CN105440197B - 一种甜菊糖苷分离纯化的吸附树脂的制备方法及应用技术 - Google Patents
一种甜菊糖苷分离纯化的吸附树脂的制备方法及应用技术 Download PDFInfo
- Publication number
- CN105440197B CN105440197B CN201610012940.1A CN201610012940A CN105440197B CN 105440197 B CN105440197 B CN 105440197B CN 201610012940 A CN201610012940 A CN 201610012940A CN 105440197 B CN105440197 B CN 105440197B
- Authority
- CN
- China
- Prior art keywords
- steviol glycoside
- purified
- isolated
- polymeric adsorbent
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/06—Hydrocarbons
- C08F212/08—Styrene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/264—Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28095—Shape or type of pores, voids, channels, ducts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/34—Monomers containing two or more unsaturated aliphatic radicals
- C08F212/36—Divinylbenzene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
- C08J2325/04—Homopolymers or copolymers of styrene
- C08J2325/08—Copolymers of styrene
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Saccharide Compounds (AREA)
Abstract
本发明涉及树脂合成领域,尤其涉及一种甜菊糖苷分离纯化的吸附树脂的制备方法及应用技术。本发明要解决的技术问题是提供一种能够对甜菊糖苷特定组分进行选择性吸附的甜菊糖苷分离纯化的吸附树脂的制备方法及应用技术。一种甜菊糖苷分离纯化的吸附树脂的制备方法,其步骤为:将原料混合,加入引发剂和致孔剂,加到处于搅拌中的分散介质中,进行悬浮聚合反应,再固化反应得到大孔吸附树脂,即为甜菊糖苷分离纯化的吸附树脂。一种甜菊糖苷分离纯化的吸附树脂的应用技术,该应用技术利用上述方法制备出的大孔吸附树脂,通过层析柱吸附、乙醇洗脱、浓缩干燥,所制得的甜菊糖苷与普通甜菊糖苷相比,达到了产品甜度更高、口感更纯正、无不良余味的效果。
Description
技术领域
本发明涉及树脂合成领域,尤其涉及一种甜菊糖苷分离纯化的吸附树脂的制备方法及应用技术。
背景技术
甜菊糖苷是从菊科草本植物甜叶菊的叶片中提取出来的一种高甜度、低热能、味质好、安全无毒的新型天然甜味剂,可广泛应用于食品、饮料、医药、日化工业等行业。甜菊糖苷是多组分糖苷混合物,甜度和口感取决于它的糖苷组分及含量,这些不同的组分的口味均不同,能够面对不同的消费人群。在甜菊糖苷已知的九种组分中,甜菊苷(简称Stv)、瑞鲍迪苷A(简称RA)、瑞鲍迪苷C(简称RC)占绝大部分,而瑞鲍迪苷D(简称RD)含量相对较少,约1%,但是RD的甜度最高约为白砂糖的450倍,而且口感最好,不含任何不良余味,被业内人士誉为“甜菊糖苷中的黄金”,售价也是其他糖苷的3-5倍,是一种最为理想的天然甜味剂。
目前生产甜菊糖苷应用最广的是树脂工艺法,吸附树脂被大量地有于甜菊糖苷的分离纯化过程中。由于甜菊糖苷是多组分糖苷混合物,在目前已知的九种组分中,各组分的化学结构非常相似,物理化学性质也相似,同时,人们对于吸附树脂吸附甜菊糖苷的机理尤其是动态吸附甜菊糖苷过程的机理缺乏深刻的认识。所以,目前市场上可以对甜菊糖苷进行选择性吸附的树脂,尤其是对甜菊糖苷中某一种或几种组分进行选择性吸附的树脂种类很少,无法满足企业对甜菊糖苷的生产需求。
发明内容
(1)要解决的技术问题
本发明为了克服现有方式下合成的吸附树脂对甜菊糖苷特定组分的吸附选择性差的缺点,本发明要解决的技术问题是提供一种能够对甜菊糖苷特定组分进行选择性吸附的甜菊糖苷分离纯化的吸附树脂的制备方法及应用技术。
(2)技术方案
为了解决上述技术问题,本发明提供了这样一种甜菊糖苷分离纯化的吸附树脂的制备方法,其步骤为:按重量百分比将苯乙烯类单体10-40%、二乙烯基苯单体5-38%、乙酸乙烯酯单体3-25%、丙烯酸类单体5-15%进行混合,上述四种单体的重量百分比之和为100%,得到油相混合物,向油相混合物中加入引发剂,用量为单体总重的0.5-2%,同时再加入致孔剂,用量为单体总重的45-200%,搅拌使引发剂和致孔剂充分溶解,将混合物加到处于搅拌状态下的分散介质中,分散介质的用量为加了引发剂和致孔剂的油相混合物体积的2-4倍,搅拌速度为120-250rpm,当混合物在分散介质中形成均匀液滴后,将混合物体系温度升高至70-85℃,进行悬浮聚合反应,反应时间为15-20小时,再将温度升高至80-95℃进行固化反应10-15小时,得到大孔吸附树脂。
优选地,丙烯酸类单体用丙烯酸酯类单体替代。
优选地,所述引发剂采用有机过氧化物。
优选地,所述有机过氧化物采用过氧化苯甲酰。
优选地,所述致孔剂采用芳烃类或烷烃类或高级醇类或酯类。
优选地,所述芳烃类采用甲苯。
优选地,所述烷烃类采用200#汽油。
优选地,所述致孔剂为多种混合使用。
优选地,所述分散介质采用水。
按重量百分比将苯乙烯类单体10-40%、二乙烯基苯单体5-38%、乙酸乙烯酯单体3-25%、丙烯酸类单体5-15%进行混合,上述四种单体的重量百分比之和为100%,得到油相混合物,向油相混合物中加入引发剂,用量为单体总重的0.5-2%,同时再加入致孔剂,用量为单体总重的45-200%;前两处“单体总重”是指油相混合物的总重量。
一种甜菊糖苷分离纯化的吸附树脂的应用技术,该应用技术利用上述的一种甜菊糖苷分离纯化的吸附树脂的制备方法制备出的大孔吸附树脂,其步骤为:首先将大孔吸附树脂装入层析柱,将浓度为1-300g/L的甜菊糖苷溶液通过大孔吸附树脂柱进行吸附,至饱和度为50%-100%,再用浓度为20%-60%的乙醇进行梯度洗脱,乙醇的用量为大孔吸附树脂体积的0.5-5倍,收集洗脱液,将其浓缩干燥。
(3)有益效果
本发明所述的一种甜菊糖苷分离纯化的吸附树脂的制备方法制备出的大孔吸附树脂采用调节孔径分布,孔径大小及增强树脂极性的方法,增大了所述大孔吸附树脂的极性,有利于甜菊糖苷中各极性相似的组分分离,同时所述大孔吸附树脂的孔径和孔容大小适宜甜菊糖苷不同分子量大小的组分分离,本发明所述的一种甜菊糖苷分离纯化的吸附树脂的应用技术制备所得的甜菊糖苷与普通甜菊糖苷相比,达到了产品甜度更高、口感更纯正、无不良余味的效果。
附图说明
图1为实施例4中甜菊糖苷溶液的高效液相色谱分析图谱。
图2为实施例4中经大孔吸附树脂分离纯化的甜菊糖苷产品的高效液相色谱分析图谱。
图3为实施例4中甜菊糖苷样品的高效液相色谱分析检测结果。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
实施例1
一种甜菊糖苷分离纯化的吸附树脂的制备方法,其步骤如下:
将300g苯乙烯、300g二乙烯基苯、125g乙酸乙烯酯、90g丙烯酸进行混合,得油相混合物,加入到装有温度计、冷凝回流装置的反应器中,向油相混合物中加入10g过氧化苯甲酰和600g200#汽油,搅拌使过氧化苯甲酰和200#汽油充分溶解,再将油相混合物加到处于搅拌中的水相中,搅拌速度为220rpm,使油相混合物在水相中形成均匀液滴后,将混合物体系温度升高到82℃,进行悬浮聚合反应,反应时间为16h,再将温度升高到90℃进行固化反应12h,得到大孔吸附树脂TZ-1。
实施例2
一种甜菊糖苷分离纯化的吸附树脂的制备方法,其步骤如下:
将200g苯乙烯、160g二乙烯基苯、85g乙酸乙烯酯、60g丙烯酸进行混合,得油相混合物,加入到装有温度计、冷凝回流装置的反应器中,向油相混合物中加入7g过氧化苯甲酰和400g200#汽油,搅拌使过氧化苯甲酰和200#汽油充分溶解,再将油相混合物加到处于搅拌中的水相中,搅拌速度为180rpm,使油相混合物在水相中形成均匀液滴后,将混合物体系温度升高到85℃,进行悬浮聚合反应,反应时间为16h,再将温度升高到92℃进行固化反应12h,得到大孔吸附树脂TZ-2。
实施例3
一种甜菊糖苷分离纯化的吸附树脂的应用技术,该应用技术利用上述的一种甜菊糖苷分离纯化的吸附树脂的制备方法制备出的大孔吸附树脂,其步骤为:取上述大孔吸附树脂TZ-1体积为1L装入层析柱中,将甜菊糖苷配制成浓度为20g/L的溶液,该甜菊糖苷经高效液相色谱分析检测总含苷量为56.33%,其中RD含量为0.93%,将料液通过层析柱吸附至饱和度为60%,用2L浓度为30%的乙醇洗脱,收集洗脱液,将洗脱液浓缩干燥,得到甜菊糖苷产品,经高效液相色谱分析检测甜菊糖苷产品中的RD含量为23.48%。
实施例4
一种甜菊糖苷分离纯化的吸附树脂的应用技术,该应用技术利用上述的一种甜菊糖苷分离纯化的吸附树脂的制备方法制备出的大孔吸附树脂,其步骤为:取上述大孔吸附树脂TZ-2体积为1L装入层析柱中,将甜菊糖苷配制成浓度为30g/L的溶液,该甜菊糖苷经高效液相色谱分析检测总含苷量为55.81%,其中RD含量为1.51%,如图1所示为该甜菊糖苷溶液的高效液相色谱分析图谱,将料液通过层析柱吸附至饱和度为80%,用2L浓度为35%的乙醇洗脱,收集洗脱液,将洗脱液浓缩干燥,得到甜菊糖苷产品,经高效液相色谱分析检测甜菊糖苷产品中的RD含量为28.53%,如图2所示为经大孔吸附树脂分离纯化的甜菊糖苷产品的高效液相色谱分析图谱,如图3所示为甜菊糖苷样品的高效液相色谱分析检测结果。
以上所述实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
1.一种甜菊糖苷分离纯化的吸附树脂的制备方法,其特征在于,其步骤为:按重量百分比将苯乙烯类单体10-40%、二乙烯基苯单体5-38%、乙酸乙烯酯单体3-25%、丙烯酸类单体5-15%进行混合,上述四种单体的重量百分比之和为100%,得到油相混合物,向油相混合物中加入引发剂,用量为单体总重的0.5-2%,同时再加入致孔剂,用量为单体总重的45-200%,搅拌使引发剂和致孔剂充分溶解,将混合物加到处于搅拌状态下的分散介质中,分散介质的用量为加了引发剂和致孔剂的油相混合物体积的2-4倍,搅拌速度为120-250rpm,当混合物在分散介质中形成均匀液滴后,将混合物体系温度升高至70-85℃,进行悬浮聚合反应,反应时间为15-20小时,再将温度升高至80-95℃进行固化反应10-15小时,得到大孔吸附树脂。
2.根据权利要求1所述的一种甜菊糖苷分离纯化的吸附树脂的制备方法,其特征在于,丙烯酸类单体用丙烯酸酯类单体替代。
3.根据权利要求1所述的一种甜菊糖苷分离纯化的吸附树脂的制备方法,其特征在于,所述引发剂采用有机过氧化物。
4.根据权利要求3所述的一种甜菊糖苷分离纯化的吸附树脂的制备方法,其特征在于,所述有机过氧化物采用过氧化苯甲酰。
5.根据权利要求1所述的一种甜菊糖苷分离纯化的吸附树脂的制备方法,其特征在于,所述致孔剂采用芳烃类或烷烃类或高级醇类或酯类。
6.根据权利要求5所述的一种甜菊糖苷分离纯化的吸附树脂的制备方法,其特征在于,所述芳烃类采用甲苯。
7.根据权利要求5所述的一种甜菊糖苷分离纯化的吸附树脂的制备方法,其特征在于,所述烷烃类采用200#汽油。
8.根据权利要求5所述的一种甜菊糖苷分离纯化的吸附树脂的制备方法,其特征在于,所述致孔剂为多种混合使用。
9.根据权利要求1所述的一种甜菊糖苷分离纯化的吸附树脂的制备方法,其特征在于,所述分散介质采用水。
10.一种甜菊糖苷分离纯化的吸附树脂的应用,其特征在于,该应用利用权利要求1-9任意一项所述的一种甜菊糖苷分离纯化的吸附树脂的制备方法制备出的大孔吸附树脂,其步骤为:首先将大孔吸附树脂装入层析柱,将浓度为1-300g/L的甜菊糖苷溶液通过大孔吸附树脂柱进行吸附,至饱和度为50%-100%,再用浓度为20%-60%的乙醇进行梯度洗脱,乙醇的用量为大孔吸附树脂体积的0.5-5倍,收集洗脱液,将其浓缩干燥。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610012940.1A CN105440197B (zh) | 2016-01-08 | 2016-01-08 | 一种甜菊糖苷分离纯化的吸附树脂的制备方法及应用技术 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610012940.1A CN105440197B (zh) | 2016-01-08 | 2016-01-08 | 一种甜菊糖苷分离纯化的吸附树脂的制备方法及应用技术 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105440197A CN105440197A (zh) | 2016-03-30 |
CN105440197B true CN105440197B (zh) | 2017-10-03 |
Family
ID=55550874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610012940.1A Active CN105440197B (zh) | 2016-01-08 | 2016-01-08 | 一种甜菊糖苷分离纯化的吸附树脂的制备方法及应用技术 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105440197B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110290867A (zh) * | 2017-02-22 | 2019-09-27 | 三菱化学株式会社 | 分离剂、该分离剂的应用及使用该分离剂的甜菊糖苷的分离方法以及使用该分离方法的甜菊糖苷的制造方法 |
EP3687296A4 (en) * | 2017-09-28 | 2021-07-28 | PureCircle USA Inc. | PROCESSES FOR THE PREPARATION OF STEVIOL GLYCOSIDES AND THEIR USES |
CN112341579B (zh) * | 2020-11-26 | 2023-07-25 | 蚌埠市华东生物科技有限公司 | 一种甜菊糖苷分离纯化用吸附树脂及其应用 |
CN112500538B (zh) * | 2020-11-26 | 2022-12-27 | 蚌埠市华东生物科技有限公司 | 一种甜菊糖苷ra分离纯化用分子印迹材料及其应用 |
CN118307721B (zh) * | 2024-05-31 | 2024-09-24 | 西安蓝深新材料科技股份有限公司 | 一种大孔吸附树脂及制备方法和在甜菊糖苷提取中的应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1192447A (zh) * | 1998-02-18 | 1998-09-09 | 南开大学 | 吸附树脂法从甜菊糖中富集、分离菜鲍迪甙a |
CN1281038A (zh) * | 1999-07-16 | 2001-01-24 | 中国科学院化工冶金研究所 | 以多元共聚物为骨架的多孔型微珠状固定化酶载体及制法 |
CN101088598A (zh) * | 2006-06-12 | 2007-12-19 | 天津协成昌国际贸易有限公司 | 一种吸附材料的制备方法及产品 |
CN101703922A (zh) * | 2009-11-10 | 2010-05-12 | 东台润洋甜叶菊高科有限公司 | 用大孔树脂gd-08富集甜菊糖ra的方法 |
CN102212177A (zh) * | 2011-04-07 | 2011-10-12 | 天津南开和成科技有限公司 | 表面亲水性的多孔树脂 |
CN102603984A (zh) * | 2012-01-16 | 2012-07-25 | 南开大学 | 一种高比表面羟基树脂的合成及其提取甜菊苷的方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104684414A (zh) * | 2011-12-19 | 2015-06-03 | 可口可乐公司 | 纯化甜叶菊醇糖苷的方法和其用途 |
-
2016
- 2016-01-08 CN CN201610012940.1A patent/CN105440197B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1192447A (zh) * | 1998-02-18 | 1998-09-09 | 南开大学 | 吸附树脂法从甜菊糖中富集、分离菜鲍迪甙a |
CN1281038A (zh) * | 1999-07-16 | 2001-01-24 | 中国科学院化工冶金研究所 | 以多元共聚物为骨架的多孔型微珠状固定化酶载体及制法 |
CN101088598A (zh) * | 2006-06-12 | 2007-12-19 | 天津协成昌国际贸易有限公司 | 一种吸附材料的制备方法及产品 |
CN101703922A (zh) * | 2009-11-10 | 2010-05-12 | 东台润洋甜叶菊高科有限公司 | 用大孔树脂gd-08富集甜菊糖ra的方法 |
CN102212177A (zh) * | 2011-04-07 | 2011-10-12 | 天津南开和成科技有限公司 | 表面亲水性的多孔树脂 |
CN102603984A (zh) * | 2012-01-16 | 2012-07-25 | 南开大学 | 一种高比表面羟基树脂的合成及其提取甜菊苷的方法 |
Non-Patent Citations (2)
Title |
---|
Adsorption characteristics of rebaudioside A and stevioside on cross-linked poly(styrene-co-divinylbenzene) macroporous resins functionalized with chloromethyl, amino and phenylboronic acid groups;Fayin Ye, et al.;《Food Chemistry》;20140311;第159卷(第15期);第38-46页 * |
甜菊的化学成分及开发利用研究;赵瑜藏, 张运申;《安阳师范学院学报》;20000630(第2期);第40-42页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105440197A (zh) | 2016-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105440197B (zh) | 一种甜菊糖苷分离纯化的吸附树脂的制备方法及应用技术 | |
Liu et al. | Preparative separation and purification of rebaudioside A from steviol glycosides using mixed-mode macroporous adsorption resins | |
US5068419A (en) | Separation of an organic acid from a fermentation broth with an anionic polymeric adsorbent | |
US4851573A (en) | Separation of citric acid from fermentation broth with a weakly basic anionic exchange resin adsorbent | |
US5068418A (en) | Separation of lactic acid from fermentation broth with an anionic polymeric absorbent | |
Wan et al. | Novel dual functional monomers based molecularly imprinted polymers for selective extraction of myricetin from herbal medicines | |
CA1133880A (en) | Technique to reduce the zeolite molecular sieve solubility in an aqueous system | |
JPH06192283A (ja) | 純粋なレバウディオサイドaを生産する方法 | |
EP2212004B1 (en) | Method to recover bioactive compounds | |
US20070232831A1 (en) | Separation of Citric Acid from Gluconic Acid in Fermentation Broth using a Weakly or Strongly Basic Anionic Exchange Resin Adsorbent | |
US4837315A (en) | Process for separating glucose and mannose with CA/NH4 - exchanged ion exchange resins | |
US9012687B2 (en) | Process for isolating kukoamine | |
AU2011238746A1 (en) | Adsorption purification of caramel | |
Liu et al. | Purification of the mother liquor sugar from industrial stevia production through one-step adsorption by non-polar macroporous resin | |
Zhang et al. | Adsorption and recognition characteristics of surface molecularly imprinted polymethacrylic acid/silica toward genistein | |
US4851574A (en) | Separation of citric acid from fermentation broth with a strongly basic anionic exchange resin adsorbent | |
CN104098734B (zh) | 苯硼酸基团修饰大孔树脂的制备方法及其在莱鲍迪苷a和甜菊苷分离中的应用 | |
Oliveira et al. | Determination of selected herbicides in sugarcane-derived foods by graphene-oxide based disposable pipette extraction followed by liquid chromatography-tandem mass spectrometry | |
CN100586965C (zh) | 苯二氮类药物分子印迹固相萃取剂的制备方法 | |
CN108864222A (zh) | 一种高纯度甜菊糖苷rd和rm的制备方法 | |
CN101703922A (zh) | 用大孔树脂gd-08富集甜菊糖ra的方法 | |
WO2008150298A1 (en) | Separation of citric acid from gluconic acid in fermentation broth using a weakly or strongly basic anionic exchange resin adsorbent | |
US4880919A (en) | Process for separating arabinose from a mixture of aldoses | |
CN107692230A (zh) | 含白藜芦醇和木犀草素的保健品及其制备方法和应用 | |
Guo et al. | Purification and activity of antioxidation and resisting exercise fatigue of flavonoids from peel of passion fruit. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |