CN105429925B - 基于快速独立分量分析的多天线ofdma信号解码方法 - Google Patents

基于快速独立分量分析的多天线ofdma信号解码方法 Download PDF

Info

Publication number
CN105429925B
CN105429925B CN201510795557.3A CN201510795557A CN105429925B CN 105429925 B CN105429925 B CN 105429925B CN 201510795557 A CN201510795557 A CN 201510795557A CN 105429925 B CN105429925 B CN 105429925B
Authority
CN
China
Prior art keywords
signal
ofdma
user
vector
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510795557.3A
Other languages
English (en)
Other versions
CN105429925A (zh
Inventor
沈雷
卜燕燕
胡桃桃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Aoxinta Electronic Technology Co Ltd
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201510795557.3A priority Critical patent/CN105429925B/zh
Publication of CN105429925A publication Critical patent/CN105429925A/zh
Application granted granted Critical
Publication of CN105429925B publication Critical patent/CN105429925B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0865Independent weighting, i.e. weights based on own antenna reception parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset

Abstract

本发明公开了一种基于快速独立分量分析的多天线OFDMA信号解码方法。本发明包括以下步骤:步骤1、根据快速独立分量分析算法对于输入信号的要求,建立信号模型;步骤2、在高斯噪声下对观测向量进行PCA白化;步骤3、不需要知道任何有关子载波的信息,将多个调制在OFDMA子载波用户信息进行分离;步骤4、子载波序列估计和OFDMA用户识别。本发明以Fast‑ICA为基础对多天线OFDMA信号进行数学统计建模,并进行信道盲估计和解码,在不去除循环前缀的情况下增加了信号能量,提高了解码性能。该方法在接收端不需要定时,对OFDMA信号进行盲分离解码,解码性能好。

Description

基于快速独立分量分析的多天线OFDMA信号解码方法
技术领域
本发明属于通信技术领域,具体涉及一种基于快速独立分量分析的多天线OFDMA信号解码方法。
背景技术
MIMO(Multiple-Input Multiple-Output)技术充分开发空间资源,利用多个天线实现多发多收,在不增加频谱资源和天线发送功率的情况下,可以成倍地提高信道容量,满足未来无线通信中高速数据传输的需求。OFDMA(Orthogonal Frequency DivisionMultiplexing Acess)是为每个用户分配不同的子载波的一种多址方式。OFDMA使每个子信道经历平坦衰落,具有抗多径干扰、频谱利用率高等优点。因此充分开发这两种技术的潜力,将二者结合起来(MIMO-OFDM)可以成为新一代移动通信核心技术的解决方案。
传统的OFDMA系统在接收端进行解调时,接收端接收到信号后一般先进行信道估计,根据估计的信道值再进行信号解码,最后去掉CP部分,再进行FFT解调。信道估计方法可分成基于训练序列的信道估计和盲信道估计。基于训练序列的信道估计算法是指利用接收机已知的信息来进行信道估计。OFDMA系统的信道估计算法一般有:最小平方LS算法,最小均方误差MMSE算法等。然而基于导频的LS信道估计算法对高斯噪声和多径干扰比较敏感。MMSE算法估计精度比LS算法有所提高,但计算的复杂度也很高。解码算法一般采用ZF解码和MMSE解码算法。这些解码解码算法都是基于信道估计的基础上进行的,如果信道估计不准确,会导致解码算法性能下降。为了增加信道估计的准确性,必须增加训练序列长度,而训练序列长度增加,会降低系统传输效率。基于信道盲估计的解码算法,利用信号的统计特性,对多天线信道进行估计,虽然不需要额外的训练序列。但是目前的信道盲估计方法,同样需要进FFT解调和解码。如果信道估计不准,会引起后续的FFT解调和解码性能下降。
发明内容
本发明的目的是针对现有技术的不足,解决多天线OFDMA信号的盲解码,本发明提出了一种基于快速独立分量分析的多天线OFDMA信号解码方法。本发明假定信道是瑞利慢衰落信道,衰落因子在一个衰落块内保持不变,即信道在一个数据块取值范围内是平稳的,发射端采用单天线,接收端采用多天线,接收端各个天线统计独立。
本发明解决其技术问题所采用的技术方案包括如下步骤:
步骤1、根据快速独立分量分析(Fast-ICA)的信号模型要求,定义一个长度为2(L+Lp)×1的向量,其中L为OFDMA子载波数,Lp为循环前缀数;设接收端天线数为Nt,则在发送端的单用户条件下,将L个子载波分成Q个子信道,每个子信道由P=L/Q个子载波组成;用交织型分配的方法将子信道分配给K个用户,每个用户占用一个子信道(Q≥K)。第k个子信道所包含的子载波集合为{qk,Q+qk,...,(P-1)Q+qk},其中qk=0,1,...,Q-1。设用户在发送端发送的信号被分为长度为L的数据块,OFDMA系统中用户在特定的P路子载波上传输信号,假设传输信号为BPSK调制,即bn为BPSK信号,△fk为第k个用户的归一化频偏,且△fk∈(-0.5,0.5),Lc为多径个数,T为接收端延迟。
则发送端的信号模型为:
其中,是2(L+Lp)×1维的复高斯白噪声序列,实部和虚部独立同分布,服从N(0,σ2)。
其中,F1和F2分别表示为:
hm为第m根天线下多径信道:
该信道是瑞利慢衰落信道,衰落因子在一个衰落块内保持不变,在不同的衰落块内发生改变,衰落因子是独立同分布的单位方差零均值复高斯分布随机变量。
信号模型的矩阵模式表示为:
混合矩阵Gm的大小为2(L+Lp)×3KP:
Dn是由3KP个统计独立信源信号号组成的独立向量:
接收端Nt根天线接收到的信号向量表示为:
其中:
其中:
式中,αl多径延迟,αl∈(0,...,Lc-1)由式(10)得到,多天线下OFDMA接收信号表示成混合矩阵和信源相乘。混合矩阵中列结构包含了各个子载波序列,使得混合矩阵G′列满秩,信源中各个变量统计独立,式(10)符合盲源分离结构。
步骤2、高斯噪声下观测向量yn的PCA白化
定义一个4Nt(L+Lp)×1的列向量yn′:
设在一个衰落信道块观测样本数为N,在一个衰落块内信道保持不变,而在不同的衰落块内,信道服从瑞利衰落,则能够得到观测向量yn的协方差矩阵:
式中:向量UN为4(L+Lp)×(4(L+Lp)-3KP)的噪声子空间。采样得到的列向量yn′的协方差矩阵进行降维白化处理,表示为:
式中:为3KP×3KP的对角矩阵,信号子空间Us=[u1,..., u3KP]为4(L+Lp)×3KP的信号子空间,λi是观测信号的协方差矩阵Rq的第i个特征值。υi为λi对 应的特征向量。式(15)中:为满秩方阵。其中
步骤3、盲信号分离
由式(15)可知,OFDMA的各个用户的信息是统计独立的,且混和矩阵A是满秩的,因此搜索一个正交矩阵W,使得:
式中:Yn为经过ICA后,对Dn的估计。当没有噪声时,Yn=Dn。通过式(16)能够快速定点ICA算法得到最佳矩阵W。观测样本数为N,搜索过程如下:
1)对于Xn(n=1,2,...,N),搜索正交矩阵W=[w1,w2,...,w3KP],设i=1.
2)初始化wi,使wi为一单位长度的随机向量;
3)用固定迭代法计算下一个向量,具体如下:
4)为了使wi与W中已经提取的列向量所张成的子空间正交,进行如下处理:
5)归一化wi
6)重复执行步骤3)-步骤5),直至|wi(k)Τ·wi(k-1)|足够靠近1,然后置i=i+1。
7)如果i<3KP,回到步骤2),否则整个搜索算法结束。
可以看到ICA不需要知道任何有关子载波的信息,可以将多个调制在OFDMA子载波用户信息进行分离。
步骤4、子载波序列估计和OFDMA用户识别
由于独立分量分析法具有分离顺序不确定性,无法区分分离出来的数据信息属于哪个用户。这里提出利用ICA算法估计子载波序列,由于OFDMA信号各个用户的子载波频率是不同的,从而克服分离顺序的不确定性,对OFDMA信号中各个用户进行识别。
这里首先分析对子载波进行估计,通过式(15)和(16)能够得出,当搜索结束时,WT·A=I,即:
一般在多天线OFDMA盲估计中,信号子空间的能量远大于噪声子空间的能量,由(18)式能够近似得到联合式(19)可得G″T的第k个行向量为:
包含了用户的子载波信息,由于各个用户所在子载波频率是不一样的,频率不同对应着过零点的不同,通过计算过零点来得到相应频率的子载波序列,由此找到完整的KP个多天线OFDMA用户数据序列,克服了ICA分离顺序的不确定性。将求得的代入(16)能够得到用户数据估计信息:
本发明有益效果如下:
本发明以Fast-ICA为基础对多天线OFDMA信号进行数学统计建模,并进行信道盲估计和解码,在不去除循环前缀的情况下增加了信号能量,提高了解码性能。该方法在接收端不需要定时同步,对OFDMA信号进行盲分离解码,解码性能好。
附图说明
图1是基于快速独立分量分析总体方案图。
图2是在不同循环长度下解码性能与其它解码算法的比较。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
如图1所示,本发明假定信道是瑞利慢衰落信道,衰落因子在一个衰落块内保持不变,即信道在一个数据块取值范围内是平稳的,发射端采用单天线,接收端采用多天线,接收端各个天线统计独立。本发明基于快速独立分量分析的多天线OFDMA信号解码方法,具体包括如下步骤:
步骤1、根据快速独立分量分析(Fast-ICA)的信号模型要求,定义一个长度为2(L+Lp)×1的向量,其中L为OFDMA子载波数,Lp为循环前缀数;设接收端天线数为Nt,则在发送端的单用户条件下,将L个子载波分成Q个子信道,每个子信道由P=L/Q个子载波组成;用交织型分配的方法将子信道分配给K个用户,每个用户占用一个子信道(Q≥K)。第k个子信道所包含的子载波集合为{qk,Q+qk,...,(P-1)Q+qk},其中qk=0,1,...,Q-1。设用户在发送端发送的信号被分为长度为L的数据块,OFDMA系统中用户在特定的P路子载波上传输信号,假设传输信号为BPSK调制,即bn为BPSK信号,△fk为第k个用户的归一化频偏,且△fk∈(-0.5,0.5),Lc为多径个数,T为接收端延迟。
则发送端的信号模型为:
其中,是2(L+Lp)×1维的复高斯白噪声序列,实部和虚部独立同分布,服从N(0,σ2)。
其中,F1和F2分别表示为:
hm为第m根天线下多径信道:
该信道是瑞利慢衰落信道,衰落因子在一个衰落块内保持不变,在不同的衰落块内发生改变,衰落因子是独立同分布的单位方差零均值复高斯分布随机变量。
信号模型的矩阵模式表示为:
混合矩阵Gm的大小为2(L+Lp)×3KP:
Dn是由3KP个统计独立信源信号号组成的独立向量:
接收端Nt根天线接收到的信号向量表示为:
其中:
其中:
式中,αl多径延迟,αl∈(0,...,Lc-1)由式(10)得到,多天线下OFDMA接收信号表示成混合矩阵和信源相乘。混合矩阵中列结构包含了各个子载波序列,使得混合矩阵G′列满秩,信源中各个变量统计独立,式(10)符合盲源分离结构。
步骤2、高斯噪声下观测向量yn的PCA白化
定义一个4Nt(L+Lp)×1的列向量yn′:
设在一个衰落信道块观测样本数为N,在一个衰落块内信道保持不变,而在不同的衰落块内,信道服从瑞利衰落,则能够得到观测向量yn的协方差矩阵:
式中:向量UN为4(L+Lp)×(4(L+Lp)-3KP)的噪声子空间。采样得到的列
向量yn′的协方差矩阵进行降维白化处理,表示为:
式中:为3KP×3KP的对角矩阵,信号子空间Us=[u1,..., u3KP]为4(L+Lp)×3KP的信号子空间,λi是观测信号的协方差矩阵Rq的第i个特征值。υi为λi对 应的特征向量。式(15)中:为满秩方阵。其中
步骤3、盲信号分离
由式(15)可知,OFDMA的各个用户的信息是统计独立的,且混和矩阵A是满秩的,因此搜索一个正交矩阵W,使得:
式中:Yn为经过ICA后,对Dn的估计。当没有噪声时,Yn=Dn。通过式(16)能够快速定点ICA算法得到最佳矩阵W。观测样本数为N,搜索过程如下:
1)对于Xn(n=1,2,...,N),搜索正交矩阵W=[w1,w2,...,w3KP],设i=1;
2)初始化wi,使wi为一单位长度的随机向量;
3)用固定迭代法计算下一个向量,具体如下:
4)为了使wi与W中已经提取的列向量所张成的子空间正交,进行如下处理:
5)归一化wi
6)重复执行步骤3)-步骤5),直至|wi(k)Τ·wi(k-1)|足够靠近1,然后置i=i+1。
7)如果i<3KP,回到步骤2),否则整个搜索算法结束。
可以看到ICA不需要知道任何有关子载波的信息,可以将多个调制在OFDMA子载波用户信息进行分离。
步骤4、子载波序列估计和OFDMA用户识别
由于独立分量分析法具有分离顺序不确定性,无法区分分离出来的数据信息属于哪个用户。这里提出利用ICA算法估计子载波序列,由于OFDMA信号各个用户的子载波频率是不同的,从而克服分离顺序的不确定性,对OFDMA信号中各个用户进行识别。
这里首先分析对子载波进行估计,通过式(15)和(16)能够得出,当搜索结束时,WT·A=I,即:
一般在多天线OFDMA盲估计中,信号子空间的能量远大于噪声子空间的能量,由(18)式能够近似得到联合式(19)可得G″T的第k个行向量为:
包含了用户的子载波信息,由于各个用户所在子载波频率是不一样的,频率不同对应着过零点的不同,通过计算过零点来得到相应频率的子载波序列,由此找到完整的KP个多天线OFDMA用户数据序列,克服了ICA分离顺序的不确定性。将求得的代入(16)能够得到用户数据估计信息:
实施例:
图2是在如下参数情况下进行仿真:接收端天线个数Nt=3,子载波数为L=16,子载波被划分为8个子信道,即Q=8,每个子信道中有2路子载波。在本文中我们取两个子信道,分别给两个用户,即K=2,每个用户占用2路子载波。多径数为4路,取q1=3和q2=7。用户1和用户2所对应的归一化频偏△f1和△f2分别为0.18和0.2,延迟T=5。多径数Lc=4,每一路多径衰落系数服从零均值单位方差的高斯分布.
图2给出本发明基于独立分量分析多天线OFDMA盲解码算法和基于训练序列信道估计的MMSE解码算法以及信道已知情况下基于MMSE解码算法的性能比较。由图2可得,基于独立分量分析的多天线OFDMA信号解码算法,比信道已知时的MMSE解码算法具有更好的性能。

Claims (1)

1.基于快速独立分量分析的多天线OFDMA信号解码方法,其特征在于包括如下步骤:
步骤1、根据快速独立分量分析的信号模型要求,定义一个长度为2(L+Lp)×1的向量,其中L为OFDMA子载波数,Lp为循环前缀数;设接收端天线数为Nt,则在发送端的单用户条件下,将L个子载波分成Q个子信道,每个子信道由P=L/Q个子载波组成;用交织型分配的方法将子信道分配给K个用户,每个用户占用一个子信道,Q≥K;第k个子信道所包含的子载波集合为{qk,Q+qk,...,(P-1)Q+qk},其中qk=0,1,...,Q-1;设用户在发送端发送的信号被分为长度为L的数据块,OFDMA系统中用户在特定的P路子载波上传输信号,假设传输信号为BPSK调制,即bn为BPSK信号,Δfk为第k个用户的归一化频偏,且Δfk∈(-0.5,0.5),Lc为多径个数,T为接收端延迟;
则发送端的信号模型为:
其中,是2(L+Lp)×1维的复高斯白噪声序列,实部和虚部独立同分布,服从N(0,σ2);
其中,F1和F2分别表示为:
hm为第m根天线下多径信道:
该信道是瑞利慢衰落信道,衰落因子在一个衰落块内保持不变,在不同的衰落块内发生改变,衰落因子是独立同分布的单位方差零均值复高斯分布随机变量;
信号模型的矩阵模式表示为:
混合矩阵Gm的大小为2(L+Lp)×3KP:
Dn是由3KP个统计独立信源信号组成的独立向量:
接收端Nt根天线接收到的信号向量表示为:
其中:
其中:
式中,αl多径延迟,αl∈(0,...,Lc-1)由式(10)得到,多天线下OFDMA接收信号表示成混合矩阵和信源相乘;混合矩阵中列结构包含了各个子载波序列,使得混合矩阵G′列满秩,信源中各个变量统计独立,式(10)符合盲源分离结构;
其中,n表示信息码样本数中的第n位;bn为第n个BPSK信号;p表示子信道中子载波个数中第p个;
步骤2、高斯噪声下观测向量yn的主分量分析PCA白化;
步骤3、盲信号分离;
步骤4、子载波序列估计和OFDMA用户识别;
步骤2所述的高斯噪声下观测向量yn的PCA白化,具体实现如下:
定义一个4Nt(L+Lp)×1的列向量yn′:
设在一个衰落信道块观测样本数为N,在一个衰落块内信道保持不变,而在不同的衰落块内,信道服从瑞利衰落,则能够得到观测向量yn的协方差矩阵:
式中:向量UN为4(L+Lp)×(4(L+Lp)-3KP)的噪声子空间;采样得到的列向量yn′的协方差矩阵进行降维白化处理,表示为:
式中:为3KP×3KP的对角矩阵,信号子空间Us=[u1,...,u3KP]为4(L+Lp)×3KP的信号子空间,λi是观测向量的协方差矩阵Rq的第i个特征值;ui为λi对应的特征向量;式(15)中:为满秩方阵;其中
步骤3所述的盲信号分离,具体实现如下:
由式(15)可知,OFDMA的各个用户的信息是统计独立的,且混合矩阵A是满秩的,因此搜索一个正交矩阵W,使得:
式中:Yn为经过独立分量分析ICA后,对Dn的估计;当没有噪声时,Yn=Dn;通过式(16)能够快速定点ICA算法得到最佳矩阵W;观测样本数为N,搜索过程如下:
1)对于Xn(n=1,2,...,N),搜索正交矩阵W=[w1,w2,...,w3KP],设i=1;
2)初始化wi,使wi为一单位长度的随机向量;
3)用固定迭代法计算下一个向量,具体如下:
4)为了使wi与W中已经提取的列向量所张成的子空间正交,进行如下处理:
5)归一化wi
6)重复执行步骤3)-步骤5),直至|wi(k)T·wi(k-1)|足够靠近1,然后置i=i+1;
7)如果i<3KP,回到步骤2),否则整个搜索算法结束;
步骤4所述的子载波序列估计和OFDMA用户识别,具体实现如下:
首先分析对子载波进行估计,通过式(15)和(16)能够得出,当搜索结束时,WT·A=I,即:
在多天线OFDMA盲估计中,信号子空间的能量远大于噪声子空间的能量,由(18)式能够近似得到联合式(19)可得G″T的第k个行向量为:
包含了用户的子载波信息,由于各个用户所在子载波频率是不一样的,频率不同对应着过零点的不同,通过计算过零点来得到相应频率的子载波序列,由此找到完整的KP个多天线OFDMA用户数据序列,将求得的代入(16)能够得到用户数据估计信息:
CN201510795557.3A 2015-11-18 2015-11-18 基于快速独立分量分析的多天线ofdma信号解码方法 Active CN105429925B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510795557.3A CN105429925B (zh) 2015-11-18 2015-11-18 基于快速独立分量分析的多天线ofdma信号解码方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510795557.3A CN105429925B (zh) 2015-11-18 2015-11-18 基于快速独立分量分析的多天线ofdma信号解码方法

Publications (2)

Publication Number Publication Date
CN105429925A CN105429925A (zh) 2016-03-23
CN105429925B true CN105429925B (zh) 2018-10-19

Family

ID=55507868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510795557.3A Active CN105429925B (zh) 2015-11-18 2015-11-18 基于快速独立分量分析的多天线ofdma信号解码方法

Country Status (1)

Country Link
CN (1) CN105429925B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106789789B (zh) * 2016-12-29 2019-11-22 杭州电子科技大学 Wcdma信号扰码估计和信源信息盲解码方法
CN107547106B (zh) * 2017-10-16 2019-08-13 杭州电子科技大学 多速率长短码直扩码分多址信号的长短码估计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027571A (zh) * 2004-09-23 2007-08-29 美商内数位科技公司 使用展频码的盲信号分离
JP2008306605A (ja) * 2007-06-08 2008-12-18 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 混合信号分離装置及び混合信号分離方法、並びにofdm受信装置及びofdm受信方法
CN101667425A (zh) * 2009-09-22 2010-03-10 山东大学 一种对卷积混叠语音信号进行盲源分离的方法
CN103106903A (zh) * 2013-01-11 2013-05-15 太原科技大学 一种单通道盲源分离法
CN104333406A (zh) * 2014-11-04 2015-02-04 杭州电子科技大学 用于在多小区多用户多天线系统中的解码方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027571A (zh) * 2004-09-23 2007-08-29 美商内数位科技公司 使用展频码的盲信号分离
JP2008306605A (ja) * 2007-06-08 2008-12-18 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 混合信号分離装置及び混合信号分離方法、並びにofdm受信装置及びofdm受信方法
CN101667425A (zh) * 2009-09-22 2010-03-10 山东大学 一种对卷积混叠语音信号进行盲源分离的方法
CN103106903A (zh) * 2013-01-11 2013-05-15 太原科技大学 一种单通道盲源分离法
CN104333406A (zh) * 2014-11-04 2015-02-04 杭州电子科技大学 用于在多小区多用户多天线系统中的解码方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Blind estimation of the pseudo-random sequences of direct sequence spread spectrum signals in multi-path using fast ICA》;shen lei等;《2009 Pacific-Asia Conference on Circuits,Communications and System》;20090517;全文 *
《基于数据重构MNM的交织型OFDMA上行链路频偏盲估计》;丁腾波等;《电路与系统学报》;20091231;第14卷(第6期);全文 *

Also Published As

Publication number Publication date
CN105429925A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
US8320507B2 (en) Mobile communication system, receiving device, and method
CN104393963B (zh) 基于循环平稳特性的空时分组码mc‑cdma信号盲识别方法
US9722679B2 (en) Method and apparatus for estimating communication channel in mobile communication system
US8767671B2 (en) Space division multiple access transmission method of statistical characteristic mode
CN101951353B (zh) 一种干扰环境下的正交频分复用系统信道估计方法
CN102983949B (zh) 多载波mu mimo系统中的sdma传输方法和基站
CN103685096A (zh) 一种基于最优导频的mimo-ofdm系统信道估计方法
CN106506133B (zh) 宽带大规模mimo系统导频池及信道信息获取方法和系统
CN106059639B (zh) 基于矩阵盖尔圆的发射天线数目盲估计方法
CN103621034A (zh) 噪声估计滤波器
CN107465636A (zh) 一种毫米波大规模阵列空频双宽带系统的信道估计方法
Huynh-The et al. MIMO-OFDM modulation classification using three-dimensional convolutional network
CN102833058A (zh) 认知无线电中基于稀疏信道估计的导频设计方法
CN107154814B (zh) 联合用户分组与预编码的方法以及使用所述方法的基站
Nie et al. Automatic modulation classification based multiple cumulants and quasi-newton method for mimo system
CN110460556B (zh) 正交多载波系统无线数据与能量一体化传输信号设计方法
CN105429925B (zh) 基于快速独立分量分析的多天线ofdma信号解码方法
CN106911367B (zh) 基于迭代干扰消除的多小区大规模mimo信道估计方法和装置
CN104618297B (zh) 基于ofdm-dcsk通信系统的信号发射和接收方法
CN104410977B (zh) 一种基于认知学习的同频异构网络广播信道干扰管理方法
CN105871764A (zh) Mc-cdma信号的调制识别及伪码序列盲估计
CN114553640B (zh) 多频段大规模mimo系统中的跨频段统计信道状态信息估计方法
CN105262531B (zh) 用户具有双天线的大规模天线系统的解码方法
Zhou et al. Recursive feature elimination based feature selection in modulation classification for mimo systems
CN103701727A (zh) 信道估计的方法和信道估计器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20191206

Address after: 210000 Kechuang Center, No. 18 Tiancheng Road, Jiangning Binjiang Development Zone, Nanjing City, Jiangsu Province

Patentee after: Jiangsu Aoxinta Electronic Technology Co., Ltd.

Address before: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park No. 2 street

Patentee before: Hangzhou Electronic Science and Technology Univ

TR01 Transfer of patent right