的风机电机作为检测风量的元件,把微处理器、逆变电路和电机运行参数检测电路设置在电器设备控制器上,当检测风量低于设定风量,判断为空气过滤网堵塞并输出信号报警,无需增加任何硬件,结构简单紧凑,安装方便,成本低。
本发明的目的是通过下述技术方案予以实现的。
一种带滤网堵塞检测功能的电器设备,所述的电器设备包括进风口、出风口、风道、风扇或者风轮、风机电机、空气过滤网和电器设备控制器,空气过滤网安装在风道上,风机电机带动风扇或者风轮转动使空气从进风口进入风道并经过空气过滤网,然后从出风口输出,其中:
所述的风机电机是一个不带控制器的电机单体,包括转轴、永磁转子组件、定子组件和机壳组件,永磁转子组件和定子组件形成磁藕合,定子组件包括定子铁芯和卷绕在定子铁芯上的线圈绕组;
所述的电器设备控制器包括主控线路板,主控线路板包括微处理器、逆变电路和电机运行参数检测电路,逆变电路的输出端与线圈绕组连接,运行参数检测电路将电机实时运行参数输入到微处理器,微处理器的输出端控制逆变电路,微处理器设置风量计算函数模块,风量计算函数模块根据电机的实时运行参数计算出检测风量;
当检测风量低于设定风量时,微处理器判断为空气过滤网堵塞并输出信号到报警电路报警。
上述所述的电器设备是分体机空调,或者是柜机空调,或者是窗机空调,或者是多联机空调,或者是风管机空调,或者是商用盘管机空调,或者是天井机空调,或者是HVAC系统,或者是空气清新机,或者是空气净化器,或者是抽油烟机。
上述所述的电机的实时运行参数包括相电流、转子位置信号;或者是母线电流和转子位置信号;或者是母线电流、母线电压、转子位置信号。
上述所述的风量计算的函数Q=F(POWER,n),其中POWER是电机的输入功率,通过电机的母线电流、母线电压计算出来,n是电机的转速,通过转子位置信号计算出来。
上述所述的风机电机工作在恒风量控制模式,微处理器首先测量实际功率是否到达于额定功率,如果测量实际功率达到额定功率,且检测风量与设定风量的偏差达到一定的值时,进行报警;当检测到风量与设定风量有偏差在允许范围内,选择不报警。
上述所述的风机电机工作在恒力矩控制模式,当检测风量与设定风量的偏差达到一定的值时,判断为空气过滤网堵塞并报警。
上述所述的风机电机工作在恒转速控制模式,当检测风量与设定风量的偏差达到一定的值时,判断为空气过滤网堵塞并报警。
上述所述的主控线路板是空调系统控制板,主控线路板上微处理器还通过接口电路连接控制压缩机、膨胀阀。
上述所述的报警电路可以是声音报警电路,或者光电报警电路。
上述所述的报警电路可以包括电器设备原有的液晶显示器,微处理器输出信号到液晶显示器,利用文字或图案来提示空气过滤网堵塞。
上述所述的电机单体上还带有霍尔线路板,霍尔线路板检测转子位置信号。
本发明与现有技术相比,具有如下效果:
1)利用不带控制器的风机电机作为检测风量的元件,把微处理器、逆变电路和电机运行参数检测电路设置在电器设备控制器上,当检测风量低于设定风量,判断为空气过滤网堵塞并输出信号报警,无需增加任何硬件,结构简单紧凑,安装方便,成本低;
2)风机电机工作在恒风量的控制模式,微处理器首先测量实际功率是否到达额定功率,如果测量实际功率达到额定功率,再判断检测风量与设定风量的偏差,方案简单,微处理器运算量小,可行性高;
3)报警电路可以包括电器设备的液晶显示器,微处理器先将报警信号传送到电器设备控制器,电器设备控制器输出信号到液晶显示器,利用文字或图案来提示空气过滤网堵塞,充分利用现有资源和空调系统友好界面进行报警,节省成本。
附图说明:
图1是传统的空调风机系统的结构示意图;
图2是本发明风机电机的安装示意图;
图3是本发明风机电机的立体图;
图4是本发明风机电机的剖视图;
图5是本发明风机电机的一种实施电路方框图;
图6是图5对应的电路图;
图7是本发明风机电机的恒风量控制方法的控制流程图;
图8是本发明风机电机通过实验测得到得一族恒风量拟合曲线;
图9是本发明1/3HP的风机电机直接功率控制恒风量的实验数据拟合曲线图;
图10是本发明风机电机利用插值法求解任意输入风量实验数据拟合曲线图;
图11是本发明风机电机的恒风量控制方法的控制逻辑图;
图12是本发明风机电机的恒风量控制方法的一种控制过程示意图;
图13是本发明风机电机的恒风量控制方法的另一种控制过程示意图;
图14是本发明风机电机的恒风量控制方法的经过实验验证的测试结果图;
图15是本发明风机电机的风量测算示意图;
图16是实施例二中电器设备的结构示意图;
图17是实施例三中空调系统的结构示意图。
具体实施方式:
下面通过具体实施例并结合附图对本发明作进一步详细的描述。
实施例一:
一种带滤网堵塞检测功能的电器设备,所述的电器设备包括进风口、出风口、风道、风轮、风机电机、空气过滤网和电器设备控制器,空气过滤网安装在风道上,风机电机带动风扇或者风轮转动使空气从进风口进入风道并经过空气过滤网,然后从出风口输出,其中:
所述的风机电机是一个不带控制器的电机单体,包括转轴、永磁转子组件、定子组件和机壳组件,永磁转子组件和定子组件形成磁藕合,定子组件包括定子铁芯和卷绕在定子铁芯上的线圈绕组;
所述的电器设备控制器包括主控线路板,主控线路板包括微处理器、逆变电路和电机运行参数检测电路,逆变电路的输出端与线圈绕组连接,运行参数检测电路将电机实时运行参数输入到微处理器,微处理器的输出端控制逆变电路,微处理器设置风量计算函数模块,风量计算函数模块根据电机的实时运行参数计算出检测风量;
当检测风量低于设定风量时,微处理器判断为空气过滤网堵塞并输出信号到报警电路报警。
所述的电器设备是分体机空调,或者是柜机空调,或者是窗机空调,或者是多联机空调,或者是风管机空调,或者是商用盘管机空调,或者是天井机空调,或者是HVAC系统,或者是空气清新机,或者是空气净化器,或者是抽油烟机。所述的电机的实时运行参数检测电路包括转子位置检测电路、相电流检测电路、母线电流检测电路、母线电压检测电路等用于实时检测电机的各种运行状态。风量计算的函数Q=F(POWER,n),其中POWER是电机的输入功率,n是电机的转速。风机电机可以工作在恒风量控制模式,微处理器首先测量实际功率是否到达于额定功率,如果测量实际功率达到额定功率,且检测风量与设定风量的偏差达到一定的值时,进行报警;当检测到风量与设定风量有偏差在允许范围内,选择不报警。风机电机可以工作在恒力矩控制模式,当检测风量与设定风量的偏差达到一定的值时,判断为空气过滤网堵塞并报警。风机电机可以工作在恒转速控制模式,当检测风量与设定风量的偏差达到一定的值时,判断为空气过滤网堵塞并报警。
下面先介绍本发明采用的风机电机的电路结构及风量计算函数模块的测量控制原理:
本发明是如图1所示,在一个典型的空调通风管道(简称风道)里,安装了一个鼓风系统(如燃气炉或空气处理机),图中以“电机+风轮”代替,管道里还有空气过滤网,电机启动时开始鼓风,由于出风口和入风口的数量与房间数有关,管道的设计也没有统一的标准,同时空气过滤网也可能有不同的压降。导致搭载传统的单相交流电机---PSC电机的鼓风系统在不同的管道里,实际的风量会不同。发明采用的风机电机的是BLDC电机或ECM电机。
如图2所示:1)产品的控制是一个空调系统控制器,空调系统控制器控制所有产品操作装置,空调系统控制器包括一个微处理器——单片机或DSP电子板做电机控制,它有一个电源部分向控制器各部分电路提供电力,电源是设置一个直流母线电压和电流。因此,电机的控制将进行功率传输。通常采用并联电阻电路作为电流和电压传感硬件,作为系统的反馈来控制电机驱动执行电机控制,例如矢量控制,直接转矩控制,和其他类型的传感器或无传感器控制。众所周知,任何电子组件运行期的变化,这些变化是影响检测精度和持久性的原因。2)风机电机转子上有磁铁体和结构,在定子侧或槽中有多相绕组。当温度变化时,永磁体和绕组电阻会发生变化,这可能会导致电机控制不同的变化。电机制造过程通常产生也一定程度的变化,电机的老化,新的电机和旧电机,贡献的因素控制的准确性和持久性,在生活的时间等,从磁体的电动机的磁通会由于温度变化,退磁等。此外,电机轴失效的可能风险,系统的安全性,和要检测或实时监控。3)鼓风机:鼓风机安装在电机轴上,旋转产生的气流以一定的速度。安装的位置可能会影响操作,增加摩擦,低流量,甚至是错误的旋转方向。4)空气过滤网:空气过滤网应定期更换和维修服务。但这可能是失去了在很长一段时间的跟踪。这将增加摩擦影响气流压力。5)管道控制:管道系统可能会改变由于灰尘和管道破裂,区域控制和开/关风端口系统压力变化的原因。根据上面的实际情况如果做恒风量控制会产生很多不稳定因数。
如图3、图4、图5所示,风机电机是一个不带控制器的电机单体1,所述的电机单体1包括定子组件12、转子组件13和机壳组件11,定子组件13安装在机壳组件11上,电机单体1安装有检测转子位置的霍尔传感器14,转子组件13套装在定子组件12的内侧或者外侧组成。
空调系统控制器包括电源电路、微处理器、母线电流检测电路、逆变电路和转子位置测量电路14(即霍尔传感器),电源电路为各部分电路供电,转子位置测量电路检测转子位置信号并输入到微处理器,母线电流检测电路将检测的母线电路输入到微处理器,母线电压检测电路将直流母线电压输入到微处理器,微处理器控制逆变电路,逆变电路控制定子组件12的各相线圈绕组的通断电。
如图5、图6所示,假设风机电机是3相无刷直流永磁同步电机,转子位置测量电路14一般采用3个霍尔传感器,3个霍尔传感器分别检测一个360度电角度周期的转子位置,每转过120度电角度改变一次定子组件12的各相线圈绕组的通电,形成3相6步控制模式。交流输入(ACINPUT)经过由二级管D7、D8、D9、D10组成的全波整流电路后,在电容C1的一端输出直流母线电压Vbus,直流母线电压Vbus与输入交流电压有关,交流输入(ACINPUT)的电压确定后,3相绕组的线电压UP是PWM斩波输出电压,UP=Vbus*w,w是微处理器输入到逆变电路的PWM信号的占空比,改变线电压UP可以改变直流母线电流Ibus,逆变电路由电子开关管Q1、Q2、Q3、Q4、Q5、Q6组成,电子开关管Q1、Q2、Q3、Q4、Q5、Q6的控制端分别由微处理器输出的6路PWM信号(P1、P2、P3、P4、P5、P6)控制,逆变电路还连接电阻R1用于检测母线电流Ibus,母线电流检测电路将电阻R1的检测母线电流Ibus转换后传送到微处理器。电机输入功率控制由电子开关管Q7控制,微处理器输出的1路PWM信号--即P0,来控制电子开关管Q7的导通时间,以控制电机输入功率。
如图7所示,空调系统中的风机电机直接功率控制的恒风量控制方法,所述的风机电机驱动风轮并具有定子组件、永磁转子组件,空调系统控制器包括微处理器、逆变电路、转子位置测量电路、母线电流检测电路、母线电压检测电路和电机输入功率控制电路(图中未画出),转子位置测量电路检测转子位置信号并输入到微处理器,微处理器根据转子位置信号计算出电机的实时转速n,母线电流检测电路将母线电流输入到微处理器,母线电压检测电路将直流母线电压输入到微处理器,微处理器控制逆变电路,逆变电路控制定子组件的各相线圈绕组的通断电,微处理器控制电机输入功率控制电路,其特征在于:它包括如下步骤:
步骤A)起动空调系统控制器,接收或预设的目标风量值IN-CFM;
步骤B)根据目标风量值IN-CFM获得对应的函数P=f(n),其中n是转速,P是电机的输入功率;
步骤C)进入直接功率控制恒风量控制模式:控制电机或电机速度为零时启动电机,使它沿着函数P=f(n)的控制轨迹到达一稳定的工作点(pt,nt);pt,nt是位于满足恒风量控制函数P=f(n)的轨迹上一对输入功率和转速;
步骤D)保持直接功率控制恒风量控制模式:根据电机运行参数计算出电机实时输入功率Pi;计算ΔP=|Pt-Pi|;
步骤E)若功率增量值ΔP小于设定值Pset,保持现有工作点;
步骤F)若功率增量值ΔP大于等于设定值Pset;功率/转速控制逻辑将计算速度环的操作时间是否达到;如果速度环的操作时间没有达到,保持现有工作点;
步骤G)如果速度环的操作时间已经达到,进入速度控制回路按Δn=|ni-nt|调节速度,ni是实时转速,实现轨迹上的新工作点(Pi,ni),即令Pt=Pi,nt=ni,回到步骤C。
上述所述的上述所述的函数P=f(n)是这样获得的:先采集原始数据,针对若干个目标风量,从低静压一直调节到高静压,这个静压要能涵盖应用的实际静压范围,在调节静压的过程中,让电机处于恒转速控制,并通过调节电机转速n和电机实时输入功率Pi保持风量为目标风量,并记录此时的电机稳态转速n和对应的电机实时输入功率Pi,这样,针对若干个目标风量,都产生了一组转速n和电机实时输入功率Pi,然后通过曲线拟合的方法产生若干个目标风量中每一个目标风量对应一个函数P=f(n)。
上述所述如果外部输入目标风量值IN-CFM都不等于上述测定的若干个目标风量的其中一个,可以通过插值法,拟合计算与任何外部输入目标风量值IN-CFM相对应的函数P=f(n)。实现了全程任意目标风量的恒风量控制。
上述所述的函数关系式P=f(n)是一个多项式函数:P=C1+C2×n+...+Cm×nm-1,其中C1,C2,…,Cm是系数,n是电机转速值,每一个目标风量对应一组C1,C2,…,Cm系数并储存起来,微处理器根据输入的目标风量值IN-CFM通过查表法或者插值法获得对应的一组C1,C2,…,Cm系数,从而得到函数关系式P=f(n)。
述所述函数关系式P=f(n)是一个二阶函数:P=C1+C2×n+C3×n2
本发明的直接功率控制恒风量的控制方法(DirectPControlforConstantAirflowControlApparatusMethod)开发和数学模型建立是这样的:一般来说,在一个通风系统,风机由风机电机驱动的驱动在一个稳定的状态产生的气流空气。一个恒定的风量控制通过在一个静态的压力条件下的速度、功率控制实现,见如下关系式:CFM=F(P,speed,pressure),其中CFM是风量,P是功率,speed是速度,pressure是静压。当静态压力的变化,用功率和速度的控制维持该恒风量。随着静态压力增加,功率与速度随之变化。一簇恒风量CFM曲线可以测试出,如图8所示的。基于这些恒风量CFM曲线,开发控制模型,当产品控制确定风量要求,通过控制功率和速度在特定的静态压力提供一个恒定风量CFM。在图8中,特性曲线代表保持控制功率和速度的的恒风量物理特性,所有电机的额定功率范围内,对任何类型的设计的气流系统的空调厂家,基于功率的测试结果与速度曲线,可以得出结论,一个典型的二次函数可以很好地用于开发建模作为一种典型的函数,P=C1+C2×n+C3×n2,通过在曲线上选者三个待定点(A,B和C),其对应的坐标上的数据是(p1,n1),(p2,n2),(p3,n3)取得系数C1、C2、C3,见如下公式:
F ( A , B , C ) = Σ i m ( Yi - ( C 1 + C 2 * n + C 3 * n 2 ) ) 2 , 通过 F ∂ / ∂ A = 0 , ∂ F / ∂ B = 0 , and通过求解方程,m=3。
曲线拟合的过程是选择多项式描述曲线,多项式的系数可以通过最小二乘法求出。理论上可以用P=C1+C2×n+C3×n2+...+Cm×nm-1,实际上选择二项式就可以满足一般的需要。函数关系式P=f(n)是一个二阶函数:P=C1+C2×n+C3×n2,其中C1、C2和C3是系数,n是电机转速值,在测试的若干个目标风量中任何一个目标风量对应一组C1、C2和C3系数并储存起来,微处理器根据输入的目标风量值IN-CFM通过查表法获得对应的一组C1、C2和C3系数,从而得到函数关系式P=f(n),在某负载中每一个目标风量对应一组C1、C2和C3系数具体如下表1所示:
表1
CFM C1 C2 C3
150 0.338 —0.151 0.0458
300 0.4423 —0.2113 0.0765
450 。。。 。。。 。。。
600 。。。 。。。 。。。
750 。。。 。。。 。。。
900 。。。 。。。 。。。
图9是1/3HP的风机电机在小型管道的空调系统的直接功率控制恒风量的实验数据拟合曲线图,对于一个给定的目标气流,系统选择某些典型的风量CFM作为测试点建立一个数据库为建立数学模型之用。这些典型的点包括最小和最大风量值,附加一些中间点根据产品规格,典型的风量CFM作为测试点有5个,分别为150/300/450/600和750CFM。
表2显示测试数据结果的一个例子。电机的转速的范围是从200到1400rpm;系统的静态压力从0.1到1H2O。保持预设恒风量CCFM输出,获得一个对应图9的电机输入功率标么值,形成一个数据库。
表2
利用最小二乘法,每个预定的CFM风量对应功率和转速的二次函数,在一个标准的计算方法得到的:这些方程定义的功率与在一个特定的静态压力的任何系统的工作点的速度。当输入设定风量IN-CFM预设,电机系统定义了一个与之对应的函数,其工作点的轨迹遵循函数定义。方程(3)到(7)可以表示为一个标准方程,C1、C2、C3是常数。
Power ( 150 ) = 0.3388 ( n 1000 ) 2 - 0.1551 ( n 1000 ) + 0.0458 - - - ( 3 )
Power ( 300 ) = 0 . 4423 ( n 1000 ) 2 - 0.2113 ( n 1000 ) + 0.0765 - - - ( 4 )
Power ( 450 ) = 0.3987 ( n 1000 ) 2 - 0.0308 ( n 1000 ) + 0.0294 - - - ( 5 )
Power ( 600 ) = 0.2580 ( n 1000 ) 2 + 0.3983 ( n 1000 ) - 0.1379 - - - ( 6 )
Power ( 750 ) = 0.1385 ( n 1000 ) 2 + 0.8150 ( n 1000 ) - 0.3139 - - - ( 7 )
即得到P=C1+C2×n+C3×n2,方程(3)到(7)建模曲线提供了几个恒风量CFM需求的5个选择工作点的轨迹,Power是功率,n是转速。
如图10所示,如果请求的恒风量IN-CFM要求不是建模曲线其中的一个,使用一种插值方法来获得一个新的特征方程拟合该请求的恒风量IN-CFM,例如当请求的恒风量IN-CFM=525cfm要求被接收,相邻两个曲线CFM1-600cfm和CFM2-450cfm建模可以识别。然后两个相应的方程可以用于计算IN-CFM=525cfm曲线的新方程。基于需求的IN-CFM=525cfm,三个选定的速度ω1、ω2、ω3,确定在这些速度计算出功率值,利用这两个模型曲线对应的方程对于双功率点在选定的速度,线性加权插值可以用来计算P值。首先列出矩阵数据如下:
P i P 1 ( 600 ) P 2 ( 450 ) = ω 1 ω 2 ω 3 P 11 P 12 P 13 P 21 P 22 P 23
对于一对功率点(P1i,p2i)对应一个选定的速度ω,选定的速度ω1、ω2、ω3对应3对功率点(p1i,p2i),线性加权插值可以用来计算Pi值为:
pi=p2i+w.(p1i-p2i)。
权重值W是这样计算的:
注意该CFM2≤IN-CFM≤CFM1,等0≤W≤1。下面的矩阵方程可计算的,
ω 1 2 ω 1 1 ω 2 2 ω 2 1 ω 3 2 ω 3 1 C 1 C 2 C 3 = P 1 P 2 P 3
这样对应的IN-CFM=525cfm的函数P=C1+C2×n+C3×n2能被得到。解决这个矩阵方程,对C1、C2、C3系数可以计算。因此,任何需求输入风量IN-CFM都可以得到功率方程。由于这一过程是在空调系统控制器里面的微处理器---单片机初始化完成,所以功率的计算不需要消耗较多实时的CPU资源。
可以看出,本直接功率控制DPC(DirectPowerControl)使用转速控制来实现功率控制。功率/转速控制逻辑的功能是协调功率/转速回路时间常数以保证系统的稳定性。控制可以通过控制电机的精确控制,转矩控制比较。无论是标量或矢量控制中,速度控制较转矩控制更有效.,提高控制精度。
DPC控制是通过独特的功率和风机负载速度特性进行速度控制。电机从零转速到高转速,功率也是这样从零到增大。电机的转速将上升直至达到一对工作点A(功率,速度),是静态压力点,如图12所示,当静态压力突然增大,在速度控制模式下,电机提供更多的功率(或更大的扭矩)保持速度,由于较高的静压力需要很大的功率要求。功率会突然上升到更高的,当电机系统达到了一个新的工作点的“B”以相同的速度,该算法将知道这是不是在恒定的CFM轨迹曲线工作点,从而确定一对功率/速度点“C”。但C点不是一个稳定的工作点,由于高功率的要求,然后去“D”点,反复,等收敛到一个新的稳定工作点的“G”,结束。
在实施中,我们可以减少功率波动突然变化时,通过使用受限制的功率增量控制。它显示在图13中,增量功率可以被指定为ΔP。只要功率变化超过该功率增量ΔP,速度控制将进行速度控制。在这种方式中,所有的工作点在对应恒风量CFM轨迹曲线一个正负带宽下工作。静压变化过渡过程中的风流控制系统是稳定的。
如图14所示,上述电机直接功率控制恒风量控制方法和算法已在我们的风机空调系统控制器上试验,所有的系统性能,满足了如图15所示的要求。
图11是本算法在风机电机标量控制应用的逻辑框图,输入功率由直流母线电压,电流计算获得.功率及转速将被限幅于最大功率Pmax,及转速nmax之内。
通过反馈的直流母线电流/电压计算电机实时输入功率值Pi,那么根据外部输入的风量IN-CFM与功率/速度数据匹配,得到电机输入功率的计算值Pt,比较电机输入功率的计算值Pt与电机实时输出功率Pi,得到功率差ΔP,功率差ΔP被限制,避免功率差ΔP过大,调节功率波动较大。功率差ΔP通过功率/速度控制逻辑输出,进行速度环控制,PWM变频器进行转速控制.采用标量控制,即采集实时母线电流Ibus和实时母线电压计算出电机实时输入功率P=Ibus×Vbus。风机电机的风量测量的原理如下:
基于以上的理论分析:图9是1/3HP的风机电机在小型管道的空调系统的直接功率控制恒风量的实验数据拟合曲线图,风量CFM作为测试点有5个,分别为150、300、450、600和750CFM,得到方程(3)至(7),表2显示测试数据结果的一个例子。电机的转速的范围是从200到1400rpm;系统的静态压力从0.1到1H2O,保持预设恒风量CCFM输出,获得一个对应图9的电机输入功率标么值。并描述输入任何一个不再上述5个工作点的风量数据,例如IN-CFM=525cfm的函数P=C1+C2×n+C3×n2能被得到。解决矩阵方程,对C1、C2、C3系数可以计算。因此,任何需求输入风量IN-CFM都可以得到功率方程。即任何一个输入的目标风量都可以得到对应该目标风量的恒风量控制函数P=C1+C2×n+C3×n2
根据以上的原理的反向推理:那麽,当电机工作在稳态情况下,测量出电机的当前实时功率Po和转速no,如图15所示,通过该点M((Po,no),我们可以推算出该点(Po,no)处于那一条恒风量控制的曲线CFM0上,也就知道该点M(Po,no)对应的风量值。其推导过程如下:
其处于那二条已知风量曲线之间。我们把P0代入方程(3)至(7),得到5种风量对应的转速n(150)、n(300)、n(450)、n(600)、n(750),通过转速比较判断转速no处于那两个已知恒风量曲线之间,假设该点M(Po,no)处于恒风量曲线CFM1和CFM2之间,在输入功率等于Po情况下,恒风量曲线CFM1和CFM2对应的转速分别为n1、n2,该点M(Po,no)的恒风量值CFM0=CFM2+(CFM1-CFM2)×(n2-no)÷(n2-n1),其中CFM1、CFM2是风量150、300、450、600、750中的一个。从以上推导可知,已知电机的实时功率Po和转速no,就可知得到空调系统输出的风量值CFM0,当检测风量低于设定风量的偏差达到一定的值时,判断为空气过滤网堵塞并输出信号报警。
实施例二:一种带滤网堵塞检测功能的电器设备,如图17所示,所述的电器设备包括进风口、出风口、风道、风轮、风机电机、空气过滤网和电器设备控制器,空气过滤网安装在风道上,风机电机带动风轮转动使空气从进风口进入风道并经过空气过滤网,然后从出风口输出,其中:所述的风机电机是一个不带控制器的电机单体,包括转轴、永磁转子组件、定子组件和机壳组件,永磁转子组件和定子组件形成磁藕合,定子组件包括定子铁芯和卷绕在定子铁芯上的线圈绕组。电机单体上带有霍尔线路板,霍尔线路板检测转子位置信号。所述的电器设备控制器包括主控线路板,主控线路板包括微处理器、逆变电路和电机运行参数检测电路,逆变电路的输出端与线圈绕组连接,运行参数检测电路将电机实时运行参数输入到微处理器,微处理器的输出端控制逆变电路,微处理器设置风量计算函数模块,风量计算函数模块根据电机的实时运行参数计算出检测风量;当检测风量低于设定风量时,微处理器判断为空气过滤网堵塞并输出信号到报警电路报警。
所述的电机的实时运行参数包括相电流、转子位置信号;或者是母线电流和转子位置信号;或者是母线电流、母线电压、转子位置信号。利用电机单体作为检测风量的元件,当检测风量与设定风量的偏差达到一定的值时,判断为空气过滤网堵塞并报警。风机电机工作在恒风量的控制模式,微处理器首先测量实际功率是否到达额定功率,如果测量实际功率达到额定功率,再判断检测风量与设定风量的偏差。当检测风量低于90%的设定风量时,判断为空气过滤网堵塞。当检测风量与设定风量的偏差达到一定的值时,微处理器控制报警电路报警,提示空气过滤网堵塞,报警电路可以是声音报警电路,或者光电报警电路,报警电路布局在电器设备控制器里面。
实施例三:
一种空调系统,包括机体,在机体里面安装有压缩机、膨胀阀、风机电机、风轮、空气过滤网和空调系统控制板,在机体内设置有风道,风道设置进风口和出风口,在风道里面安装空气过滤网和风轮,风机电机驱动风轮转动,所述的风机电机采用BLDC电机或则ECM电机,包括电机单体。所述的电机单体包括转轴、永磁转子组件、定子组件和机壳组件,永磁转子组件和定子组件形成磁藕合,定子组件包括定子铁芯和卷绕在定子铁芯上线圈绕组,所述的空调系统控制板包括有微处理器、逆变电路和运行参数检测电路,逆变电路的输出端与线圈绕组连接,运行参数检测电路将检测的信号输入到微处理器,微处理器的输出端控制逆变电路,微处理器通过接口电路连接控制压缩机、膨胀阀。利用风机电机作为检测风量的元件,当检测风量低于设定风量时,判断为空气过滤网堵塞,空调系统可以是分体机空调、柜机空调、窗机空调、多联机空调、风管机空调、商用盘管机空调、天井机空调。
可以设定当检测风量低于90%的设定风量时,判断为空气过滤网堵塞,空调系统控制板向风机电机输入设定风量,微处理器实时检测风量,当检测风量与设定风量的偏差达到一定的值时,微处理器控制报警电路报警,提示空气过滤网堵塞,报警电路可以是声音报警电路,或者光电报警电路,报警电路布局在空调系统控制板,报警电路可以包括空调系统原有的液晶显示器,微处理器先将报警信号传送到空调系统控制板,空调系统控制板输出信号到液晶显示器,利用文字或图案来提示空气过滤网堵塞。风机电机工作在恒风量控制模式,微处理器首先测量实际功率是否到达额定功率,如果测量实际功率达到额定功率,再判断检测风量与设定风量的偏差,风机电机可以工作在恒风量控制模式,微处理器首先测量实际功率是否到达于额定功率,如果测量实际功率达到额定功率,且检测风量与设定风量的偏差达到一定的值时,进行报警;当检测到风量与设定风量有偏差在允许范围内,选择不报警。风机电机可以工作在恒力矩控制模式,当检测风量与设定风量的偏差达到一定的值时,判断为空气过滤网堵塞并报警。风机电机可以工作在恒转速控制模式,当检测风量与设定风量的偏差达到一定的值时,判断为空气过滤网堵塞并报警。

Claims (11)

1.一种带滤网堵塞检测功能的电器设备,所述的电器设备包括进风口、出风口、风道、风扇或者风轮、风机电机、空气过滤网和电器设备控制器,空气过滤网安装在风道上,风机电机带动风扇或者风轮转动使空气从进风口进入风道并经过空气过滤网,然后从出风口输出,其中:
所述的风机电机是一个不带控制器的电机单体,包括转轴、永磁转子组件、定子组件和机壳组件,永磁转子组件和定子组件形成磁藕合,定子组件包括定子铁芯和卷绕在定子铁芯上的线圈绕组;
所述的电器设备控制器包括主控线路板,主控线路板包括微处理器、逆变电路和电机运行参数检测电路,逆变电路的输出端与线圈绕组连接,运行参数检测电路将电机实时运行参数输入到微处理器,微处理器的输出端控制逆变电路,微处理器设置风量计算函数模块,风量计算函数模块根据电机的实时运行参数计算出检测风量;
其特征在于:当检测风量低于设定风量时,微处理器判断为空气过滤网堵塞并输出信号到报警电路报警。
2.根据权利要求1所述的一种带滤网堵塞检测功能的电器设备,其特征在于:所述的电器设备是分体机空调,或者是柜机空调,或者是窗机空调,或者是多联机空调,或者是风管机空调,或者是商用盘管机空调,或者是天井机空调,或者是HVAC系统,或者是空气清新机,或者是空气净化器,或者是抽油烟机。
3.根据权利要求1所述的一种带滤网堵塞检测功能的电器设备,其特征在于:所述的电机的实时运行参数包括相电流、转子位置信号;或者是母线电流和转子位置信号;或者是母线电流、母线电压、转子位置信号。
4.根据权利要求3所述的一种带滤网堵塞检测功能的电器设备,其特征在于:风量计算的函数Q=F(POWER,n),其中POWER是电机的输入功率,通过电机的母线电流、母线电压计算出来,n是电机的转速,通过转子位置信号计算出来。
5.根据权利要求1或2或3所述的一种带滤网堵塞检测功能的电器设备,其特征在于:风机电机工作在恒风量控制模式,微处理器首先测量实际功率是否到达于额定功率,如果测量实际功率达到额定功率,且检测风量与设定风量的偏差达到一定的值时,进行报警;当检测到风量与设定风量有偏差在允许范围内,选择不报警。
6.根据权利要求1或2或3所述的一种带滤网堵塞检测功能的电器设备,其特征在于:风机电机工作在恒力矩控制模式,当检测风量与设定风量的偏差达到一定的值时,判断为空气过滤网堵塞并报警。
7.根据权利要求1或2或3所述的一种带滤网堵塞检测功能的电器设备,其特征在于:风机电机工作在恒转速控制模式,当检测风量与设定风量的偏差达到一定的值时,判断为空气过滤网堵塞并报警。
8.根据权利要求1或2或3所述的一种带滤网堵塞检测功能的电器设备,其特征在于:主控线路板是空调系统控制板,主控线路板上微处理器还通过接口电路连接控制压缩机、膨胀阀。
9.根据权利要求8所述的一种带滤网堵塞检测功能的电器设备,其特征在于:报警电路可以是声音报警电路,或者光电报警电路。
10.根据权利要求9所述的一种带滤网堵塞检测功能的电器设备,其特征在于:报警电路可以包括电器设备原有的液晶显示器,微处理器输出信号到液晶显示器,利用文字或图案来提示空气过滤网堵塞。
11.根据权利要求3所述的一种带滤网堵塞检测功能的电器设备,其特征在于:电机单体上还带有霍尔线路板,霍尔线路板检测转子位置信号。
CN201410439148.5A 2014-08-30 2014-08-30 一种带滤网堵塞检测功能的电器设备 Active CN105444340B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201410439148.5A CN105444340B (zh) 2014-08-30 2014-08-30 一种带滤网堵塞检测功能的电器设备
MX2016008206A MX2016008206A (es) 2014-08-30 2014-10-10 Dispositivo electrico con funcion de deteccion de bloqueo de malla del filtro.
CA2937558A CA2937558C (en) 2014-08-30 2014-10-10 Electrical device with filter mesh blockage detection function
PCT/CN2014/088272 WO2016029531A1 (zh) 2014-08-30 2014-10-10 一种带滤网堵塞检测功能的电器设备
US14/986,715 US9547974B2 (en) 2014-08-30 2016-01-03 Device for detecting blockage of air filter mesh

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410439148.5A CN105444340B (zh) 2014-08-30 2014-08-30 一种带滤网堵塞检测功能的电器设备

Publications (2)

Publication Number Publication Date
CN105444340A true CN105444340A (zh) 2016-03-30
CN105444340B CN105444340B (zh) 2018-08-24

Family

ID=55398699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410439148.5A Active CN105444340B (zh) 2014-08-30 2014-08-30 一种带滤网堵塞检测功能的电器设备

Country Status (5)

Country Link
US (1) US9547974B2 (zh)
CN (1) CN105444340B (zh)
CA (1) CA2937558C (zh)
MX (1) MX2016008206A (zh)
WO (1) WO2016029531A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105864973A (zh) * 2016-04-14 2016-08-17 常州绿谷物联网科技有限公司 新风净化系统风阻识别方法及其装置
CN106016631A (zh) * 2016-07-07 2016-10-12 广东海悟科技有限公司 一种机房用空调监控系统
CN106099860A (zh) * 2016-08-17 2016-11-09 广东美的厨房电器制造有限公司 电机保护设备、方法及抽烟烟机
CN107514740A (zh) * 2017-07-24 2017-12-26 珠海格力电器股份有限公司 过滤式机组的过滤器寿命判断方法及过滤式机组
CN108194993A (zh) * 2017-12-29 2018-06-22 李瑞蓉 一种双方向悬挂式室内空气净化设备
CN109059189A (zh) * 2018-07-11 2018-12-21 珀隆有限公司 滤网堵塞检测的方法、装置、系统、设备和存储介质
CN109155121A (zh) * 2016-04-15 2019-01-04 艾默生环境优化技术有限公司 用于通过连接至压缩机的电路的led阵列按照逐列格式显示消息的系统和方法
CN109555720A (zh) * 2018-11-19 2019-04-02 郑州云海信息技术有限公司 一种通风故障提示方法、装置、设备以及存储介质
CN109682016A (zh) * 2017-10-19 2019-04-26 深圳市美好创亿医疗科技有限公司 空气净化设备过滤单元有效性检测系统及方法
CN110892204A (zh) * 2017-07-06 2020-03-17 近藤工业株式会社 空调设备的过滤器网眼堵塞测定装置及空调设备
CN111678243A (zh) * 2020-06-18 2020-09-18 东莞市豪铖电子科技有限公司 一种机器人空气净化器及控制方法
CN113091286A (zh) * 2021-03-30 2021-07-09 青岛海尔空调器有限总公司 滤网可用时长确定方法、装置、电子设备及存储介质
WO2021147321A1 (zh) * 2020-01-22 2021-07-29 中山大洋电机股份有限公司 一种恒风量引风机
US11387729B2 (en) 2016-04-15 2022-07-12 Emerson Climate Technologies, Inc. Buck-converter-based drive circuits for driving motors of compressors and condenser fans
CN114877461A (zh) * 2022-06-15 2022-08-09 中山大洋电机股份有限公司 一种通风模块的控制方法及新风空调、新风空气调节装置
WO2023236561A1 (zh) * 2022-06-07 2023-12-14 青岛海尔空调器有限总公司 空调器过滤网堵塞提醒方法、装置、空调器及存储介质
CN118470879A (zh) * 2024-07-12 2024-08-09 南京博斯威尔工业通信技术有限公司 一种输电线路智能综合报警装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105629814B (zh) * 2014-10-29 2018-03-02 中山大洋电机股份有限公司 一种具有抽风或者送风功能的电器设备的恒风量控制方法
CN106895460A (zh) * 2017-03-24 2017-06-27 广东万家乐燃气具有限公司 一种吸油烟机反倒灌控制方法
CN107084415A (zh) * 2017-04-12 2017-08-22 广东万家乐燃气具有限公司 一种具有防倒灌功能的油烟机
EP3489592A1 (en) * 2017-11-27 2019-05-29 Daikin Europe N.V. Filter contamination detection method
JP7141687B2 (ja) * 2018-04-27 2022-09-26 富士工業株式会社 レンジフードおよびレンジフードシステム
CN109008801A (zh) * 2018-08-10 2018-12-18 珠海格力电器股份有限公司 电器滤网更换检测方法、系统、进风量计算方法和吸尘器
CN109177700A (zh) * 2018-11-05 2019-01-11 安徽澳格汽车零部件有限公司 一种具有透气检测功能的过滤器
DE102018129616A1 (de) * 2018-11-23 2020-05-28 Soler & Palau Research, S.L.U. Verfahren und System zur Beschleunigung und Verdünnung eines Abluftstroms
CN111248812B (zh) * 2018-12-03 2022-04-19 添可智能科技有限公司 一种用于吸尘器滤网更换提醒方法、系统以及吸尘器
CN111272628B (zh) * 2020-02-17 2023-02-24 海信空调有限公司 空气净化设备及其过滤网寿命检测方法和检测装置
JP7453028B2 (ja) * 2020-03-19 2024-03-19 東芝キヤリア株式会社 外気処理装置及び空調システム
CN112179823A (zh) * 2020-08-31 2021-01-05 珠海格力电器股份有限公司 脏堵的检测方法、装置、设备及存储介质
CN112657280A (zh) * 2020-12-18 2021-04-16 李杰松 一种汽车空调用过滤板使用且情况检测设备
EP4270767A4 (en) * 2020-12-23 2024-02-14 Mitsubishi Electric Corporation VENTILATION BLOWER
TWI764654B (zh) * 2021-03-30 2022-05-11 明泰科技股份有限公司 用以檢測出風路徑暢通或阻塞的風量檢測裝置
CN113091209A (zh) * 2021-03-30 2021-07-09 青岛海尔空调器有限总公司 空调出风控制方法、装置、电子设备及存储介质
CN113486953B (zh) * 2021-07-06 2024-10-15 茵梦达(上海)电气传动设备有限公司 变频器滤网更换时间的预测方法、装置及计算机可读介质
CN114543260B (zh) * 2022-03-25 2023-03-28 珠海格力电器股份有限公司 过滤网状态的检测方法及装置、存储介质、空气净化器
CN115111693B (zh) * 2022-06-01 2023-05-02 中科美菱低温科技股份有限公司 一种高效过滤器使用寿命的检测方法及洁净工作台
CN115247861B (zh) * 2022-06-28 2023-09-08 浙江中广电器集团股份有限公司 一种空调器及其除尘控制方法
CN117760050B (zh) * 2023-12-15 2024-05-14 科城爱高智慧能源科技(广州)有限公司 新风系统过滤网堵塞检测装置及检测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2499739Y (zh) * 2001-08-17 2002-07-10 陈传端 一种空气过滤网堵塞报警装置
US6448896B1 (en) * 2001-08-24 2002-09-10 Carrier Corporation Air filter monitor for HVAC units
JP2003322415A (ja) * 2002-04-30 2003-11-14 Toyotomi Co Ltd ファンフィルターはずれ検知構造
DE20315962U1 (de) * 2003-10-09 2004-02-12 Hakemann, Hergen Kühlvorrichtung mit klappbarer Warenauflage
US20040113803A1 (en) * 2002-12-12 2004-06-17 Keown Dan Lee System and method for monitoring and indicating a condition of a filter element in a fluid delivery system
EP1800919A2 (en) * 2005-12-26 2007-06-27 Sanden Corporation Airflow filter device and air-conditioning systems for a vehicle and a construction machine using the same machine
CN101368938A (zh) * 2007-08-17 2009-02-18 华为技术有限公司 一种防尘网堵塞程度检测装置和方法、及电子设备
CN102004381A (zh) * 2009-08-27 2011-04-06 日立民用电子株式会社 投影型显示装置
CN102748837A (zh) * 2012-07-28 2012-10-24 Tcl空调器(中山)有限公司 一种空调器及其过滤网脏堵自动提醒方法
CN103836692A (zh) * 2014-02-28 2014-06-04 广东威灵电机制造有限公司 油烟机及其风量监测方法和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510706B (zh) * 2011-11-01 2014-12-31 杭州依赛通信有限公司 一种温度差异检测防尘过滤网的方法及其装置
CN202361571U (zh) * 2011-11-17 2012-08-01 鼎正动物药业(天津)有限公司 具有送风安全防护功能的空调机组
CN103825504B (zh) * 2012-11-16 2018-02-06 中山大洋电机股份有限公司 一种风机电机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2499739Y (zh) * 2001-08-17 2002-07-10 陈传端 一种空气过滤网堵塞报警装置
US6448896B1 (en) * 2001-08-24 2002-09-10 Carrier Corporation Air filter monitor for HVAC units
JP2003322415A (ja) * 2002-04-30 2003-11-14 Toyotomi Co Ltd ファンフィルターはずれ検知構造
US20040113803A1 (en) * 2002-12-12 2004-06-17 Keown Dan Lee System and method for monitoring and indicating a condition of a filter element in a fluid delivery system
DE20315962U1 (de) * 2003-10-09 2004-02-12 Hakemann, Hergen Kühlvorrichtung mit klappbarer Warenauflage
EP1800919A2 (en) * 2005-12-26 2007-06-27 Sanden Corporation Airflow filter device and air-conditioning systems for a vehicle and a construction machine using the same machine
CN101368938A (zh) * 2007-08-17 2009-02-18 华为技术有限公司 一种防尘网堵塞程度检测装置和方法、及电子设备
CN102004381A (zh) * 2009-08-27 2011-04-06 日立民用电子株式会社 投影型显示装置
CN102748837A (zh) * 2012-07-28 2012-10-24 Tcl空调器(中山)有限公司 一种空调器及其过滤网脏堵自动提醒方法
CN103836692A (zh) * 2014-02-28 2014-06-04 广东威灵电机制造有限公司 油烟机及其风量监测方法和系统

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105864973A (zh) * 2016-04-14 2016-08-17 常州绿谷物联网科技有限公司 新风净化系统风阻识别方法及其装置
CN109155121B (zh) * 2016-04-15 2021-09-17 艾默生环境优化技术有限公司 用于通过连接至压缩机的电路的led阵列按照逐列格式显示消息的系统和方法
CN109155121A (zh) * 2016-04-15 2019-01-04 艾默生环境优化技术有限公司 用于通过连接至压缩机的电路的led阵列按照逐列格式显示消息的系统和方法
US11387729B2 (en) 2016-04-15 2022-07-12 Emerson Climate Technologies, Inc. Buck-converter-based drive circuits for driving motors of compressors and condenser fans
CN106016631A (zh) * 2016-07-07 2016-10-12 广东海悟科技有限公司 一种机房用空调监控系统
CN106099860A (zh) * 2016-08-17 2016-11-09 广东美的厨房电器制造有限公司 电机保护设备、方法及抽烟烟机
CN110892204A (zh) * 2017-07-06 2020-03-17 近藤工业株式会社 空调设备的过滤器网眼堵塞测定装置及空调设备
CN110892204B (zh) * 2017-07-06 2022-04-26 剑桥过滤器有限公司 空调设备的过滤器网眼堵塞测定装置及空调设备
CN107514740A (zh) * 2017-07-24 2017-12-26 珠海格力电器股份有限公司 过滤式机组的过滤器寿命判断方法及过滤式机组
CN109682016A (zh) * 2017-10-19 2019-04-26 深圳市美好创亿医疗科技有限公司 空气净化设备过滤单元有效性检测系统及方法
CN109682016B (zh) * 2017-10-19 2021-04-06 深圳市美好创亿医疗科技股份有限公司 空气净化设备过滤单元有效性检测方法
CN108194993A (zh) * 2017-12-29 2018-06-22 李瑞蓉 一种双方向悬挂式室内空气净化设备
CN109059189A (zh) * 2018-07-11 2018-12-21 珀隆有限公司 滤网堵塞检测的方法、装置、系统、设备和存储介质
CN109555720A (zh) * 2018-11-19 2019-04-02 郑州云海信息技术有限公司 一种通风故障提示方法、装置、设备以及存储介质
WO2021147321A1 (zh) * 2020-01-22 2021-07-29 中山大洋电机股份有限公司 一种恒风量引风机
CN111678243A (zh) * 2020-06-18 2020-09-18 东莞市豪铖电子科技有限公司 一种机器人空气净化器及控制方法
CN113091286A (zh) * 2021-03-30 2021-07-09 青岛海尔空调器有限总公司 滤网可用时长确定方法、装置、电子设备及存储介质
WO2023236561A1 (zh) * 2022-06-07 2023-12-14 青岛海尔空调器有限总公司 空调器过滤网堵塞提醒方法、装置、空调器及存储介质
CN114877461A (zh) * 2022-06-15 2022-08-09 中山大洋电机股份有限公司 一种通风模块的控制方法及新风空调、新风空气调节装置
CN114877461B (zh) * 2022-06-15 2024-03-15 中山大洋电机股份有限公司 一种通风模块的控制方法及新风空调、新风空气调节装置
CN118470879A (zh) * 2024-07-12 2024-08-09 南京博斯威尔工业通信技术有限公司 一种输电线路智能综合报警装置

Also Published As

Publication number Publication date
US20160117907A1 (en) 2016-04-28
CA2937558A1 (en) 2016-03-03
WO2016029531A1 (zh) 2016-03-03
MX2016008206A (es) 2016-10-14
CN105444340B (zh) 2018-08-24
CA2937558C (en) 2018-08-28
US9547974B2 (en) 2017-01-17

Similar Documents

Publication Publication Date Title
CN104174238B (zh) 一种送风设备的滤网堵塞检测方法及其应用的送风设备
CN105444340A (zh) 一种带滤网堵塞检测功能的电器设备
CN104180858B (zh) 一种风机电机测量风量的方法
US10066631B2 (en) Direct power control for constant airflow control
KR101815408B1 (ko) 팬 모터의 풍량 측정 방법
CN105629814B (zh) 一种具有抽风或者送风功能的电器设备的恒风量控制方法
CN104807152B (zh) Pm电机直接功率控制的恒风量控制方法及其应用的hvac系统
US9732976B2 (en) Direct power control for constant airflow control with advanced motor system modeling
CN103376743B (zh) 一种电机及空调风机系统的恒风量控制方法
JP2017500470A5 (zh)
CN103375419B (zh) 一种电机及空调风机系统的恒风量控制方法
CN106154871B (zh) 一种电器设备的通风管道堵塞程度实时显示控制方法
CN106160587B (zh) 一种电机的控制方法及应用其的带有风道的电器设备的控制方法
WO2016011617A1 (zh) 一种送风设备的滤网堵塞检测方法及其应用的送风设备
WO2023231228A1 (zh) 气流输送管道的外部静压估算方法及空调系统的控制方法
CN106152385B (zh) 一种风机电机的控制方法及一种空调的控制方法
US20230015685A1 (en) Electronically commutated motor zero-watt standby power consumption
CN102434476B (zh) 用于通风设备的受控角加速度

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant