CN105431081A - 标识健康基质与不健康基质以从多极引线起搏 - Google Patents

标识健康基质与不健康基质以从多极引线起搏 Download PDF

Info

Publication number
CN105431081A
CN105431081A CN201480041702.2A CN201480041702A CN105431081A CN 105431081 A CN105431081 A CN 105431081A CN 201480041702 A CN201480041702 A CN 201480041702A CN 105431081 A CN105431081 A CN 105431081A
Authority
CN
China
Prior art keywords
electrode
egm
scar tissue
pole
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480041702.2A
Other languages
English (en)
Inventor
S·戈什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Priority to CN202110265543.6A priority Critical patent/CN113057643A/zh
Publication of CN105431081A publication Critical patent/CN105431081A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3686Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions configured for selecting the electrode configuration on a lead
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/282Holders for multiple electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/33Heart-related electrical modalities, e.g. electrocardiography [ECG] specially adapted for cooperation with other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/367Electrophysiological study [EPS], e.g. electrical activation mapping or electro-anatomical mapping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3702Physiological parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3627Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3702Physiological parameters
    • A61N1/3704Circuits specially adapted therefor, e.g. for sensitivity control

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electrotherapy Devices (AREA)

Abstract

医疗设备系统执行用于通过植入的引线确定疤痕组织的存在的方法,该植入的引线具有用于心脏起搏和感测的电极。感测模块采用电极感测心脏活动以产生单极电描记图(EGM)波形。处理器接收单极EGM波形并提取表示电极处的心脏活动的两个或两个以上特征。基于指示疤痕组织的被提取的特征中的至少两个标识在第一电极的部位处的疤痕组织。

Description

标识健康基质与不健康基质以从多极引线起搏
技术领域
本公开一般涉及标识健康心脏基质与不健康心脏基质的存在,并且尤其涉及标识用于接收心脏起搏的基质的系统和方法。
背景
心肌缺血或心肌梗塞可在心肌基质中产生将对心脏起搏反应迟钝的疤痕组织的区域。如果具有心肌疤痕组织的患者需要心脏起搏,则在定位起搏电极时优选避免疤痕组织的位置。然而,在不执行成像程序(诸如,磁共振成像(MRI))的情况下疤痕组织的位置可能是未知的,这些成像程序可能是昂贵的,需要导管插入或造影剂,并且在某些地理区域可能不容易获得。
心脏再同步治疗(CRT)是用作对心脏衰竭患者的治疗的一种类型的心脏起搏治疗,其中一个或多个心脏腔室被电刺激(起搏)以恢复或改善心脏腔室同步。实现来自CRT的积极的临床益处取决于若干治疗控制参数,这些治疗控制参数包括起搏部位(多个)的选择和在右心室和/或左心室中递送的起搏脉冲的相对时序。例如,避免心肌疤痕组织的CRT起搏部位的选择对实现临床益处是重要的。需要在不需要昂贵的成像技术的情况下用于标识接受CRT或其他起搏治疗的患者中的潜在起搏部位处的心肌疤痕组织与健康心肌基质的系统和方法。
发明内容
一般而言,本公开涉及用于确定疤痕组织的存在的技术。在一个实施例中,一种方法通过具有至少一个心脏起搏和感测电极的植入的引线确定疤痕组织的存在。用电极感测心脏活动以产生单极电描记图(EGM)波形。接收该单极EGM波形的医疗设备处理器从该单极EGM波形提取两个或更多个特征。基于指示疤痕组织的被提取的特征中的至少两个,检测在电极的部位处的疤痕组织。被提取的特征的示例包括单极EGM波形的峰值幅度的度量、单极EGM波形的Q波的负性(negativity)的度量、和单极EGM波形的分离(fractionation)的度量。对标识疤痕组织的响应可包括:生成在电极部位处的所标识的疤痕组织的通知和/或自动地排除在疤痕组织部位处用于递送起搏治疗的电极。
在另一实施例中,用于确定疤痕组织的存在的医疗设备系统包括植入的引线、感测模块和处理器,其中该植入的引线具有用于心脏起搏和感测的电极,该感测模块用于采用电极来感测心脏活动以产生单极电描记图(EGM)波形,该处理器被配置成接收单极EGM波形并从表示电极处的心脏活动的单极EGM波形提取两个或两个以上特征。处理器被配置成基于指示疤痕组织的被提取特征中的至少两个来标识在电极的部位处的疤痕组织。
本文描述了用于确定疤痕组织的存在的系统和方法的其他实施例和方面。在所附附图和以下说明中阐述了本公开的一个或多个方面的细节。根据说明和附图以及所附权利要求,其他特征、目的以及优点将显而易见。
附图说明
图1为其中可实现本文所公开的技术以向患者的心脏提供治疗的可植入医疗设备(IMD)系统的一个实施例的示意图。
图2是示出了IMD的一个示例配置的功能框图。
图3为根据一个实施例的用于检测心肌疤痕组织的方法的流程图。
图4为根据一个实施例的用于提取单极EGM信号特征以用于检测疤痕组织的方法的流程图。
图5为用于确定患者的心脏中疤痕组织的存在的外部系统的示意图。
图6是根据一个实施例的用于确定疤痕负担指标的方法的流程图。
具体实施方式
图1为其中可实现本文所公开的技术以向患者114的心脏112提供治疗的可植入医疗设备(IMD)系统100的一个实施例的示意图。系统100包括IMD10,IMD10耦合至携载多个电极的引线118、120、和122。IMD10被配置用于与编程器170双向通信。IMD16可以是,例如,可植入起搏器、或可植入复律器除颤器(ICD),其经由耦合到引线118、120、和122中的一根或多根的电极向心脏112提供电信号以用于对心脏112进行起搏、复律和除颤。IMD10能够在一个或多个心脏腔室中递送起搏,并且在所示的实施例中,被配置用于使用引线118、120、和122在右心房(RA)126、右心室(RV)128、和左心室(LV)132中进行多腔室起搏和感测。
IMD10使用RV尖端电极140和RV环形电极142来递送RV起搏脉冲和感测RV心脏内电描记图(EGM)信号。RV引线118被显示成携载线圈电极162,线圈电极162可用于递送高压复律或除颤冲击脉冲。IMD10使用由多极冠状窦引线120携载的电极144感测LVEGM信号并且递送LV起搏脉冲,多极冠状窦引线120延伸穿过RA126并且经由冠状窦进入心静脉130中。在一些实施例中,冠状窦引线120可包括沿着左心房(LA)136定位的用于感测左心房(LA)EGM信号和递送LA起搏脉冲的电极。
IMD10使用RA引线122感测RAEGM信号和递送RA起搏脉冲,RA引线122携载尖端电极148和环形电极150。RA引线122被显示成携载线圈电极166,线圈电极166可沿着上腔静脉(SVC)定位以用于递送复律/除颤冲击。在其他实施例中,RV引线118携载RV线圈电极162和SVC线圈电极166两者。IMD16可检测心脏112的心律失常,诸如心室128和132的纤颤,并以电冲击脉冲形式向心脏112递送高压复律或除颤治疗。心脏腔室的起搏和感测通常使用起搏/感测电极140、142、144、148和150实现,然而,在一些实施例中,线圈电极162和/或166可用于感测和/或起搏电极向量。
虽然IMD10被显示为在图1中的右胸植入位置,但是尤其是当IMD10被具体化为ICD时,更典型的植入位置为左胸植入位置。在其他实施例中,IMD10可被植入在腹部位置。
IMD10包括用于执行归因于IMD10的功能的内部电路。外壳160封围内部电路可以认识到,外壳160或外壳160的部分可被配置作为用于复律/除颤冲击递送的活动电极158,或用作用于单极起搏或采用由引线118、120和122携载的任何电极感测配置的中性电极。IMD10包括连接器块134,连接器块134具有用于接收引线118、120、和122的近端引线连接器的连接器孔。经由包括在连接器块134中的各连接器和电馈通实现由引线118、120、和122携载的电极和IMD内部电路的电连接。
IMD10被配置用于通过在一个或两个心室128和132中递送起搏脉冲来递送CRT以用于控制和改善心室同步。可使用所选的起搏向量递送LV起搏,该起搏向量利用多极LV引线120上的至少一个电极144。使用RV尖端电极140和环形电极142来递送RV起搏。可根据患者需要通过在单个心室腔室(LV或RV)或两个腔室(双心室起搏)中起搏来递送CRT。本文所描述的方法可在使用可编程的起搏脉冲时序参数和所选的起搏部位和起搏向量向右心室和/或左心室递送起搏脉冲的双腔室或多腔室起搏器或ICD中实现。
虽然在图1中示出了多腔室ICD,但可以认识到,可在具有或不具有诸如复律和除颤冲击能力的抗心律失常治疗的单腔室、双腔室或多腔室起搏器中实现本文所公开的技术。例如,本文所公开的用于标识CRT的起搏部位(多个)的技术可用于通过标识潜在起搏部位处的心肌疤痕组织来指导任何起搏治疗的起搏部位的选择。
编程器170包括显示器172、处理器174、用户界面176、和通信模块178,通信模块178包括用于与IMD10通信的无线遥测电路。在一些示例中,编程器170可以是手持设备或基于微处理器的家庭监视器或床边编程设备。用户(诸如,医师、技术人员、护士或其他临床医生)可与编程器170交互,以与IMD10通信。例如,用户可经由用户界面176与编程器170交互以取回当前被编程的操作参数、由IMD10收集的生理数据或来自IMD10的设备相关的诊断信息。用户还可与编程器170交互以对IMD10编程,例如,选择用于IMD的操作参数的值。与编程器170交互的用户可发起用于根据本文中所公开的技术来标识潜在起搏部位处的疤痕组织的测试。如将描述的,在用于标识疤痕组织的测试中,多极引线被用于记录多个单极EGM信号,根据EGM信号中的每一个确定EGM信号特征的组合,以及分析该EGM信号特征的组合以检测电极部位处的疤痕组织。
编程器170包括用于实现与IMD10无线通信的通信模块178。由系统100使用的通信技术的示例包括低频或射频(RF)遥测,例如,其可以是经由蓝牙、WiFi或MICS建立的RF链路。在一些示例中,编程器170可包括编程头,编程头接近患者的身体并靠近IMD10植入部位放置,并且在其他示例中,编程器170和IMD10可配置成使用不需要使用编程头以及不需要用户干预来保持通信链路的距离遥测算法和电路来通信。
可以设想,编程器170可经由用于将数据传送至远程数据库或计算机的通信模块178耦合至通信网络,以允许使用本文所描述的技术远程监测和管理患者114。远程患者管理系统可配置成利用目前所公开的技术使临床医生能够查阅测试数据、被编程的治疗参数和授权对IMD10的编程。对用于与可植入医疗设备一起使用以用于远程患者监测和设备编程的网络通信系统的一般描述和示例的共同转让的美国专利No.6,599,250(Webb等人)、6,442,433(Linberg等人)、6,418,346(Nelson等人)、和6,480,745(Nelson等人)进行参考,所有这些专利通过引用整体结合于此。
图2是IMD10的一个示例配置的功能框图。在由图2所示的示例中,IMD10包括处理器和控制单元80(在本文中也称为“处理器”80)、存储器82、信号发生器84、电感测模块86、和遥测模块88。IMD10进一步包括心脏信号分析器90。
存储器82可包括计算机可读指令,当计算机可读指令被处理器80执行时,使IMD10和处理器80执行在本公开通篇中归因于IMD10、处理器80、和心脏信号分析器90的各种功能。可在存储器82中对计算机可读指令进行编码。存储器82可包括非瞬变的计算机可读存储介质,该计算机可读存储介质包括任何易失性、非易失性、磁的、光的、或电的介质,诸如随机存取存储器(RAM)、只读存储器(ROM)、非易失性RAM(NVRAM)、电可擦除可编程ROM(EEPROM)、闪存存储器、或任何其他数字介质(唯一例外是瞬态传播信号)。
处理器和控制单元80可包括微处理器、控制器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或等效分立或集成的逻辑电路中的任何一个或多个。在一些示例中,处理器80可包括多个部件,诸如一个或多个微处理器、一个或多个控制器、一个或多个DSP、一个或多个ASIC、或一个或多个FPGA、以及其他分立或集成逻辑电路的任何组合。归因于本文中的处理器80的功能可具体化为软件、固件、硬件、或它们的任何组合。在一个示例中,心脏信号分析器90可至少部分地被存储或编码为存储器82中的指令,这些指令由处理器和控制80执行。
处理器和控制单元80包括治疗控制单元,该治疗控制单元控制信号发生器84根据所选的一个或多个治疗程序来向心脏112递送电刺激治疗,例如心脏起搏或CRT,该一个或多个治疗程序可被存储在存储器82中。信号发生器84例如经由相应的引线118、120、122的导体、或者在外壳电极158的情况下经由设置在IMD10的壳体160内的电导体来电耦合至电极140、142、144A-44D(统称为144)、148、150、158、162和166(这些电极中全部在图1中被示出)。信号发生器84被配置成经由电极140、142、144、148、150、158、162、和166的所选组合生成并向心脏112递送电刺激治疗。在CRT期间,信号发生器84根据治疗控制参数递送心脏起搏脉冲。如将在本文中所描述的,CRT被递送至被标识为不在疤痕组织上的起搏部位。
信号发生器84可包括开关模块(未示出),以及处理器和控制80可使用开关模块例如经由数据/地址总线来选择哪些可用电极被用于递送起搏脉冲。处理器80例如经由开关模块来控制电极140、142、144A-44D、148、150、158、162、和166中的哪个被耦合至信号发生器84以用于递送刺激脉冲。开关模块可包括开关阵列、开关矩阵、多路复用器、或适合于选择性地将信号耦合至所选电极的任何其他类型的开关设备。
感测模块86从电极140、142、144A-144D、148、150、158、162、或166中的所选电极监测心脏电信号以用于感测心脏电事件,以便监测心脏112的电活动。感测模块86还可包括开关模块,该开关模块选择可用电极中的哪些被用于感测心脏电活动。在一些示例中,处理器80经由感测模块86中的开关模块选择电极来用作感测电极、或感测向量。
感测模块86包括多个感测通道,每个通道可选择性地耦合至电极140、142、144A-44D、148、150、158、162或166的相应组合,以检测心脏112的特定腔室的电活动。每个检测通道可包括放大器,该放大器响应于对心脏112的相应腔室中的心脏去极化的感测向处理器80输出指示。以这种方式,处理器80可接收对应于心脏112的各腔室中的R波和P波的出现的感测事件信号,例如,对应于相应心脏腔室的固有去极化的心室感测事件和心房感测事件。感测模块86可进一步包括用于向处理器80或心脏信号分析器90提供数字化的EGM信号的数字信号处理电路。
在各个实施例中,一个或多个感测通道可被选择性地耦合至电极144,电极144被包括在多极引线120上并且用于感测单极EGM信号以用于检测疤痕组织。在一个实施例中,感测模块86包括LV感测通道,并且电极144a、144b、144c和144d以与共同阳极(诸如外壳电极158、线圈电极162、或线圈电极166)结合的单极感测配置一次一个地被选择性地耦合,以获取沿着LV组织的电极144a-144d的相应位置中的每一个的单极EGM信号。
通过心脏信号分析器90分析使用电极144a-144d中的每一个获得的数字化EGM信号以从单极感测到的信号中的每一个提取EGM信号特征的组合,例如,至少两个特征。如以下将更详细描述的,分析被提取的特征以检测疤痕组织。响应于检测疤痕组织,处理器80可生成经由遥测模块88传输的通知和/或建立或改变用于递送CRT治疗的起搏电极选择。处理器80和心脏信号分析器90可共同表示如本文所描述的用于确定疤痕组织的存在的处理器装置。
存储器82存储了间期、计数(counters)、或被处理器80用于控制信号发生器84的起搏脉冲的递送的其他数据。这种数据可包括被处理器80用于控制起搏脉冲到用于CRT的左心室和右心室中的一个或两者的递送的间期和计数(counters)。在一些实施例中,间期和/或计数(counters)被处理器80用于控制起搏脉冲相对于另一腔室中的固有或被起搏的事件的递送的时序(timing)。
可关于2013年6月12日提交的并且被转让给本发明的受让人的美国专利申请S/N13/916,353(例如,图17A-17B)看到IMD10的功能框图的其他示例。
图3是根据一个实施例的用于检测心脏疤痕组织的一个方法的流程图300。结合图3所描述的方法涉及IMD10的图1中所示的说明性实施例,IMD10耦合至具有沿着LV定位的用于在CRT期间递送LV起搏脉冲的四个电极144A-144D的四极引线。然而,可以认识到,本文所公开的技术可被用于包括沿着心脏腔室定位的并且由一个或多个医疗电引线携载的多个电极的各种实施例。
当多个电极是可用的时,可使用能够记录真实的近场双极信号的常规的“短”双极对以通过检测由于本地(local)的近场EGM信号的变化引起的双极EGM信号的变化检测心肌疤痕组织。然而,随着感测电极对之间的距离增加,有助于所记录的EGM信号的组织的体积将增加。更多的远场电活动将有助于所记录的信号降低信号的敏感度以检测感测电极部位处的疤痕组织。多极引线可提供多个感测/起搏部位,然而,在沿着多极引线的电极之间的间距可大于记录具有足够大敏感度的双极信号所需的间距,以可靠地检测由疤痕组织引起的EGM信号变化。当多个电极被定位在沿着心脏腔室的各个部位处时,由流程图300所示的过程提供用于与电极间间距无关地检测电极部位处疤痕组织的存在的技术。
可在IMD和相关联的引线最初被植入时、在重定位或重放置心脏引线时、在植入IMD和相关联的引线之后周期性地执行由流程图300所示的过程。在一些实施例中,可响应于监测到的参数的变化(诸如,血液动力学参数或者起搏夺获阈值的变化)执行由流程图300所示的过程。
在框302处,建立疤痕组织检测阈值。用于检测疤痕的阈值可基于从患者获得的之前的EGM基线记录、在执行用于检测疤痕的测试时从患者获得的EGM记录、或基于来自患者群体的经验数据。阈值可被应用至根据每个单极EGM信号确定的至少两个EGM信号特征。单独的阈值可被单独地应用至两个或两个以上EGM信号特征中的每一个或被应用至根据两个或两个以上EGM信号特征和应用至度量的单个阈值计算的单个度量或指标。
在框304处,抑制LV起搏。在通常不包含来自LV引线或电极的起搏的基线心律期间记录为了检测LV中的心肌疤痕组织目的的EGM信号。心律可以是不具有在任何心脏腔室中递送的起搏的固有心律、心房起搏的心律、RV起搏的心律、或在心房腔室和RV中起搏期间的心律。可以设想,在一些情况下,可存在与起搏电极和被测试以检测疤痕组织的相关联的部位不同的另一LV引线或电极,该另一LV引线或电极可在记录被测试的LV起搏部位处的单极EGM信号期间用于起搏。
在框306处,通过感测模块86记录在没有LV起搏被递送时可用的每个LV电极144a-d的单极LVEGM信号。当n个电极沿着LV定位时,使用与每个LV电极成对的用于感测n个不同单极EGM信号的共同阳极记录LVEGM信号。不同单极EGM信号可取决于在IMD10的感测模块86中可用的感测通道的数量以顺序的方式一次一个地或同时被记录。每个单极信号可被记录达至少一个心动周期并且通常将被记录达多个周期(例如,3至12个周期)以从给定感测电极部位获得代表性的EGM特征。
在框308处,从每个所记录的单极信号提取至少两个不同的EGM信号特征。假若单极EGM的单个特征不提供足够大的敏感度以可靠地检测由于疤痕组织引起的EGM信号变化,则提取至少两个不同信号特征。从每个单极EGM信号提取的信号特征可包括,但不限于,QRS幅度的度量、Q波的负性、和EGM信号的分离。可以认识到,可构想用于确定QRS信号幅度的度量、Q波负性的度量、和QRS分离的度量的多种技术。
为了说明起见,QRS幅度的度量可被确定为在QRS感测窗口期间的峰-峰幅度差。与在感测电极处的健康组织相比,当在感测电极处存在疤痕组织时,QRS幅度预期将减小。
宽的负向Q波也是疤痕组织的证据。可通过对在QRS感测窗口期间是负的的数字化EGM采样点的数量计数,通过确定QRS感测窗口上的EGM采样点值的总和,或通过确定由感测窗口上的EGM信号采样点定义的面积的积分从EGM信号提取Q波负性的度量。
疤痕组织还可导致EGM信号的分离,即,多个峰而不是单个R波峰。可通过对斜率符号变化的数量计数,对峰的数量计数,或对QRS感测窗口期间拐点的数量计数从EGM信号提取EGM信号的分离的度量。
在一个实施例中,在框308处,根据每个单极EGM信号确定QRS幅度、Q波负性、和/或EGM分离中的至少两个度量。在框310处,将这些度量单独地和/或以组合的度量与建立的检测阈值相比较。可定义用于检测疤痕组织的标准。例如,三个EGM信号特征中的至少两个必须满足相应的疤痕检测阈值以检测感测电极部位处的疤痕组织。如果在框312处满足疤痕检测阈值(多个)/标准,则在框314处用于记录相关联的EGM信号的电极被拒绝作为起搏部位。
在框316处,选择用于递送起搏治疗的起搏部位(多个)。在拒绝与疤痕检测相关联的那些电极之后可用的任何电极可被选择用于治疗递送,并且可应用附加的起搏部位选择标准以根据特定起搏应用选择起搏部位。在框316处通过拒绝被标识为沿着疤痕组织设置的任何电极并且应用任何其他治疗起搏部位选择标准(例如,低夺获阈值、低阻抗等)自动地执行起搏部位选择。可在将已检测到疤痕的通知传输至外部编程器或其他设备并指示相关联的电极(多个)之后通过临床医生替代地执行起搏部位选择。在框318处,启用LV起搏使得可在所选起搏部位(多个)处根据被编程的治疗控制参数递送期望的治疗。
图4为根据一个实施例的用于提取单极EGM信号特征以供检测疤痕组织的方法的流程图400。在框402处,在沿着RV定位的电极处感测心脏活动以产生RV心脏活动的单极EGM波形。在固有心律期间或在心房起搏期间,同时没有RV起搏被递送的情况下记录RV单极EGM信号。
在框404处,在沿着LV定位的每个电极处感测心脏活动以产生对应于每个LV电极部位的单极EGM波形。在框406处,从RV和LV单极EGM波形中的每一个提取至少两个特征。被提取的EGM特征表示相关联的电极部位处的心脏活动,并且可包括QRS波形幅度的度量、Q波负性的度量、和QRS波形分离的度量。在说明性实施例中,从单极EGM波形提取的一个特征是作为QRS幅度的度量的峰-峰幅度差。在另一实施例中,一个被提取的特征是作为Q波负性的度量的在QRS感测窗口期间的所有EGM波形采样点中的具有负极性的EGM波形采样点的百分比。在又一实施例中,一个被提取的特征是作为QRS信号的分离的度量的在正斜率和负斜率(在任一方向中)之间的EGM波形的斜率变化的次数。可提取EGM波形中的至少两个特征的任何组合。
可通过首先设置QRS窗口提取特征。在一个实施例中,QRS窗口在由包括在IMD感测模块中的感测放大器感测到的R波处居中并且延伸比由感测放大器生成的R波感测标记早和晚的预定时间间期。然后可从窗口期间的波形采样点提取EGM特征。给定特征可逐搏动地提取达预定数量的搏动并然后被平均以确定表示在电极部位处的心脏活动的平均特征,或可确定被提取的特征的中值(median)或模式。替代地,可在QRS窗口上对多个搏动的EGM波形求整体平均,然后可从经平均的QRS波形提取特征。
确定所记录的每个单极EGM信号的特征,并且在框408处,标识根据所有所记录的信号确定的EGM特征的最大值。在框410处,给定EGM特征的最大值(其可以是绝对值)被用于归一化从每个单极EGM波形提取的给定的EGM特征值。以这种方式,确定相对于最大特征值的特征值的百分比差。例如,如果单极EGM信号具有正常峰-峰幅度差并且另一单极EGM信号具有是正常峰-峰幅度的50%的标准化的峰-峰幅度,则较低峰-峰幅度的50%是指示在相关联的电极部位处的疤痕组织的信号特征。一个或多个被提取的特征可通过最大值来标准化并且在框412处与阈值百分比相比较以标识疤痕组织。可以认识到,在一些情况下,可通过最大特征值、平均特征值或其他参考值标准化特征值。在一些示例中,从RVEGM提取用于标准化被提取的特征值的值。
当值取决于特定特征超过阈值百分比或水平或小于阈值百分比或水平时,标准化的值或未标准化的值可指示疤痕。例如,峰-峰幅度差可通过最大值标准化并且被要求小于阈值百分比(例如,50%),而可要求负采样点的百分比大于阈值百分比。斜率变化的数量可保留未归一化并与阈值数量相比较。在一些实施例中,从RV单极EGM信号推导出应用于从LV单极EGM信号提取的特征值的阈值。
如果基于检测阈值比较,单极EGM信号的至少两个被提取的特征指示疤痕组织,则如决策框414处确定的,在相关联的电极部位处检测到疤痕。在框416处,电极被拒绝用于递送起搏治疗和/或可生成指示检测到疤痕组织和建议拒绝起搏部位的通知。在框418处可从没有被确定为沿着疤痕设置的电极选择起搏部位(多个),并且在框420处,使用所选的起搏部位(多个)启用起搏治疗。在该示例中,所选的起搏部位是沿着LV以用于递送CRT。
图5为用于确定患者的心脏中疤痕组织的存在的外部系统500的示意图。在一些情况下,植入的引线可能不可用于检测疤痕组织的EGM证据,或植入的电极可能不被设置成产生足够敏感的EGM信号以可靠地检测疤痕组织。在这些情况下,可能需要用于在不需要昂贵或复杂的成像系统的情况下确定疤痕组织的存在的系统和方法以确定疤痕是否存在并且以在本文中被称为“疤痕负担”的度量提供有关疤痕的相对尺寸的一些评估。通过逼近疤痕组织的位置和疤痕负担,临床医生可作出明智的治疗决定。例如,如果患者是CRT的候选人,对疤痕的存在的了解和对疤痕负担的估计对临床医生处方(prescribe)CRT和规划用于递送CRT的引线和电极放置是有用的。
系统500包括显示为由用于将电极510定位成沿着患者506的躯干与皮肤接触的耐磨带或条带512携载的外部表面电极510。电极510可替代地为粘合皮肤电极。电极510定位在沿着患者的躯干的多个点处,以记录表面电势信号。在一个示例中,电极510可圆周地围绕患者的躯干均匀地分布。
在一个实施例中,电极510用于通过缠绕在患者506的躯干的周围使得电极510围绕心脏508的条带512从心脏508获取表面电势信号。电极510可围绕患者506的外周定位,包括患者躯干的后表面、侧表面、和前表面。在其他示例中,各电极512可定位在躯干的后表面、侧表面和前表面中的任一个或多个上。电极510可经由有线连接514电连接至ECG处理单元520。一些配置可使用无线连接(例如数据通道)来将由电极510感测到的信号传输到ECG处理单元520。
虽然在图5的示例中,条带512被显示为携载表面电极510,但在其他示例中,各种机构(例如,胶带或粘合剂)中的任一种可被用于帮助电极510以分布的方式沿着患者的躯干间隔开和放置以围绕心脏508。在一些示例中,条带512可包括弹性带、带条、或布。在其他示例中,电极510可分别放置在患者506的躯干上。
电极510记录与心脏508去极化和复极化相关联的电信号。每个电极510可被用在单极配置中来感测反映心脏电活动的表面电势。ECG处理单元520还可耦合到返回电极或中性电极(未示出),该返回电极或中性电极可与用于单极感测的电极510的每一个组合使用。
ECG处理单元520可记录并分析由电极510感测的表面电势信号(在本文中通常被称为“ECG”信号)。处理单元520可被配置成向用户提供指示心脏112中的疤痕组织的存在的输出。用户可进行诊断、处方CRT、定位例如引线的治疗设备、或基于所指示的疤痕组织来选择治疗参数。
携载电极510的条带512是对记录表面ECG信号有用的装置的说明性实施例,根据这些表面ECG信号可确定疤痕组织的存在。其他表面心脏信号记录装置可用于获取心脏信号数据,可根据该心脏信号数据确定疤痕组织的存在。其他信号记录装置和技术可包括12-引线ECG电极、携载电极的阵列的背心、和心电向量描记法。
电极510经由电导体514耦合至ECG处理单元520。通过ECG处理单元520接收ECG信号,ECG处理单元520从每个接收到的信号提取ECG特征以用于产生ECG特征图。可以与以上描述用于提取单极EGM特征的技术类似的方式从由电极510记录的每个ECG信号提取ECG特征。例如,从表面ECG信号确定作为疤痕指示指标的QRS幅度度量、Q波负性度量、ECG分离度量或它们的任何组合。
ECG特征由此单独地或以组合的形式用于确定疤痕指示指标并且通过ECG处理单元520与疤痕检测阈值相比较以确定在心肌组织部位处是否存在疤痕组织。ECG处理单元520报告是否检测到疤痕组织,并例如经由耦合至ECG处理单元的显示屏/监视器522报告疤痕负担。ECG处理单元520可产生患者的躯干的二维模型或三维模型的图形显示524,该图形显示524叠加有基于沿着患者的躯干的电极位置投射到躯干模型上的被提取的ECG特征值的彩色编码的映射。
在一些实施例中,ECG处理单元520和显示屏/监视器522可在外部编程器中实现,诸如图1所示的编程器170。配置成从表面ECG电极接收信号的编程器,诸如CARELINK编程器型号29901,可从明尼苏达州明尼阿波利斯的美敦力公司购买。美敦力CARELINK编程器型号29901参考手册2013通过引用整体结合于此。
ECG处理单元520可被配置成解决心电图的反问题以将ECG数据投射到二维或三维心脏模型上。可由投射在计算机心脏模型上的数据产生图像显示526以创建映射至患者模型的表面电势数据的可视映射。ECG特征值可被表示为相应特征的参考值的归一化值或百分比。
作为附加或替代,可在图形显示528中呈现基于ECG特征值的疤痕组织的所映射的位置。ECG处理单元520可被配置成响应于确定整体心脏疤痕负担指标和标识具有肯定的(affirmative)疤痕指示指标的电极的躯干表面位置。显示528呈现沿着模型心脏的疤痕组织的边界530并报告整体心脏疤痕负担指标。如以下所描述的,疤痕负担指标可被计算为具有肯定的疤痕指示指标的电极510的百分比。
不需要对实际患者解剖结构成像来产生图形显示524、526和/或528。相反,ECG数据被映射至患者的躯干的通用的图形计算机模型和/或心脏,并且在不需要从患者拍摄实际图像(诸如,MRI或CT图像)的情况下产生图形显示。
映射至图形解剖模型的ECG数据的分辨率将取决于所使用的表面电极510的数量和间距。在一些示例中,可能有围绕患者506的躯干空间分布的12至16个电极。其他配置可具有更多或更少的电极。在一个实施例中,最小数量的电极包括以沿着前躯干延伸的两行布置的12个电极和以沿着后躯干延伸的两行布置的12个电极,总共24个电极,这些电极可圆周地围绕躯干均匀分布。
图6是根据一个实施例的用于确定疤痕负担指标的方法的流程图600。在框602处,例如,如图5所示,由分布在患者的躯干上的皮肤电极记录表面电势信号。ECG处理单元经由必要的电导体从每个表面电极接收电势信号,或在一些系统中,可从身体穿戴的设备将电势信号无线地传输至ECG处理单元。
在框604处,包括在ECG处理单元中的处理器使用心脏解剖结构的计算机模型和接收到的电势信号解决心电图的反问题。由反问题解决方案产生的电势信号用于表征心脏模型的表面上的心脏活动。在框606处,从对应于躯干-表面电极的每一个的电势信号提取特征。在一个实施例中,从每个信号确定至少两个特征,其可包括QRS信号幅度的度量、Q波负性的度量和/或QRS信号分离的度量、或它们的任何组合,如之前所描述的。电势信号和/或经确定的特征可被存储在非瞬态存储介质中,例如,与ECG处理单元相关联的数字存储器。
通过处理器根据电势信号特征确定疤痕指示指标,这些电势信号特征可被标准化或未被标准化并且被结合到单个指标中或单独用作疤痕指示指标。可通过从由分布的电极确定的所有特征值确定最大值、最小值、平均值、中值、模式或其他参考值来标准化特征值。在框608处,将根据在每个表面电极处产生的电势信号确定的每个电极的疤痕指示指标与疤痕检测阈值相比较以标识电极中的哪些电极(如果有的话)导致肯定的疤痕指示指标。以这种方式,心肌疤痕组织被检测为存在于对应于产生导致满足检测阈值要求的疤痕指示指标的电势信号的躯干-表面电极的心脏位置处。
如果在框610处基于具有肯定疤痕指示指标的一个或多个电极检测到疤痕组织,则在框614处计算疤痕负担指标。在一个实施例中,疤痕负担指标被计算为具有肯定疤痕指示指标的躯干-表面电极的比例。作为附加或替代,基于具有肯定疤痕指示指标的电极的数量和位置,疤痕负担指标可被确定为估计的心肌表面积。
在框616处,报告疤痕负担指标。可采用从映射至解剖心脏模型的表面电势信号推导的数据的图形显示报告疤痕负担指标。可利用心脏的计算机模型和电势信号将从表面电势信号获得的数据映射至心脏。例如,该过程可包括基于其上映射有测得的表面信号的模型心脏和模型躯干解决心电图的反问题。反问题的解决将提供在模型心脏的表面上的点或部位处的重构的单极EGM信号。可提取重构的单极EGM特征,并且可如上所述的应用疤痕检测的标准。特征值或存在疤痕组织的指示可被映射和显示给临床医生。可基于与肯定的疤痕指示指标相关联的部位估计并在心脏模型的显示上呈现检测到的疤痕组织的边界。如果在框610处没有检测到疤痕,则可报告该结果,并且可在框612处生成映射有信号特征值或疤痕指示指标的心脏模型的显示。
疤痕负担指标和估计的疤痕边界可被临床医生使用来作出临床决定。例如,如果疤痕负担超过阈值,则针对CRT被评估的患者可被禁止(contraindicated)治疗。具有相对高疤痕负担的患者可能不对CRT作出响应。因此,疤痕负担指标可用作预期接收来自CRT的治疗益处的患者和预期不接收来自CRT的治疗益处的患者的预测指标。在框616处报告的疤痕负担可包括基于超过阈值疤痕负担(不建议CRT)或不超过阈值疤痕负担(建议CRT)的经确定的疤痕负担对CRT治疗的建议。
因此,已描述了用于确定心肌疤痕的存在的系统和方法的多个实施例。然而,在不偏离权利要求书的范围的情况下,本领域的普通技术人员将理解可对所述实施例作出各种更改。例如,虽然已描述了疤痕指示指标或ECG信号特征的具体示例,但可以认识到,可设想其他指示并将其替代用于本文所提供的疤痕检测技术。已单独描述了对确定心肌疤痕的存在有用的可植入系统和外部系统,然而,本文所公开的技术可以任何方式结合成包括在与管理患者和确定患者的疤痕负担相同或不同的时间点处使用一个或两个内部和外部电极的疤痕检测。这些以及其他实施例在以下权利要求的范围内。

Claims (10)

1.一种用于确定疤痕组织的存在的医疗设备系统,所述系统包括:
植入的引线,所述植入的电极具有用于心脏起搏和感测的第一电极;
感测模块,用于采用第一电极感测心脏活动以产生第一单极电描记图(EGM)波形;
处理器,被配置成接收第一单极EGM波形并从表示电极处的心脏活动的所述第一单极EGM波形提取两个或两个以上特征并且基于指示疤痕组织的被提取的特征中的至少两个来标识第一电极的部位处的疤痕组织。
2.如权利要求1所述的系统,其特征在于,所述处理器被进一步配置成:
基于之前记录的采用电极感测的单极EGM波形来建立用于标识疤痕组织的阈值,
其中,标识疤痕组织包括将两个或两个以上被提取的特征中的至少一个与阈值相比较。
3.如权利要求1-2中任一项所述的系统,其特征在于,还包括:
植入的引线的第二电极;
所述感测模块被配置成产生对应于第二电极的第二部位的第二单极EGM波形;
所述处理器被配置成从第二单极EGM波形提取两个或两个以上特征并且基于第二单极EGM波形建立用于标识疤痕组织的阈值。
4.如权利要求3所述的系统,其特征在于,所述第二部位沿着与电极的部位不同的心脏腔室。
5.如权利要求1-4中任一项所述的系统,其特征在于,所述感测模块被配置成感测心脏活动以产生第二单极EGM波形:
所述处理器被配置成:
从第二单极EGM波形提取两个或两个以上特征,
根据从第一单极EGM波形和第二单极EGM波形所提取的特征确定参考值,
使用相应的参考值来归一化被提取的特征,以及
基于归一化的被提取的特征来标识疤痕组织。
6.如权利要求1-5中任一项所述的系统,其特征在于,所述两个或两个以上EGM特征包括第一单极EGM波形的峰值幅度的度量。
7.如权利要求1-6中任一项所述的系统,其特征在于,所述两个或两个以上EGM特征包括第一单极EGM波形的Q波的负性的度量。
8.如权利要求1-7中任一项所述的系统,其特征在于,所述两个或两个以上EGM特征包括第一单极EGM波形的分离的度量。
9.如权利要求1-8中任一项所述的系统,其特征在于,所述两个或两个以上EGM特征包括第一单极EGM波形的斜率变化的数量。
10.如权利要求1-9中任一项所述的系统,其特征在于,所述处理器进一步被配置成提供对标识疤痕组织的响应,所述响应包括下列之中的至少一个:生成在第一电极部位处的所标识的疤痕组织的通知;和/或自动地将第一电极排除用于递送模块的起搏递送。
CN201480041702.2A 2013-07-23 2014-07-22 标识健康基质与不健康基质以从多极引线起搏 Pending CN105431081A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110265543.6A CN113057643A (zh) 2013-07-23 2014-07-22 来自多极引线的起搏识别健康基质与不健康基质

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/948,503 US9278220B2 (en) 2013-07-23 2013-07-23 Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US13/948,503 2013-07-23
PCT/US2014/047583 WO2015013258A1 (en) 2013-07-23 2014-07-22 Identification of healthy versus unhealthy substrate for pacing from a multipolar lead

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110265543.6A Division CN113057643A (zh) 2013-07-23 2014-07-22 来自多极引线的起搏识别健康基质与不健康基质

Publications (1)

Publication Number Publication Date
CN105431081A true CN105431081A (zh) 2016-03-23

Family

ID=51293199

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110265543.6A Pending CN113057643A (zh) 2013-07-23 2014-07-22 来自多极引线的起搏识别健康基质与不健康基质
CN201480041702.2A Pending CN105431081A (zh) 2013-07-23 2014-07-22 标识健康基质与不健康基质以从多极引线起搏

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202110265543.6A Pending CN113057643A (zh) 2013-07-23 2014-07-22 来自多极引线的起搏识别健康基质与不健康基质

Country Status (4)

Country Link
US (1) US9278220B2 (zh)
EP (1) EP3024384B1 (zh)
CN (2) CN113057643A (zh)
WO (1) WO2015013258A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110025375A (zh) * 2017-12-20 2019-07-19 韦伯斯特生物官能(以色列)有限公司 对心脏表面的计算机化模型进行标记
CN111770722A (zh) * 2018-02-27 2020-10-13 罗伯特·博世有限公司 具有心脏振动描记信号的自动参考的可穿戴健康设备系统

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8972228B2 (en) 2011-05-03 2015-03-03 Medtronic, Inc. Assessing intra-cardiac activation patterns
US9931048B2 (en) 2013-04-30 2018-04-03 Medtronic, Inc. Systems, methods, and interfaces for identifying effective electrodes
US10064567B2 (en) 2013-04-30 2018-09-04 Medtronic, Inc. Systems, methods, and interfaces for identifying optimal electrical vectors
US10251555B2 (en) 2013-06-12 2019-04-09 Medtronic, Inc. Implantable electrode location selection
US9877789B2 (en) 2013-06-12 2018-01-30 Medtronic, Inc. Implantable electrode location selection
US9474457B2 (en) 2013-06-12 2016-10-25 Medtronic, Inc. Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
US9320446B2 (en) 2013-12-09 2016-04-26 Medtronic, Inc. Bioelectric sensor device and methods
US9986928B2 (en) 2013-12-09 2018-06-05 Medtronic, Inc. Noninvasive cardiac therapy evaluation
US9776009B2 (en) 2014-03-20 2017-10-03 Medtronic, Inc. Non-invasive detection of phrenic nerve stimulation
US9591982B2 (en) 2014-07-31 2017-03-14 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9586052B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9764143B2 (en) 2014-08-15 2017-09-19 Medtronic, Inc. Systems and methods for configuration of interventricular interval
US9586050B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for configuration of atrioventricular interval
US11253178B2 (en) 2015-01-29 2022-02-22 Medtronic, Inc. Noninvasive assessment of cardiac resynchronization therapy
US10780279B2 (en) 2016-02-26 2020-09-22 Medtronic, Inc. Methods and systems of optimizing right ventricular only pacing for patients with respect to an atrial event and left ventricular event
US11219769B2 (en) 2016-02-26 2022-01-11 Medtronic, Inc. Noninvasive methods and systems of determining the extent of tissue capture from cardiac pacing
RO131542B1 (ro) * 2016-06-07 2020-03-30 Institutul Naţional De Cercetare Dezvoltare Pentru Fizică Tehnică Bd.Prof.Dr.Doc.Dimitrie Mangeron Aparat pentru determinarea potenţialelor electrice anormale de la nivelul miocardului ventricular
US10532213B2 (en) 2017-03-03 2020-01-14 Medtronic, Inc. Criteria for determination of local tissue latency near pacing electrode
US10987517B2 (en) 2017-03-15 2021-04-27 Medtronic, Inc. Detection of noise signals in cardiac signals
WO2019023472A1 (en) 2017-07-28 2019-01-31 Medtronic, Inc. GENERATION OF ACTIVATION TIME
WO2019023478A1 (en) 2017-07-28 2019-01-31 Medtronic, Inc. SELECTION OF CARDIAC REVOLUTION
US10433746B2 (en) 2017-12-22 2019-10-08 Regents Of The University Of Minnesota Systems and methods for anterior and posterior electrode signal analysis
US10786167B2 (en) 2017-12-22 2020-09-29 Medtronic, Inc. Ectopic beat-compensated electrical heterogeneity information
US11419539B2 (en) 2017-12-22 2022-08-23 Regents Of The University Of Minnesota QRS onset and offset times and cycle selection using anterior and posterior electrode signals
US10492705B2 (en) 2017-12-22 2019-12-03 Regents Of The University Of Minnesota Anterior and posterior electrode signals
US10799703B2 (en) 2017-12-22 2020-10-13 Medtronic, Inc. Evaluation of his bundle pacing therapy
US10856768B2 (en) 2018-01-25 2020-12-08 Biosense Webster (Israel) Ltd. Intra-cardiac scar tissue identification using impedance sensing and contact measurement
US10617318B2 (en) 2018-02-27 2020-04-14 Medtronic, Inc. Mapping electrical activity on a model heart
US10668290B2 (en) 2018-03-01 2020-06-02 Medtronic, Inc. Delivery of pacing therapy by a cardiac pacing device
US10918870B2 (en) 2018-03-07 2021-02-16 Medtronic, Inc. Atrial lead placement for treatment of atrial dyssynchrony
US10780281B2 (en) 2018-03-23 2020-09-22 Medtronic, Inc. Evaluation of ventricle from atrium pacing therapy
US11285312B2 (en) 2018-03-29 2022-03-29 Medtronic, Inc. Left ventricular assist device adjustment and evaluation
US11304641B2 (en) 2018-06-01 2022-04-19 Medtronic, Inc. Systems, methods, and interfaces for use in cardiac evaluation
US10940321B2 (en) 2018-06-01 2021-03-09 Medtronic, Inc. Systems, methods, and interfaces for use in cardiac evaluation
US11298547B2 (en) 2018-07-27 2022-04-12 Medtronic, Inc. Fluid status detection from a cardiac electrical signal and impedance signal
US11511118B2 (en) * 2019-02-11 2022-11-29 Duke University Systems and methods for selecting, positioning, and controlling cardiac resynchronization therapy (CRT) electrodes
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11547858B2 (en) 2019-03-29 2023-01-10 Medtronic, Inc. Systems, methods, and devices for adaptive cardiac therapy
US11497431B2 (en) 2019-10-09 2022-11-15 Medtronic, Inc. Systems and methods for configuring cardiac therapy
US11642533B2 (en) 2019-11-04 2023-05-09 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002090A1 (en) * 1996-07-17 1998-01-22 Cambridge Heart, Inc. Generation of localized cardiac measures
CN1474707A (zh) * 2000-09-12 2004-02-11 �˵á�K���� 生肌细胞输送导管和方法
CN101083939A (zh) * 2004-10-25 2007-12-05 泰·川·阿尔弗雷德·克维克 用于检测心脏事件的系统、方法和设备
US20100174137A1 (en) * 2009-01-06 2010-07-08 Youngtack Shim Adaptive stimulation systems and methods
US20100256701A1 (en) * 2009-04-01 2010-10-07 Pacesetter, Inc. Determining Site-To-Site Pacing Delay For Multi-Site Anti-Tachycardia Pacing
US7917214B1 (en) * 2007-09-06 2011-03-29 Pacesetter, Inc. Methods and systems for identifying a preferred pacing configuration for a multi-electrode implantable cardiac electrotherapy device
US20110144510A1 (en) * 2009-12-16 2011-06-16 Pacesetter, Inc. Methods to identify damaged or scarred tissue based on position information and physiological information
CN102362808A (zh) * 2011-10-19 2012-02-29 汤日波 具有电生理标测、三维定位功能的心肌活检系统
US20130131749A1 (en) * 2011-11-21 2013-05-23 Medtronic, Inc. Method for efficient delivery of dual site pacing

Family Cites Families (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233987A (en) 1978-08-18 1980-11-18 Alfred Feingold Curvilinear electrocardiograph electrode strip
US4674511A (en) 1979-04-30 1987-06-23 American Hospital Supply Corporation Medical electrode
US4497326A (en) 1981-04-06 1985-02-05 Curry Paul V L Heart pacing lead
US4428378A (en) 1981-11-19 1984-01-31 Medtronic, Inc. Rate adaptive pacer
US4566456A (en) 1984-10-18 1986-01-28 Cordis Corporation Apparatus and method for adjusting heart/pacer rate relative to right ventricular systolic pressure to obtain a required cardiac output
US5054496A (en) 1988-07-15 1991-10-08 China-Japan Friendship Hospital Method and apparatus for recording and analyzing body surface electrocardiographic peak maps
US5052388A (en) 1989-12-22 1991-10-01 Medtronic, Inc. Method and apparatus for implementing activity sensing in a pulse generator
US5311873A (en) 1992-08-28 1994-05-17 Ecole Polytechnique Comparative analysis of body surface potential distribution during cardiac pacing
US5443492A (en) 1994-02-02 1995-08-22 Medtronic, Inc. Medical electrical lead and introducer system for implantable pulse generator
US6055448A (en) 1994-11-07 2000-04-25 Anderson; John Mccune Sensor device
US5628778A (en) 1994-11-21 1997-05-13 Medtronic Inc. Single pass medical electrical lead
US5671752A (en) 1995-03-31 1997-09-30 Universite De Montreal/The Royal Insitution For The Advancement Of Learning (Mcgill University) Diaphragm electromyography analysis method and system
WO1997017893A1 (en) 1995-11-13 1997-05-22 Heart Rhythm Technologies, Inc. System and method for analyzing electrogram waveforms
US5683432A (en) 1996-01-11 1997-11-04 Medtronic, Inc. Adaptive, performance-optimizing communication system for communicating with an implanted medical device
US6311089B1 (en) 1996-05-14 2001-10-30 Pacesetter, Inc. Implantable stimulation device and method for determining ventricular and atrial sensitivity thresholds
EP0961574B1 (en) 1996-12-18 2004-07-21 ANDERSON, John McCune Apparatus for body surface mapping
US6975900B2 (en) 1997-07-31 2005-12-13 Case Western Reserve University Systems and methods for determining a surface geometry
AU8677098A (en) 1997-07-31 1999-02-22 Case Western Reserve University A system and method for non-invasive electrocardiographic imaging
US5922014A (en) 1997-09-02 1999-07-13 Medtronic, Inc. Single pass lead and method of use
JP4208275B2 (ja) 1997-10-30 2009-01-14 株式会社東芝 心臓内電気現象の診断装置およびその現象の表示方法
US7313444B2 (en) 1998-11-20 2007-12-25 Pacesetter, Inc. Self-anchoring coronary sinus lead
US6236883B1 (en) 1999-02-03 2001-05-22 The Trustees Of Columbia University In The City Of New York Methods and systems for localizing reentrant circuits from electrogram features
US6115628A (en) 1999-03-29 2000-09-05 Medtronic, Inc. Method and apparatus for filtering electrocardiogram (ECG) signals to remove bad cycle information and for use of physiologic signals determined from said filtered ECG signals
WO2000069517A1 (en) 1999-05-12 2000-11-23 Medtronic, Inc. Monitoring apparatus using wavelet transforms for the analysis of heart rhythms
US6539259B1 (en) 1999-07-15 2003-03-25 Pacesetter, Inc. System and method of automatically adjusting sensitivity in an implantable cardiac stimulation device
US6442433B1 (en) 1999-10-26 2002-08-27 Medtronic, Inc. Apparatus and method for remote troubleshooting, maintenance and upgrade of implantable device systems
US6418346B1 (en) 1999-12-14 2002-07-09 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US6480745B2 (en) 1999-12-24 2002-11-12 Medtronic, Inc. Information network interrogation of an implanted device
US6473638B2 (en) 1999-12-24 2002-10-29 Medtronic, Inc. Medical device GUI for cardiac electrophysiology display and data communication
US6584343B1 (en) 2000-03-15 2003-06-24 Resolution Medical, Inc. Multi-electrode panel system for sensing electrical activity of the heart
US6556860B1 (en) 2000-03-15 2003-04-29 The Regents Of The University Of California System and method for developing a database of body surface ECG flutter wave data maps for classification of atrial flutter
CA2403256A1 (en) 2000-03-17 2001-09-27 Medtronic, Inc. Heart failure monitor quick look summary for patient management systems
US6507756B1 (en) 2000-04-03 2003-01-14 Medtronic, Inc. Dual chamber pacing system having time-adaptive AV delay
JP2004513673A (ja) 2000-05-09 2004-05-13 ペイエオン・インコーポレーテツド 動脈の三次元的再構成のシステムと方法
EP1341443B1 (en) 2000-10-18 2010-12-29 Paieon Inc. System for positioning a device in a tubular organ
US6980675B2 (en) 2000-10-18 2005-12-27 Paieon, Inc. Method for processing images of coronary arteries
US6766189B2 (en) 2001-03-30 2004-07-20 Cardiac Pacemakers, Inc. Method and apparatus for predicting acute response to cardiac resynchronization therapy
US6993389B2 (en) 2001-03-30 2006-01-31 Cardiac Pacemakers, Inc. Identifying heart failure patients suitable for resynchronization therapy using QRS complex width from an intracardiac electrogram
US6804555B2 (en) 2001-06-29 2004-10-12 Medtronic, Inc. Multi-site ventricular pacing system measuring QRS duration
US6856830B2 (en) 2001-07-19 2005-02-15 Bin He Method and apparatus of three dimension electrocardiographic imaging
US6640136B1 (en) 2001-09-12 2003-10-28 Pacesetters, Inc. Implantable cardiac stimulation device with automatic electrode selection for avoiding cross-chamber stimulation
WO2003028801A2 (en) 2001-10-04 2003-04-10 Case Western Reserve University Systems and methods for noninvasive electrocardiographic imaging (ecgi) using generalized minimum residual (gmres)
US7113823B2 (en) 2001-10-26 2006-09-26 Cardiac Pacemakers, Inc. Morphology-based optimization of cardiac resynchronization therapy
US7286866B2 (en) 2001-11-05 2007-10-23 Ge Medical Systems Global Technology Company, Llc Method, system and computer product for cardiac interventional procedure planning
US7346381B2 (en) 2002-11-01 2008-03-18 Ge Medical Systems Global Technology Company Llc Method and apparatus for medical intervention procedure planning
US7499743B2 (en) 2002-03-15 2009-03-03 General Electric Company Method and system for registration of 3D images within an interventional system
US6882882B2 (en) 2002-04-22 2005-04-19 Medtronic, Inc. Atrioventricular delay adjustment
US6968237B2 (en) 2002-05-22 2005-11-22 Pacesetter, Inc. Implantable coronary sinus lead and lead system
US7778686B2 (en) 2002-06-04 2010-08-17 General Electric Company Method and apparatus for medical intervention procedure planning and location and navigation of an intervention tool
US7092757B2 (en) 2002-07-12 2006-08-15 Cardiac Pacemakers, Inc. Minute ventilation sensor with dynamically adjusted excitation current
US7041061B2 (en) 2002-07-19 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for quantification of cardiac wall motion asynchrony
US6978184B1 (en) 2002-07-29 2005-12-20 Marcus Frank I Optimization method for cardiac resynchronization therapy
AU2003262896B2 (en) * 2002-08-24 2008-08-07 Subramaniam C. Krishnan Method and apparatus for locating the fossa ovalis and performing transseptal puncture
US7123954B2 (en) 2002-09-19 2006-10-17 Sanjiv Mathur Narayan Method for classifying and localizing heart arrhythmias
US7031777B2 (en) 2002-09-27 2006-04-18 Medtronic, Inc. Cardiac vein lead with flexible anode and method for forming same
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7142922B2 (en) 2002-12-20 2006-11-28 Cardiac Pacemakers, Inc. Method and apparatus for predicting acute response to cardiac resynchronization therapy at a given stimulation site
US7215998B2 (en) 2003-01-06 2007-05-08 Medtronic, Inc. Synchronous pacemaker with AV interval optimization
US7013176B2 (en) 2003-01-28 2006-03-14 Cardiac Pacemakers, Inc. Method and apparatus for setting pacing parameters in cardiac resynchronization therapy
US7610088B2 (en) 2003-02-28 2009-10-27 Medtronic, Inc. Method and apparatus for assessing left ventricular function and optimizing cardiac pacing intervals based on left ventricular wall motion
US6885889B2 (en) 2003-02-28 2005-04-26 Medtronic, Inc. Method and apparatus for optimizing cardiac resynchronization therapy based on left ventricular acceleration
US7079895B2 (en) 2003-04-25 2006-07-18 Medtronic, Inc. Cardiac pacing for optimal intra-left ventricular resynchronization
US7107093B2 (en) 2003-04-29 2006-09-12 Medtronic, Inc. Use of activation and recovery times and dispersions to monitor heart failure status and arrhythmia risk
US7747047B2 (en) 2003-05-07 2010-06-29 Ge Medical Systems Global Technology Company, Llc Cardiac CT system and method for planning left atrial appendage isolation
US7565190B2 (en) 2003-05-09 2009-07-21 Ge Medical Systems Global Technology Company, Llc Cardiac CT system and method for planning atrial fibrillation intervention
US7142911B2 (en) 2003-06-26 2006-11-28 Pacesetter, Inc. Method and apparatus for monitoring drug effects on cardiac electrical signals using an implantable cardiac stimulation device
US7813785B2 (en) 2003-07-01 2010-10-12 General Electric Company Cardiac imaging system and method for planning minimally invasive direct coronary artery bypass surgery
CN1846231A (zh) 2003-07-21 2006-10-11 派昂公司 用于在描绘运动器官的一系列图像内识别最佳图像的方法和系统
US7092759B2 (en) 2003-07-30 2006-08-15 Medtronic, Inc. Method of optimizing cardiac resynchronization therapy using sensor signals of septal wall motion
US7818040B2 (en) 2003-09-05 2010-10-19 Medtronic, Inc. Deflectable medical therapy delivery device having common lumen profile
JP5129480B2 (ja) 2003-09-25 2013-01-30 パイエオン インコーポレイテッド 管状臓器の3次元再構成を行うシステム及び血管撮像装置の作動方法
US7308299B2 (en) 2003-10-22 2007-12-11 General Electric Company Method, apparatus and product for acquiring cardiac images
US7308297B2 (en) 2003-11-05 2007-12-11 Ge Medical Systems Global Technology Company, Llc Cardiac imaging system and method for quantification of desynchrony of ventricles for biventricular pacing
EP1703946A2 (en) 2003-12-03 2006-09-27 Medtronic, Inc. Method and apparatus for determining an efficacious atrioventricular delay interval
US7184835B2 (en) 2003-12-12 2007-02-27 Cardiac Pacemakers, Inc. Method and apparatus for adjustable AVD programming using a table
US7486991B2 (en) 2003-12-24 2009-02-03 Cardiac Pacemakers, Inc. Baroreflex modulation to gradually decrease blood pressure
US7787951B1 (en) 2003-12-24 2010-08-31 Pacesetter, Inc. System and method for determining optimal stimulation sites based on ECG information
US20050149138A1 (en) 2003-12-24 2005-07-07 Xiaoyi Min System and method for determining optimal pacing sites based on myocardial activation times
RS49856B (sr) 2004-01-16 2008-08-07 Boško Bojović Uređaj i postupak za vizuelnu trodimenzionalnu prezentaciju ecg podataka
US7454248B2 (en) 2004-01-30 2008-11-18 Ge Medical Systems Global Technology, Llc Method, apparatus and product for acquiring cardiac images
US7792572B1 (en) 2004-05-17 2010-09-07 Pacesetter, Inc. Ischemia detection using intra-cardiac signals
CA2481631A1 (en) 2004-09-15 2006-03-15 Dspfactory Ltd. Method and system for physiological signal processing
US20060074285A1 (en) 2004-09-24 2006-04-06 Paieon Inc. Apparatus and method for fusion and in-operating-room presentation of volumetric data and 3-D angiographic data
US7457664B2 (en) 2005-05-09 2008-11-25 Cardiac Pacemakers, Inc. Closed loop cardiac resynchronization therapy using cardiac activation sequence information
US7509170B2 (en) 2005-05-09 2009-03-24 Cardiac Pacemakers, Inc. Automatic capture verification using electrocardiograms sensed from multiple implanted electrodes
US20080058656A1 (en) 2004-10-08 2008-03-06 Costello Benedict J Electric tomography
US7426412B1 (en) 2004-10-13 2008-09-16 Pacesetter, Inc. Evoked potential and impedance based determination of diaphragmatic stimulation
US7664550B2 (en) 2004-11-30 2010-02-16 Medtronic, Inc. Method and apparatus for detecting left ventricular lead displacement based upon EGM change
US8050756B2 (en) 2004-12-20 2011-11-01 Cardiac Pacemakers, Inc. Circuit-based devices and methods for pulse control of endocardial pacing in cardiac rhythm management
US7684863B2 (en) 2004-12-20 2010-03-23 Medtronic, Inc. LV threshold measurement and capture management
JP2008523929A (ja) 2004-12-21 2008-07-10 シドニー ウエスト エリア ヘルス サービス 電気生理学データの自動処理
US20080021336A1 (en) 2006-04-24 2008-01-24 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac synchrony and dyssynchrony
US20060178586A1 (en) 2005-02-07 2006-08-10 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac function and identification of LV target pacing zones
US7515959B2 (en) 2005-03-31 2009-04-07 Medtronic, Inc. Delivery of CRT therapy during AT/AF termination
JP5027797B2 (ja) 2005-03-31 2012-09-19 プロテウス バイオメディカル インコーポレイテッド 心臓再同期化のための多重電極ペーシングの自動最適化
US7555340B2 (en) 2005-04-01 2009-06-30 Cardiac Pacemakers, Inc. Electrogram morphology-based CRT optimization
US8214041B2 (en) 2005-04-19 2012-07-03 Medtronic, Inc. Optimization of AV intervals in single ventricle fusion pacing through electrogram morphology
US7769451B2 (en) 2005-04-28 2010-08-03 Medtronic, Inc. Method and apparatus for optimizing cardiac resynchronization therapy
JP2008539857A (ja) 2005-05-03 2008-11-20 パイエオン インコーポレイテッド 両心室ペースメーカーのリードおよび電極を配置するための方法および装置
EP1906821B1 (en) 2005-07-22 2020-01-15 Case Western Reserve University System for noninvasive electrocardiographic imaging (ecgi)
US10406366B2 (en) 2006-11-17 2019-09-10 Respicardia, Inc. Transvenous phrenic nerve stimulation system
DE602006016477D1 (de) * 2005-12-13 2010-10-07 Cook Inc Implantierbare medizinische vorrichtung mit palladium
US7570999B2 (en) 2005-12-20 2009-08-04 Cardiac Pacemakers, Inc. Implantable device for treating epilepsy and cardiac rhythm disorders
US7751882B1 (en) 2005-12-21 2010-07-06 Pacesetter, Inc. Method and system for determining lead position for optimized cardiac resynchronization therapy hemodynamics
US7848807B2 (en) 2005-12-30 2010-12-07 Medtronic, Inc. Closed loop optimization of A-V and V-V timing
US8175703B2 (en) 2006-01-25 2012-05-08 Cardiac Pacemakers, Inc. Cardiac resynchronization therapy parameter optimization
US7567836B2 (en) 2006-01-30 2009-07-28 Cardiac Pacemakers, Inc. ECG signal power vector detection of ischemia or infarction
US7860580B2 (en) 2006-04-24 2010-12-28 Medtronic, Inc. Active fixation medical electrical lead
US7792584B2 (en) 2006-04-25 2010-09-07 Medtronic, Inc. System and method for characterization of atrial wall using digital signal processing
EP2029227A1 (en) 2006-05-31 2009-03-04 St. Jude Medical AB A method in an imd system
US7505810B2 (en) 2006-06-13 2009-03-17 Rhythmia Medical, Inc. Non-contact cardiac mapping, including preprocessing
US8725255B2 (en) 2006-11-17 2014-05-13 Cardiac Pacemakers, Inc. Cardiac resynchronization therapy optimization using cardiac activation sequence information
US7616993B2 (en) 2006-11-27 2009-11-10 Biotronik Crm Patent Ag Heart stimulator using a Bezier function to define AV-delay values
US7765002B2 (en) 2006-12-08 2010-07-27 Cardiac Pacemakers, Inc. Rate aberrant beat selection and template formation
US7941213B2 (en) 2006-12-28 2011-05-10 Medtronic, Inc. System and method to evaluate electrode position and spacing
US8195292B2 (en) 2007-02-16 2012-06-05 Pacestter, Inc. Cardiac resynchronization therapy optimization using parameter estimation from realtime electrode motion tracking
US8155756B2 (en) 2007-02-16 2012-04-10 Pacesetter, Inc. Motion-based optimization for placement of cardiac stimulation electrodes
US20080242976A1 (en) 2007-03-30 2008-10-02 Proteus Biomedical, Inc. Electric field tomography
US7912544B1 (en) 2007-04-20 2011-03-22 Pacesetter, Inc. CRT responder model using EGM information
US7957799B2 (en) 2007-04-30 2011-06-07 Medtronic, Inc. Non-invasive cardiac potentiation therapy
US7706879B2 (en) 2007-04-30 2010-04-27 Medtronic, Inc. Apparatus and methods for automatic determination of a fusion pacing pre-excitation interval
US7769464B2 (en) 2007-04-30 2010-08-03 Medtronic, Inc. Therapy adjustment
US20080281195A1 (en) 2007-05-09 2008-11-13 General Electric Company System and method for planning LV lead placement for cardiac resynchronization therapy
US8160700B1 (en) 2007-05-16 2012-04-17 Pacesetter, Inc. Adaptive single site and multi-site ventricular pacing
WO2008151077A2 (en) 2007-06-01 2008-12-11 Cdl Nuclear Technologies, Inc. Method, apparatus and protocol for screening appropriate patient candidates and for cardiac resychronization therapy (crt), determining cardiac functional response to adjustments of ventricular pacing devices and follow-up of crt patient outcomes
US8301246B2 (en) 2007-06-07 2012-10-30 Pacesetter, Inc. System and method for improving CRT response and identifying potential non-responders to CRT therapy
US20090048528A1 (en) 2007-08-16 2009-02-19 Bruce Hopenfeld System and methods for detecting ischemia with a limited extracardiac lead set
US20090054941A1 (en) 2007-08-20 2009-02-26 Medtronic, Inc. Stimulation field management
WO2009025824A1 (en) 2007-08-20 2009-02-26 Medtronic, Inc. Implantable medical lead with biased electrode
US8326418B2 (en) 2007-08-20 2012-12-04 Medtronic, Inc. Evaluating therapeutic stimulation electrode configurations based on physiological responses
US20090112109A1 (en) 2007-08-31 2009-04-30 Pawel Kuklik Reconstruction of geometry of a body component and analysis of spatial distribution of electrophysiological values
US8485980B2 (en) 2007-09-28 2013-07-16 Maquet Critical Care Ab Electrode positioning
US8180428B2 (en) 2007-10-03 2012-05-15 Medtronic, Inc. Methods and systems for use in selecting cardiac pacing sites
US8145306B2 (en) 2007-10-15 2012-03-27 Lessmeier Timothy J Method for optimizing CRT therapy
EP2070562B1 (fr) 2007-12-13 2010-12-29 Ela Medical Dispositif médical pour la caractérisation de l'état cardiaque d'un patient appareillé avec un implant actif à stimulation biventriculaire
US20100280355A1 (en) 2007-12-14 2010-11-04 Grimm Richard A System and method to characterize cardiac function
US20090232448A1 (en) 2008-03-14 2009-09-17 Eci Technology, Inc. Fiber optic multiplexer
US8814798B2 (en) 2008-04-25 2014-08-26 Medtronic, Inc. Implantable device and method for monitoring venous diameter
WO2009139911A2 (en) 2008-05-16 2009-11-19 Heartscape Technologies, Inc. Electrode patch monitoring device
WO2009148428A1 (en) 2008-06-02 2009-12-10 Medtronic, Inc. Electrode lead integrity reports
US8200322B2 (en) 2008-06-02 2012-06-12 Medtronic, Inc. Electrogram storage for suspected non-physiological episodes
US20090299423A1 (en) 2008-06-03 2009-12-03 Pacesetter, Inc. Systems and methods for determining inter-atrial conduction delays using multi-pole left ventricular pacing/sensing leads
US8019409B2 (en) 2008-06-09 2011-09-13 Pacesetter, Inc. Cardiac resynchronization therapy optimization using electromechanical delay from realtime electrode motion tracking
US8155739B2 (en) 2008-06-20 2012-04-10 Pacesetter, Inc. Cardiac resynchronization therapy optimization using mechanical dyssynchrony and shortening parameters from realtime electrode motion tracking
WO2010019494A1 (en) 2008-08-11 2010-02-18 Washington University In St. Louis Systems and methods for on-site and real-time electrocardiographic imaging (ecgi)
US8090443B2 (en) 2008-09-15 2012-01-03 Xiaoyi Min Monitoring HF exacerbation and cardiac resynchronization therapy performance
WO2010046838A1 (en) 2008-10-23 2010-04-29 Koninklijke Philips Electronics N.V. Cardiac- and/or respiratory-gated image acquisition system and method for virtual anatomy enriched real-time 2d imaging in interventional radiofrequency ablation or pacemaker placement procedures
US8554314B2 (en) 2008-10-31 2013-10-08 Medtronic, Inc. Device and method to detect the severity of ischemia and heart attack risk
US9446246B2 (en) 2008-11-07 2016-09-20 Pacesetter, Inc. Identification of electro-mechanical dysynchrony with a non-cardiac resynchronization therapeutic device
JP5911726B2 (ja) 2008-11-10 2016-04-27 カーディオインサイト テクノロジーズ インコーポレイテッド 電気生理学データの視覚化
US9055880B2 (en) 2008-12-18 2015-06-16 Maquet Critical Care Ab Method and apparatus for determining an in vivo position of an esophageal catheter
US8204590B2 (en) 2009-01-30 2012-06-19 Medtronic, Inc. Fusion pacing interval determination
US8755881B2 (en) 2009-01-30 2014-06-17 Medtronic, Inc. Pacing therapy adjustment based on ventriculo-atrial delay
US20100198292A1 (en) 2009-01-30 2010-08-05 Medtronic, Inc. Evaluating electrode configurations for delivering cardiac pacing therapy
US8219186B2 (en) 2009-03-05 2012-07-10 Chen Guangren Non-invasive system and method for scanning the heart
US8326419B2 (en) 2009-04-07 2012-12-04 Pacesetter, Inc. Therapy optimization via multi-dimensional mapping
JP5410600B2 (ja) 2009-05-27 2014-02-05 カーディアック ペースメイカーズ, インコーポレイテッド 横隔神経活性化の検知
US8886313B2 (en) 2009-07-02 2014-11-11 Cardiac Pacemakers Inc. Systems and methods for ranking and selection of pacing vectors
US9387329B2 (en) 2009-07-22 2016-07-12 Pacesetter, Inc. Systems and methods for determining ventricular pacing sites for use with multi-pole leads
US8626260B2 (en) 2009-08-27 2014-01-07 William Crosby Expandable electrode pad
US20110054560A1 (en) 2009-09-03 2011-03-03 Pacesetter, Inc. Pacing, sensing and other parameter maps based on localization system data
US8285377B2 (en) 2009-09-03 2012-10-09 Pacesetter, Inc. Pacing, sensing and other parameter maps based on localization system data
US8731642B2 (en) 2009-11-08 2014-05-20 Paieon Inc. Apparatus and method for locating a device tip within a volume
US8412327B2 (en) 2009-11-18 2013-04-02 Pacesetter, Inc. Cardiac resynchronization therapy optimization using vector measurements obtained from realtime electrode position tracking
US9381363B2 (en) 2009-12-07 2016-07-05 Pacesetter, Inc. Optimal pacing configuration via ventricular conduction delays
SE534636C2 (sv) 2009-12-12 2011-11-01 Anna Bjaellmark Ett system för kvantifiering och visualisering av hjärtats rotationsmönster
US8942818B2 (en) 2009-12-30 2015-01-27 Medtronic, Inc. Communication with an implantable medical device during implantation
EP2533853A4 (en) 2010-02-12 2013-11-06 Brigham & Womens Hospital SYSTEM AND METHOD FOR THE AUTOMATED SETTING OF CONTROL PARAMETERS FOR CARDIAL RESYNCHRONIZATION THERAPY
US20110213260A1 (en) 2010-02-26 2011-09-01 Pacesetter, Inc. Crt lead placement based on optimal branch selection and optimal site selection
JP2013535236A (ja) 2010-07-01 2013-09-12 カーディアック ペースメイカーズ, インコーポレイテッド 律動相関診断測定
WO2012037471A2 (en) 2010-09-17 2012-03-22 Cardioinsight Technologies, Inc. System and methods for computing activation maps
US8718770B2 (en) 2010-10-21 2014-05-06 Medtronic, Inc. Capture threshold measurement for selection of pacing vector
US8401646B2 (en) 2010-10-21 2013-03-19 Medtronic, Inc. Method and apparatus to determine the relative energy expenditure for a plurality of pacing vectors
US8583230B2 (en) 2011-01-19 2013-11-12 Pacesetter, Inc. Systems and methods for selectively limiting multi-site ventricular pacing delays during optimization of cardiac resynchronization therapy parameters
JP2014505558A (ja) 2011-02-01 2014-03-06 ブリガム・アンド・ウイミンズ・ホスピタル・インコーポレイテッド 心室興奮シミュレーションと表面ecg測定値を用いた心臓再同期療法調節パラメータ生成のためのシステム及び方法
JP6203641B2 (ja) 2011-02-11 2017-09-27 ザ・ジョンズ・ホプキンス・ユニバーシティー 患者別に心臓手術を計画するシステム、方法、およびプログラム
CN103391744B (zh) 2011-02-17 2015-06-17 皇家飞利浦有限公司 用于提供电活动图的系统
US8380308B2 (en) 2011-03-29 2013-02-19 Pacesetter, Inc. Systems and methods for optimizing ventricular pacing based on left atrial electromechanical activation detected by an AV groove electrode
US8972228B2 (en) 2011-05-03 2015-03-03 Medtronic, Inc. Assessing intra-cardiac activation patterns
US20120296387A1 (en) 2011-05-19 2012-11-22 Xusheng Zhang Phrenic nerve stimulation detection using heart sounds
US8617082B2 (en) 2011-05-19 2013-12-31 Medtronic, Inc. Heart sounds-based pacing optimization
US8718750B2 (en) 2011-05-26 2014-05-06 Biotronik Se & Co. Kg Heart stimulator and method for A-V delay optimization
US20120330179A1 (en) 2011-06-24 2012-12-27 Verathon, Inc. Electrode contact-quality evaluation
US9186515B2 (en) 2011-07-05 2015-11-17 Cardioinsight Technologies, Inc. System and methods to facilitate providing therapy to a patient
US8897851B2 (en) 2011-07-14 2014-11-25 Verathon Inc. Releasable liner for sensor device
WO2013010165A1 (en) 2011-07-14 2013-01-17 Brigham And Women's Hospital, Inc. System and method for automated adjustment of cardiac resynchronization therapy control parameters
US9615790B2 (en) 2011-07-14 2017-04-11 Verathon Inc. Sensor device with flexible joints
US8527050B2 (en) 2011-07-28 2013-09-03 Medtronic, Inc. Method for discriminating anodal and cathodal capture
US8744576B2 (en) 2011-07-29 2014-06-03 Medtronic, Inc. Sampling intrinsic AV conduction time
US8954160B2 (en) 2011-09-02 2015-02-10 Medtronic, Inc. Detection of extracardiac stimulation by a cardiac rhythm management device
US20130072790A1 (en) 2011-09-19 2013-03-21 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Selection and optimization for cardiac resynchronization therapy
US9549683B2 (en) 2011-10-12 2017-01-24 Cardioinsight Technologies, Inc. Sensing zone for spatially relevant electrical information
US8861830B2 (en) 2011-11-07 2014-10-14 Paieon Inc. Method and system for detecting and analyzing heart mechanics
US9199087B2 (en) 2011-11-21 2015-12-01 Medtronic, Inc. Apparatus and method for selecting a preferred pacing vector in a cardiac resynchronization device
US8886315B2 (en) 2011-12-23 2014-11-11 Medtronic, Inc. Effectiveness of ventricular sense response in CRT
US8620433B2 (en) 2012-02-17 2013-12-31 Medtronic, Inc. Criteria for optimal electrical resynchronization derived from multipolar leads or multiple electrodes during biventricular pacing
US10413203B2 (en) 2012-03-27 2019-09-17 Cardiac Pacemakers, Inc. Baseline determination for phrenic nerve stimulation detection
US8958876B2 (en) 2012-03-27 2015-02-17 Cardiac Pacemakers, Inc. Determination of phrenic nerve stimulation threshold
US20130289640A1 (en) 2012-04-27 2013-10-31 Medtronic, Inc. Heart sound-based pacing vector selection system and method
US9470728B2 (en) 2012-05-09 2016-10-18 Cardioinsight Technologies, Inc. Channel integrity detection
US8527051B1 (en) 2012-07-10 2013-09-03 St. Jude Medical Ab Detection and reduction of phrenic nerve stimulation
US9272151B2 (en) 2012-07-12 2016-03-01 Cardiac Pacemakers, Inc. Adaptive phrenic nerve stimulation detection
US8781584B2 (en) 2012-11-15 2014-07-15 Medtronic, Inc. Capture threshold measurement for selection of pacing vector
US9320905B2 (en) 2012-12-06 2016-04-26 Medtronic, Inc. Effective capture test
US8738132B1 (en) 2012-12-06 2014-05-27 Medtronic, Inc. Effective capture test
US9604064B2 (en) 2013-02-21 2017-03-28 Medtronic, Inc. Criteria for optimal electrical resynchronization during fusion pacing
US9931048B2 (en) 2013-04-30 2018-04-03 Medtronic, Inc. Systems, methods, and interfaces for identifying effective electrodes
US10064567B2 (en) 2013-04-30 2018-09-04 Medtronic, Inc. Systems, methods, and interfaces for identifying optimal electrical vectors
US9474457B2 (en) 2013-06-12 2016-10-25 Medtronic, Inc. Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
US10251555B2 (en) 2013-06-12 2019-04-09 Medtronic, Inc. Implantable electrode location selection
US9877789B2 (en) 2013-06-12 2018-01-30 Medtronic, Inc. Implantable electrode location selection
US9282907B2 (en) 2013-07-23 2016-03-15 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9265954B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9265955B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9511233B2 (en) 2013-11-21 2016-12-06 Medtronic, Inc. Systems and methods for leadless cardiac resynchronization therapy
US9986928B2 (en) 2013-12-09 2018-06-05 Medtronic, Inc. Noninvasive cardiac therapy evaluation
US9320446B2 (en) 2013-12-09 2016-04-26 Medtronic, Inc. Bioelectric sensor device and methods
US9776009B2 (en) 2014-03-20 2017-10-03 Medtronic, Inc. Non-invasive detection of phrenic nerve stimulation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002090A1 (en) * 1996-07-17 1998-01-22 Cambridge Heart, Inc. Generation of localized cardiac measures
CN1474707A (zh) * 2000-09-12 2004-02-11 �˵á�K���� 生肌细胞输送导管和方法
CN101083939A (zh) * 2004-10-25 2007-12-05 泰·川·阿尔弗雷德·克维克 用于检测心脏事件的系统、方法和设备
US7917214B1 (en) * 2007-09-06 2011-03-29 Pacesetter, Inc. Methods and systems for identifying a preferred pacing configuration for a multi-electrode implantable cardiac electrotherapy device
US20100174137A1 (en) * 2009-01-06 2010-07-08 Youngtack Shim Adaptive stimulation systems and methods
US20100256701A1 (en) * 2009-04-01 2010-10-07 Pacesetter, Inc. Determining Site-To-Site Pacing Delay For Multi-Site Anti-Tachycardia Pacing
US20110144510A1 (en) * 2009-12-16 2011-06-16 Pacesetter, Inc. Methods to identify damaged or scarred tissue based on position information and physiological information
CN102362808A (zh) * 2011-10-19 2012-02-29 汤日波 具有电生理标测、三维定位功能的心肌活检系统
US20130131749A1 (en) * 2011-11-21 2013-05-23 Medtronic, Inc. Method for efficient delivery of dual site pacing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110025375A (zh) * 2017-12-20 2019-07-19 韦伯斯特生物官能(以色列)有限公司 对心脏表面的计算机化模型进行标记
CN111770722A (zh) * 2018-02-27 2020-10-13 罗伯特·博世有限公司 具有心脏振动描记信号的自动参考的可穿戴健康设备系统
CN111770722B (zh) * 2018-02-27 2024-01-02 罗伯特·博世有限公司 具有心脏振动描记信号的自动参考的可穿戴健康设备系统

Also Published As

Publication number Publication date
US9278220B2 (en) 2016-03-08
EP3024384B1 (en) 2021-08-25
US20150032171A1 (en) 2015-01-29
EP3024384A1 (en) 2016-06-01
CN113057643A (zh) 2021-07-02
WO2015013258A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
CN105431081A (zh) 标识健康基质与不健康基质以从多极引线起搏
CN105431082A (zh) 标识健康基质与不健康基质以从多极引线起搏
CN104066478B (zh) 用于使用多极左心室导线的自适应心脏再同步治疗的方法和装置
CN105578955B (zh) 确定心脏去极化和复极化波的起始和终止
CN105579095B (zh) 用于改进对心脏再同步治疗中左心室起搏相对于固有右心室激动的时间估算的方法及系统
US8954160B2 (en) Detection of extracardiac stimulation by a cardiac rhythm management device
EP3183035B1 (en) Visual representation of a cardiac signal sensing test
CN105579093B (zh) 采用机械和电再同步的反馈的结合来选择治疗参数的医疗设备系统
US8682436B2 (en) Detection of target vein for CRT therapy
CN110382042A (zh) 用于确定起搏电极附近的局部组织延迟的标准
CN105358215A (zh) 用于标识最佳电向量的系统、方法和界面
CN105981021A (zh) 非侵入性心脏治疗评估
CN105579094A (zh) 用于改进对心脏再同步治疗中左心室起搏相对于固有右心室激动的时间估算的方法及系统
CN104334231A (zh) 对引线绝缘破裂和引线导体的表面化进行标识
US8306622B2 (en) Left atrial sense or capture detection from coronary sinus
US8812092B2 (en) Orientation determination for an implantable medical device
EP4188208A1 (en) Patient screening and ecg belt for brady therapy tuning

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160323