CN105441479B - 版纳甜龙竹转基因体系的建立方法 - Google Patents

版纳甜龙竹转基因体系的建立方法 Download PDF

Info

Publication number
CN105441479B
CN105441479B CN201510961204.6A CN201510961204A CN105441479B CN 105441479 B CN105441479 B CN 105441479B CN 201510961204 A CN201510961204 A CN 201510961204A CN 105441479 B CN105441479 B CN 105441479B
Authority
CN
China
Prior art keywords
callus
culture
culture medium
screening
sucrose30
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510961204.6A
Other languages
English (en)
Other versions
CN105441479A (zh
Inventor
林新春
张宁
臧巧路
周玲
刘倩倩
宋李玲
诸葛菲
王晓芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zoomlion Tiansheng Beijing Biotechnology Co ltd
Original Assignee
Zhejiang A&F University ZAFU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang A&F University ZAFU filed Critical Zhejiang A&F University ZAFU
Priority to CN201510961204.6A priority Critical patent/CN105441479B/zh
Publication of CN105441479A publication Critical patent/CN105441479A/zh
Application granted granted Critical
Publication of CN105441479B publication Critical patent/CN105441479B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/008Methods for regeneration to complete plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Abstract

本发明公开了版纳甜龙竹转基因体系的建立方法,其特征在于采用以下步骤:1)愈伤组织的获得;2)农杆菌的培养;3)侵染及共培养;4)恢复培养;5)筛选及分化培养;6)生根培养;7)植株的分子鉴定。采用本发明方法,以版纳甜龙竹愈伤组织为受体,通过农杆菌介导成功获得10株抗性再生植株,转化率达到35.7%,对其进行PCR分子检测及其电泳产物测序,结果证实潮霉素磷酸转移酶基因已转入竹子的基因组中。本发明转化率高,体系稳定,实施步骤简单易行,效果显著,对其他丛生竹种具有一定的通用性,为竹子基因工程育种打下了良好的基础。

Description

版纳甜龙竹转基因体系的建立方法
技术领域
本发明属于植物转基因技术领域,具体是以版纳甜龙竹成熟种子的种胚诱导的胚性愈伤组织作为转基因的受体,采用农杆菌介导的转基因方法,经过愈伤组织预培养、侵染后共培养、恢复培养、筛选培养获得抗性愈伤组织,经分化和生根后获得再生植株,再经分子水平的检测确定转基因植株。
背景技术
我国是世界上竹类资源最为丰富、竹林面积最大的国家。竹子适应性强、生长快、产量高、用途广,并具有良好的经济、社会和生态效益,受到人们的高度重视。然而由于竹类植物开花的周期很长,花的育性低,竹种同时开花几率小以及许多竹种开花后即死亡等原因,常规的杂交育种很难得以实施。其次,竹类植物基本以无性系繁殖,导致种内的差异小,也限制了常规选择育种。比较现实和具有发展前景的途径是引进现代生物技术来加快竹子遗传改良的进程,其中转基因技术是有效的育种手段。目前,关于竹子的转基因方面成功的报道却极少。而且还未见关于版纳甜龙竹(Dendrocalamus hamiltonii)转基因的报道。
发明内容
针对现有技术存在的问题,本发明的目的在于利用植物组织培养技术对版纳甜龙竹的成熟种胚进行愈伤组织诱导,经继代培养得到胚性愈伤组织,以所得到的胚性愈伤组织作为根癌农杆菌感染受体,通过选择培养基筛选获得抗性愈伤组织,经分化生根后获得再生植株,通过分子检测确定转基因版纳甜龙竹再生植株。以此提供一种版纳甜龙竹转基因体系的建立方法。
所述的版纳甜龙竹转基因体系的建立方法,其特征在于包括以下步骤:
1)愈伤组织的获得:选用版纳甜龙竹成熟种子的种胚为外植体,于愈伤组织诱导培养基中诱导培养,愈伤组织形成后,挑选淡黄色颗粒状的愈伤组织转移至增殖培养基中,每隔四周进行继代培养,继代3-4次,转化前3-4天挑选致密颗粒状的愈伤组织转移至新鲜的增殖培养基中进行预培养,将获得的版纳甜龙竹胚性愈伤组织作为转基因的受体;
2)农杆菌的培养:取农杆菌菌株EHA105,质粒pCAMBIA1301,该质粒含有CaMV 35S启动子的潮霉素磷酸转移酶基因HPT及葡糖苷酸酶基因GUS;挑选含有目的质粒的农杆菌,在含有50 mg/L卡那霉素和50 mg/L利福平的农杆菌培养基YEP固体平板上划线,在28℃下暗培养2±1d,挑取单菌落于2mL的含有50 mg/L卡那霉素和50 mg/L利福平的的YEP液体培养基中,28℃,220 rpm振摇至OD600值达到0.5±0.2时,将菌液于4℃,4000 rpm离心15 min,倒去上清,将菌体重悬于等体积的pH 7.0的含乙酰丁香酮30-40mg/L的MS液体培养基中用来侵染,并在每100 ml 的侵染液中加2-3滴吐温-20,室温静置半小时即可用于转化;
3)侵染及共培养:将经过预培养的版纳甜龙竹胚性愈伤组织于准备好的侵染液中振荡15±2min,取出胚性愈伤组织,放在含有无菌滤纸的培养皿中,并在无菌风下吹干表面水分,然后转到含有一层无菌滤纸的共培养基中于25±2℃下黑暗培养3d;
4)恢复培养:三天后将共培养的胚性愈伤组织取出,用含有300 mg/L头孢噻肟钠的无菌水冲洗5-6次,无菌风下吹干后干燥培养3d,然后转移到恢复培养基中,于25±2℃,暗培养7d;
5)筛选及分化培养:将经过恢复培养的胚性愈伤组织依次转入到筛选培养基Ⅰ、筛选培养基Ⅱ、筛选培养基Ⅲ中,每两周筛选一次,之后选择生长良好的抗性愈伤组织转移到分化培养基,在光强2400 lux,光周期16/8h,温度25 ± 2℃的条件下进行分化培养;
6)生根培养:当分化培养出的再生植株长至4-6cm时移入生根培养基,在光强2400lux,光周期16/8h,温度25±2℃的条件下进行生根培养,获得再生小植株;
7)植株的分子鉴定:用PCR方法对上述获得的再生小植株进行检测,确定外源基因已经整合到版纳甜龙竹基因组DNA中,确定转化小植株。
所述的版纳甜龙竹转基因体系的建立方法,其特征在于所述的步骤1)中愈伤组织诱导培养基为:MS+2,4-二氯苯氧乙酸3-5mg/L+6-苄基腺嘌呤0.5-1mg/L+水解酪蛋白500mg/L+脯氨酸500mg/L+谷氨酰胺500mg/L +蔗糖30 g/L+ Type A agar 8 g/L,pH5.7;
所述的增殖培养基为:MS+2,4-二氯苯氧乙酸0.1-0.3mg/L+6-苄基腺嘌呤0.5-1mg/L+水解酪蛋白500mg/L+脯氨酸500mg/L+谷氨酰胺500mg/L+蔗糖30g/L + Type A agar8 g/L,pH5.7。
所述的版纳甜龙竹转基因体系的建立方法,其特征在于所述的步骤3)中共培养基为:MS+2,4-二氯苯氧乙酸0.1-0.3mg/L+6-苄基腺嘌呤0.5-1mg/L+水解酪蛋白500mg/L+脯氨酸500mg/L+谷氨酰胺500mg/L+乙酰丁香酮30-40 mg/L+蔗糖30g/L + Type A agar 8 g/L,pH5.7。
所述的版纳甜龙竹转基因体系的建立方法,其特征在于所述的步骤4)中恢复培养基为:MS+2,4-二氯苯氧乙酸0.1-0.3mg/L+6-苄基腺嘌呤0.5-1mg/L+水解酪蛋白500mg/L+脯氨酸500mg/L+谷氨酰胺500mg/L+羧苄青霉素400-500 mg/L+头孢噻肟钠250-300 mg/L+蔗糖30g/L + Type A agar 8 g/L,pH5.7。
所述的版纳甜龙竹转基因体系的建立方法,其特征在于所述的步骤5)中筛选培养基Ⅰ为:MS+2,4-二氯苯氧乙酸0.1-0.3mg/L+6-苄基腺嘌呤0.5-1mg/L+水解酪蛋白500mg/L+脯氨酸500mg/L+谷氨酰胺500mg/L+潮霉素25-30mg/L+羧苄青霉素400-500mg/L+头孢噻肟钠250-300mg/L+蔗糖30g/L + Type A agar 8 g/L,pH5.7;
筛选培养基Ⅱ为:MS+2,4-二氯苯氧乙酸0.1-0.3mg/L+6-苄基腺嘌呤0.5-1mg/L+水解酪蛋白500mg/L+脯氨酸500mg/L+谷氨酰胺500mg/L+潮霉素30-40mg/L+羧苄青霉素250-300mg/L +头孢噻肟钠250-300mg/L+蔗糖30g/L + Type A agar 8 g/L,pH5.7;
筛选培养基Ⅲ为:MS+2,4-二氯苯氧乙酸0.1-0.3mg/L+6-苄基腺嘌呤0.5-1mg/L+水解酪蛋白500mg/L+脯氨酸500mg/L+谷氨酰胺500mg/L+潮霉素40-50mg/L+羧苄青霉素200-250mg/L +头孢噻肟钠250-300mg/L+蔗糖30g/L + Type A agar 8 g/L,pH5.7;
分化培养基为:MS+6-苄基腺嘌呤1-2mg/L+萘乙酸0.3-1mg/L+激动素0-1 mg/L+蔗糖30g/L + 植物凝胶3g/L,pH5.7。
所述的版纳甜龙竹转基因体系的建立方法,其特征在于所述的步骤6)中生根培养基为:1/2MS+吲哚丁酸3-5 mg/L+植物凝胶3g/L,pH5.7。
本发明的有益效果是:本发明以版纳甜龙竹愈伤组织为受体,通过农杆菌介导成功获得10株抗性再生植株,转化率达到35.7%,对其进行PCR分子检测及其电泳产物测序,结果证实潮霉素磷酸转移酶基因已转入竹子的基因组中。本发明转化率高,体系稳定,实施步骤简单易行,效果显著,对其他丛生竹种具有一定的通用性,为竹子基因工程育种打下了良好的基础。
附图说明
图1为本发明的农杆菌感染前愈伤组织状态图;
图2为本发明的农杆菌和胚性愈伤组织共培养状态图;
图3为本发明的愈伤组织在恢复培养基中的状态图;
图4为本发明的愈伤组织在筛选培养基Ⅰ中的状态图;
图5为本发明的愈伤组织在筛选培养基Ⅱ中的状态图;
图6为本发明的愈伤组织在筛选培养基Ⅲ中的状态图;
图7为本发明的愈伤组织表面出现绿点状态图;
图8为本发明的愈伤组织分化出芽体状态图;
图9为本发明的转基因植株;
图10为本发明的转基因植株的生根状态图;
图11为本发明的转基因植株PCR检测结果;
图中,M:DL2000 DNA Marker;CK:未转化植株;H2O:以水替代DNA模板进行扩增;未标记部分:转化植株。
具体实施方式
以下结合附图,对依据本发明提供的具体实施步骤详述如下:
实施例1:一种版纳甜龙竹转基因体系建立的方法
1)愈伤组织的获得:选用成熟的版纳甜龙竹种子,剥去外壳于自来水处冲洗12 h,用质量比浓度为2.5±0.1%的次氯酸钠真空抽滤25分钟,无菌水冲洗5-6次,在超净工作台上剥离种胚,接种于愈伤组织诱导培养基中,愈伤组织诱导培养基为:基本培养基MS(Murashige and Skoog),添加外源激素2,4-D 即2,4- 二氯苯氧乙酸和6-BA 即6- 苄基腺嘌呤,2,4-D 浓度为3-5mg/L,6-BA 浓度为0.5-1 mg/L,再添加500 mg/L 的CH 即水解酪蛋白、500 mg/L 的Pro 即脯氨酸和500 mg/L 的Gln 即谷氨酰胺,再添加30g/L的sucrose即蔗糖和8g/L的Type A agar(琼脂 ),调节pH 5.7,在25±2℃温度中暗培养,诱导培养30±2d,愈伤组织形成,之后挑选出淡黄色颗粒状的愈伤组织转移至增殖培养基中,增殖培养基中2,4-D浓度为0.1-0.3mg/L,其余条件同诱导培养基,每隔4周更换一次新鲜培养基,继代3-4次;转化前3-4天挑选致密颗粒状的愈伤组织转移至新鲜的增殖培养基中预培养,见图1,获得的胚性愈伤组织用来进行转基因实验。
2)农杆菌的培养:试验所用的农杆菌菌株为EHA105,质粒为pCAMBIA1301,带有以含有CaMV 35S启动子的潮霉素磷酸转移酶基因HPT及葡糖苷酸酶基因GUS;将含有目的质粒的农杆菌划在含50mg/L卡那霉素(Kn)和50 mg/L利福平(Rif)的YEP固体培养基平板上,28℃暗培养2±1d,然后挑取一单菌落放入2ml的含50mg/LKn和50mg/L Rif的YEP液体培养基中,28℃,220rpm振摇24h后将菌液放入100ml的YEP液体培养基中,28℃,220rpm振摇至OD600值达到0.5±0.2时,将菌液于4℃,4000rpm离心15min,倒去上清,将菌体重悬于等体积的pH7.0含乙酰丁香酮(AS)30-40mg/L的MS液体培养基中用来侵染,并在每100ml的侵染液中加2-3滴吐温-20,室温静至半小时即可用于转化。
3)侵染及共培养:将培养好的愈伤组织浸泡在准备好的侵染液中,不断摇动,15±2min后将愈伤组织取出,放在含有无菌滤纸的培养皿中,并在无菌风下吹干表面水分,然后转到含有一层无菌滤纸的共培养基中培养,见图2,共培养基的配方为:增殖培养基+ AS30-40mg/L,25±2℃,黑暗中共培养3d。
4)恢复培养:三天后将共培养的愈伤组织取出,用含有300 mg/L头孢噻肟钠(Cef)的无菌水冲洗5-6次,无菌风下吹干后干燥培养3d,然后转移到恢复培养基中进行恢复培养,见图3,恢复培养基为:增殖培养基+羧苄青霉素(Cn)400-500mg/L +头孢噻肟钠(Cef)250-300mg/L,25±2℃,暗培养7d。
5)筛选及分化培养:将经过恢复培养的愈伤组织依次转入到筛选培养基中,在每种筛选培养基中各培养两周,筛选培养基分别为:筛选培养基Ⅰ、筛选培养基Ⅱ、筛选培养基Ⅲ,其中筛选培养基Ⅰ为:增殖培养基+潮霉素(Hyg)25-30mg/L+ Cn400-500mg/L+ Cef 250-300mg/L,pH5.7,在筛选培养基Ⅰ中培养两周后,发现小块的愈伤组织易褐化死亡,大块的愈伤组织偶有褐化,大部分生长良好,见图4。之后放入筛选培养基Ⅱ中进行培养两周,筛选培养基Ⅱ为:增殖培养基+Hyg 30-40mg/L+Cn250-300mg/L+Cef250-300mg/L,pH5.7,在筛选培养基Ⅱ中经过两周培养,发现大块的愈伤组织有些中度褐化,有些生长良好,还有的愈伤组织一部分褐化死亡,一部分生长良好,见图5。把生长良好和还没有完全褐化死亡的愈伤组织转入筛选培养基Ⅲ中继续筛选两周,见图6,筛选培养基Ⅲ为:增殖培养基+Hyg40-50mg/L+ Cn200-250mg/L+Cef250-300 mg/L, pH5.7。每两周筛选一次,之后选择生长良好的抗性愈伤组织转移到分化培养基中进行分化培养,分化培养基的配方为:MS+ 6-BA1-2mg/L+萘乙酸(NAA)0.3-1mg/L+激动素(KT)0-1 mg/L+sucrose30 g/L +gelrite3g/L,pH5.7。光强2400lux,光周期16/8h,温度25±2℃。20天左右可以看出分化出的绿点,见图7;一个月左右陆续有愈伤组织分化出芽,见图8;50天左右可以看到小苗,见图9。
6)生根培养:当分化培养出的再生植株长至4-6cm时移入生根培养基中进行生根培养,基本培养基为1/2 MS即大量元素取其标准量的1/2,添加外源激素3-5 mg·L-1的IBA即吲哚丁酸,再添加30 g/L sucrose 和3g/L gelrite。光强2400lux,光周期16/8h,温度25±2℃。4天后即长有约3-5cm的细小的根,一个月后根变长变粗壮,小苗生长良好,见图10。
7)植株的分子鉴定:提取转基因植株的DNA,进行PCR检测,根据潮霉素磷酸转移酶基因序列设计抗性苗的PCR检测的两个引物,分别为引物1:5’-GATGTTGGCGACCTCGTATT–3’(如SEQ ID NO:1所示),引物2: 5’ -TCGTTATGTTTATC GGCACTTT–3’(如SEQ ID NO:2所示)。PCR程序为:94℃预变性5 min;然后94℃变性30s,56℃退火30s,72℃延伸50s,循环30-32次;72℃延伸7min;结果如图11所示,10株再生植株的电泳结果均表现为阳性,取其电泳产物测序表明潮霉素磷酸转移酶基因已导入版纳甜龙竹的基因组中。
SEQUENCE LISTING
<110> 浙江农林大学
<120> 版纳甜龙竹转基因体系的建立方法
<130> 11
<160> 2
<170> PatentIn version 3.3
<210> 1
<211> 20
<212> DNA
<213> 人工合成
<400> 1
gatgttggcg acctcgtatt 20
<210> 2
<211> 22
<212> DNA
<213> 人工合成
<400> 2
tcgttatgtt tatcggcact tt 22

Claims (1)

1.版纳甜龙竹转基因体系的建立方法,其特征在于包括以下步骤:
1)愈伤组织的获得:选用版纳甜龙竹成熟种子的种胚为外植体,于愈伤组织诱导培养基中诱导培养,愈伤组织形成后,挑选淡黄色颗粒状的愈伤组织转移至增殖培养基中,每隔四周进行继代培养,继代3-4次,转化前3-4天挑选致密颗粒状的愈伤组织转移至新鲜的增殖培养基中进行预培养,将获得的版纳甜龙竹胚性愈伤组织作为转基因的受体;
所述的愈伤组织诱导培养基为:MS+2,4-二氯苯氧乙酸3-5mg/L+6-苄基腺嘌呤0.5-1mg/L+水解酪蛋白500mg/L+脯氨酸500mg/L+谷氨酰胺500mg/L +蔗糖30 g/L+ Type Aagar 8 g/L,pH5.7;
所述的增殖培养基为:MS+2,4-二氯苯氧乙酸0.1-0.3mg/L+6-苄基腺嘌呤0.5-1mg/L+水解酪蛋白500mg/L+脯氨酸500mg/L+谷氨酰胺500mg/L+蔗糖30g/L + Type A agar 8 g/L,pH5.7
2)农杆菌的培养:取农杆菌菌株EHA105,质粒pCAMBIA1301,该质粒含有CaMV 35S启动子的潮霉素磷酸转移酶基因HPT及葡糖苷酸酶基因GUS;挑选含有目的质粒的农杆菌,在含有50 mg/L卡那霉素和50 mg/L利福平的农杆菌培养基YEP固体平板上划线,在28℃下暗培养2±1d,挑取单菌落于2mL的含有50 mg/L卡那霉素和50 mg/L利福平的的YEP液体培养基中,28℃,220 rpm振摇至OD600值达到0.5±0.2时,将菌液于4℃,4000 rpm离心15 min,倒去上清,将菌体重悬于等体积的pH 7.0的含乙酰丁香酮30-40mg/L的MS液体培养基中用来侵染,并在每100 ml 的侵染液中加2-3滴吐温-20,室温静置半小时即可用于转化;
3)侵染及共培养:将经过预培养的版纳甜龙竹胚性愈伤组织于准备好的侵染液中振荡15±2min,取出胚性愈伤组织,放在含有无菌滤纸的培养皿中,并在无菌风下吹干表面水分,然后转到含有一层无菌滤纸的共培养基中于25±2℃下黑暗培养3d,所述的共培养基为:MS+2,4-二氯苯氧乙酸0.1-0.3mg/L+6-苄基腺嘌呤0.5-1mg/L+水解酪蛋白500mg/L+脯氨酸500mg/L+谷氨酰胺500mg/L+乙酰丁香酮30-40 mg/L+蔗糖30g/L + Type A agar 8 g/L,pH5.7;
4)恢复培养:三天后将共培养的胚性愈伤组织取出,用含有300 mg/L头孢噻肟钠的无菌水冲洗5-6次,无菌风下吹干后干燥培养3d,然后转移到恢复培养基中,于25±2℃,暗培养7d,所述的恢复培养基为:MS+2,4-二氯苯氧乙酸0.1-0.3mg/L+6-苄基腺嘌呤0.5-1mg/L+水解酪蛋白500mg/L+脯氨酸500mg/L+谷氨酰胺500mg/L+羧苄青霉素400-500 mg/L+头孢噻肟钠250-300 mg/L+蔗糖30g/L + Type A agar 8 g/L,pH5.7;
5)筛选及分化培养:将经过恢复培养的胚性愈伤组织依次转入到筛选培养基Ⅰ、筛选培养基Ⅱ、筛选培养基Ⅲ中,每两周筛选一次,之后选择生长良好的抗性愈伤组织转移到分化培养基,在光强2400 lux,光周期16/8h,温度25 ± 2℃的条件下进行分化培养;
筛选培养基Ⅰ为:MS+2,4-二氯苯氧乙酸0.1-0.3mg/L+6-苄基腺嘌呤0.5-1mg/L+水解酪蛋白500mg/L+脯氨酸500mg/L+谷氨酰胺500mg/L+潮霉素25-30mg/L+羧苄青霉素400-500mg/L+头孢噻肟钠250-300mg/L+蔗糖30g/L + Type A agar 8 g/L,pH5.7;
筛选培养基Ⅱ为:MS+2,4-二氯苯氧乙酸0.1-0.3mg/L+6-苄基腺嘌呤0.5-1mg/L+水解酪蛋白500mg/L+脯氨酸500mg/L+谷氨酰胺500mg/L+潮霉素30-40mg/L+羧苄青霉素250-300mg/L +头孢噻肟钠250-300mg/L+蔗糖30g/L + Type A agar 8 g/L,pH5.7;
筛选培养基Ⅲ为:MS+2,4-二氯苯氧乙酸0.1-0.3mg/L+6-苄基腺嘌呤0.5-1mg/L+水解酪蛋白500mg/L+脯氨酸500mg/L+谷氨酰胺500mg/L+潮霉素40-50mg/L+羧苄青霉素200-250mg/L +头孢噻肟钠250-300mg/L+蔗糖30g/L + Type A agar 8 g/L,pH5.7;
分化培养基为:MS+6-苄基腺嘌呤1-2mg/L+萘乙酸0.3-1mg/L+激动素0-1 mg/L+蔗糖30g/L + 植物凝胶3g/L,pH5.7;
6)生根培养:当分化培养出的再生植株长至4-6cm时移入生根培养基,在光强2400lux,光周期16/8h,温度25±2℃的条件下进行生根培养,获得再生小植株,所述的生根培养基为:1/2MS+吲哚丁酸3-5 mg/L+植物凝胶3g/L+蔗糖30g/L,pH5.7;
7)植株的分子鉴定:用PCR方法对上述获得的再生小植株进行检测,确定外源基因已经整合到版纳甜龙竹基因组DNA中,确定转化小植株。
CN201510961204.6A 2015-12-21 2015-12-21 版纳甜龙竹转基因体系的建立方法 Active CN105441479B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510961204.6A CN105441479B (zh) 2015-12-21 2015-12-21 版纳甜龙竹转基因体系的建立方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510961204.6A CN105441479B (zh) 2015-12-21 2015-12-21 版纳甜龙竹转基因体系的建立方法

Publications (2)

Publication Number Publication Date
CN105441479A CN105441479A (zh) 2016-03-30
CN105441479B true CN105441479B (zh) 2021-05-04

Family

ID=55552109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510961204.6A Active CN105441479B (zh) 2015-12-21 2015-12-21 版纳甜龙竹转基因体系的建立方法

Country Status (1)

Country Link
CN (1) CN105441479B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813096B (zh) * 2021-01-08 2021-10-15 中国林业科学研究院亚热带林业研究所 一种毛竹幼胚离体再生及遗传转化的方法
CN113755522A (zh) * 2021-08-20 2021-12-07 浙江农林大学 马来甜龙竹转基因体系的建立方法
CN115369125B (zh) * 2022-09-28 2024-02-09 西藏自治区农牧科学院农业研究所 一种青稞遗传转化体系及转基因青稞培育方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012020450A2 (pt) * 2010-02-15 2015-09-15 Booshoot Llc meios, kits, sistemas e métodos para a micropropagação de bambu.
CN103782909B (zh) * 2014-01-28 2015-07-22 浙江农林大学 建立版纳甜龙竹芽尖高效再生体系的方法

Also Published As

Publication number Publication date
CN105441479A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
Jin et al. Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens
CN102154364A (zh) 一种根癌农杆菌介导的甘蔗遗传转化方法
Kiyokawa et al. Genetic transformation of Begonia tuberhybrida by Ri rol genes
De Benedetti et al. Agrobacterium-mediated transformation with rol genes of Lilium longiflorum Thunb.
CN105441479B (zh) 版纳甜龙竹转基因体系的建立方法
CN104450711A (zh) OsmiR156f基因在增加水稻有效分蘖中的应用
CN113278650A (zh) 一种农杆菌侵染银腺杨愈伤组织的遗传转化方法
Rachmawati et al. Studies on callus induction, plant regeneration and transformation of Javanica rice cultivars
CN110577966A (zh) 一种农杆菌介导的沟叶结缕草遗传转化方法
CN114058640A (zh) 一种高效的农杆菌介导甘蔗遗传转化方法
Duan et al. High efficient transgenic plant regeneration from embryogenic calluses of Citrus sinensis
Mohan et al. Plant regeneration from decapitated mature embryo axis and Agrobacterium mediated genetic transformation of pigeonpea
CN110982837B (zh) 一种辣椒遗传转化体系的制备方法
US7345218B1 (en) Agrobacterium-mediated transformation of cotton with novel explants
Yang et al. Factors affecting Agrobacterium-mediated genetic transformation of embryogenic callus of Parthenocissus tricuspidata Planch
CN108588002B (zh) 获得谷子用于遗传转化的胚性愈伤组织和遗传转化的方法
US7026529B2 (en) Methods for Agrobacterium-mediated transformation of dandelion
Yang et al. Establishment of an Agrobacterium-mediated transformation system for Fortunella crassifolia
CN109042297B (zh) 一种玉米自交系sl1303幼胚转化方法
CN109371060B (zh) 一种桃叶卫矛快速转基因的方法
US20040210958A1 (en) A Novel Culture Method for Corn Transformation
Islam et al. Agrobacterium mediated genetic transformation and regeneration in elite rice (Oryza sativa L.) cultivar BRRI dhan56
AU729635B2 (en) A method for producing the transformants of coffee plants and transgenic coffee plants
NL2035132B1 (en) GENETIC TRANSFORMATION METHOD OF E. UROPHYLLA x E. GRANDIS DH3213
CN113755519B (zh) 一种多抗筛选的杨树多基因遗传转化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220601

Address after: Room a-6614, building 3, No. 20, Yong'an Road, Shilong Economic Development Zone, Mentougou District, Beijing 102300

Patentee after: Zoomlion Tiansheng (Beijing) Biotechnology Co.,Ltd.

Address before: No. 88, Ling'an City, Zhejiang, Hangzhou, Zhejiang

Patentee before: ZHEJIANG A & F University

TR01 Transfer of patent right