CN105425384A - 一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法 - Google Patents

一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法 Download PDF

Info

Publication number
CN105425384A
CN105425384A CN201510764692.1A CN201510764692A CN105425384A CN 105425384 A CN105425384 A CN 105425384A CN 201510764692 A CN201510764692 A CN 201510764692A CN 105425384 A CN105425384 A CN 105425384A
Authority
CN
China
Prior art keywords
mirror support
catoptron
light hole
support
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510764692.1A
Other languages
English (en)
Other versions
CN105425384B (zh
Inventor
虞益挺
朱全发
苑伟政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201510764692.1A priority Critical patent/CN105425384B/zh
Publication of CN105425384A publication Critical patent/CN105425384A/zh
Application granted granted Critical
Publication of CN105425384B publication Critical patent/CN105425384B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

本发明公开了一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法,属于智能光功能器件领域,主要涉及印刷电路板技术、微加工技术、干涉滤波技术以及电磁驱动技术等。该可调谐珐珀滤波器,主要包括可动镜面支撑4、固定镜面支撑2、第一反射镜8、第二反射镜14、永磁体16和线圈6,所述部件均容纳于箱体1和盖板5形成的空腔内。本发明提出的基于印刷电路板的电磁驱动式可调谐珐珀滤波器具有比静电驱动大的多的可调谐范围,能大幅度增大器件的工作波段;通过调节不同子线圈内电流的大小与方向可以微调器件可动部分,从而克服加工及装配误差,保持上下两镜面平行;同时其制作工艺采用机械加工、标准PCB加工、粘接等工艺,成本低、加工周期短、工艺成熟。本发明将促进微机械可调谐珐珀滤波器在实际系统中的应用推广。

Description

一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法
所属领域
本发明属于智能光功能器件领域,主要涉及印刷电路板技术、微加工技术、干涉滤波技术以及电磁驱动技术等。
现有技术
珐珀滤波器是多光束干涉原理的一个重要应用实例,于1897年由法国物理学家C.Fabry和A.Perot提出。基本结构为两块平行放置的玻璃板,中间形成一个腔体,在两块玻璃板靠近腔体的一侧分别镀有部分反射金属膜。驱动镜面移动调整腔长,并且当入射光波的波长为腔长的整数倍时,光波可形成稳定振荡,产生多光束干涉,输出等间隔梳状波形,调节腔体长度即可只输出所需波段的光波。利用新兴的微机电系统(MEMS)技术可以实现珐珀滤波器的微型化与集成化,具有良好的应用前景。早在1997年,J.Peerlings等人就报道了一种基于MEMS技术的热驱动GaAs-AlAs珐珀滤波器(IEEEPhoton.Technol.Lett,vol.9,pp.1235-1237,1997),其实现方式是通过热电阻加热驱动梁产生热膨胀进而改变腔体长度,停止加热后热膨胀消失,腔体长度即恢复到原来大小,然而热驱动需要较长的加热过程,导致结构响应缓慢,同时功耗也较大。2003年,D.B.Mott等人报道了一种基于MEMS技术制作并采用静电力驱动可动镜面的珐珀滤波器(Proc.SPIE,vol.4841,pp.578-585,2003),其实现方式是通过两反射镜电极之间的电场产生静电力来驱动可动镜面移动,通过弹性支撑梁使镜面复位;为了增加镜面可动范围和器件的使用寿命,电极设计和弹性梁材料的选择至关重要;同时为了得到强电场,施加的高电压将击穿空气造成器件损坏;再者,静电驱动存在“下拉”问题,可动镜面的调制范围仅约谐振腔长度的1/3。2004年,韩国的H.K.Lee等人报道了一种基于硅微加工技术的电磁驱动式微机械可调谐珐珀滤波器(IEEEPhoton.Technol.Lett,vol.16,pp.2087-2089,2004)。金既作为支撑梁结构材料同时又作为线圈,载流线圈在磁场中受到洛伦兹力,从而实现可动镜面平移。然而,该器件制作工艺复杂,较厚的金膜以及多层布拉格反射镜将产生大的应力,影响镜面平整度与两镜面之间的平行度,最终影响器件性能。
2007年,土耳其KOC大学的H.Urey研究小组提出了一种基于FR4材料制作电磁驱动式微机械器件的方法(OpticalMEMSandNanophotonics,IEEE,pp.25-26,Hualien,2007)。FR4材料是目前印刷电路板行业最常用的基板材料之一。相比硅微机械器件,印刷电路板制作工艺成熟,价格低、加工周期短、设计和制造的灵活性大。2008年,该研究小组报道了基于FR4的电磁驱动式微机械扫描镜(IEEEPhoton.Technol.Lett,vol.16,pp.2087-2089,2008)。把FR4基板切割成特定形状,形成镜面工作平台、扭转梁,平台的正反两面均制作有线圈。载流线圈在磁场中受到洛伦兹力的作用,从而驱动工作平台扭转。这种驱动方式具有良好的线性,驱动力大。然而,该器件只有一组线圈,工作平台的姿态无法进行微调,导致扫描角度不能精确定位。受H.Urey等人基于FR4的电磁驱动式微机械扫描镜的启发,本发明提出了一种基于印刷电路板的电磁驱动式微机械可调谐珐珀滤波器及其制作方法。
发明内容
发明目的
为了克服热驱动的响应时间长、功耗大,静电驱动的非线性响应、易击穿、驱动位移有限,硅微电磁驱动制作工艺复杂、驱动位移有限、加工成本高,基于FR4材料的电磁驱动可动镜面姿态无法精确控制等技术缺陷,本发明提出了一种基于印刷电路板的电磁驱动式微机械可调谐珐珀滤波器及其制作方法,旨在实现精确调整可动镜面的姿态、提高器件的线性度响应、增加驱动力、增加光学谐振腔的可调谐范围、降低加工难度和成本、缩短加工周期。
技术方案
参阅图1,本发明提出的基于印刷电路板的电磁驱动式可调谐珐珀滤波器,主要包括可动镜面支撑4、固定镜面支撑2、第一反射镜8、第二反射镜14、永磁体16和线圈6,所述部件均容纳于箱体1和盖板5形成的空腔内;
所述可动镜面支撑4和固定镜面支撑2分别以与盖板5平行的角度置于箱体1内,两者之间通过第一间隔层3间隔,可动镜面支撑4与永磁体16之间则通过第二间隔层17间隔;所述可动镜面支撑4包含一个中间镜面和一个外周框架,所述中间镜面通过直梁、蟹臂梁或折叠梁等不同结构形式的支撑梁13悬置于外周框架内部;第一反射镜8制作在第一薄膜支撑7上,且通过第一薄膜支撑7置于可动镜面支撑4的中间镜面上,第二反射镜14制作在第二薄膜支撑15上,且通过第二薄膜支撑15置于固定镜面支撑2上;第一反射镜8和第二反射镜14为内侧相对布置;盖板5、可动镜面支撑4、固定镜面支撑2及箱体1的底部,在与第一反射镜8和第二反射镜14对应的位置上,分别开有盖板通光孔9、可动镜面支撑通光孔10、固定镜面支撑通光孔11和箱体通光孔12;
所述盖板5内侧有环状且具有相应通光孔的永磁体16;可动镜面支撑4上有用标准PCB生产工艺制作的线圈6;所述线圈6由多个周向布置的子线圈组成;
所述的可动镜面支撑4和固定镜面支撑2是珐珀滤波器的主要工作机构,可用FR4、PI、PET等材料制作,它们通过粘接工艺或者螺钉连接,与箱体1固连。
所述的第一薄膜支撑7和第二薄膜支撑15根据工作波段要求选择合适的基底材料,如红外波段可选择硅,可见光波段可选择玻璃。
所述的第一反射镜8和第二反射镜14为半透半反膜,可以为金属反射镜、布拉格反射镜等,构成珐珀腔,光束可以在反射镜间形成多光束干涉。
所述的盖板通光孔9、可动镜面支撑通光孔10、固定镜面支撑通光孔11和箱体通光孔12的形状根据使用要求可以为正方形或者圆形。
参阅图5,所述的永磁体的形状可以为带通光孔的圆形、方形。
参阅图2,本发明提出的基于印刷电路板的电磁驱动式可调谐珐珀滤波器,其基本工作原理如下:永磁体16的磁力线方向由上向下。参阅图2(a),向子线圈中分别通入等量的直流电,载流线圈6等效为磁体,与永磁体16相互吸引,使得珐珀腔间隙增大,滤波范围改变,同时与第一反射镜8相连的支撑梁13给镜面一个向下的力,当二力平衡时镜面停止运动。参阅图2(b),向线圈6中通入反向电流,载流线圈6等效为磁力线方向相反的磁体,与永磁体16相互排斥,使得珐珀腔间隙减小,滤波范围改变,同时与第一反射镜8相连的悬臂梁给镜面一个向上的力,当二力平衡时镜面停止运动。若由于加工及装配误差,导致工作时可动镜面与固定镜面不平行,通过调节相应的子线圈中的电流大小和方向,对可动镜面的姿态进行微调,使可动镜面与固定镜面平行。
单独的可动镜面可以作为扫描镜,通过调节相应的子线圈中的电流大小,对可动镜面的姿态进行微调,精确控制扫描角度。
参阅图6,本发明提出的基于印刷电路板的电磁驱动式可调谐珐珀滤波器的制作工艺包括如下基本步骤:
步骤1:参阅图6(a),首先用标准PCB生产工艺在基板上制作线圈6,之后在基板上加工出悬臂梁13、通光孔10,得到可动镜面支撑4。
步骤2:参阅图6(b),在第一薄膜支撑7上沉积一层金属薄膜或者多层介质薄膜,形成第一反射镜8;
步骤3:参阅图6(c),把第一薄膜支撑7用粘接工艺固定到可动镜面支撑4的相应部位;
步骤4:参阅图6(d),在第二薄膜支撑15上沉积一层金属薄膜或者多层介质薄膜,形成第二反射镜14;
步骤5:参阅图6(e),在基板上制出通光孔11,得到固定镜面支撑2;
步骤6:参阅图6(f),把第二薄膜支撑15用粘接工艺固定到固定镜面支撑2的相应部位;
步骤7:参阅图6(g),在金属或者工程塑料上加工通光孔12等结构,成为箱体1;
步骤8:参阅图6(h),在金属或者工程塑料上加工通光孔9等结构,成为盖板5;
步骤9:参阅图6(i),将装配好的固定镜面支撑2用粘接工艺固定到箱体1上,第二反射镜14向上;
步骤10:参阅图6(j),将第一间隔层3用粘接工艺固定到固定镜面支撑2上紧靠箱体1的位置;
步骤11:参阅图6(k),将装配好的可动镜面支撑4用粘接工艺固定到第一间隔层3上,第一反射镜8朝下,与第二反射镜14相对;
步骤12:参阅图6(l),将第二间隔层17用粘接工艺固定到可动镜面支撑4上紧靠箱体1的位置;
步骤13:参阅图6(m),将永磁体16固定到第二间隔层17上。
步骤14:参阅图6(n),将盖板5用粘接工艺或者螺钉连接与箱体1固定到一起,形成完整滤波器。
有益效果
本发明提出的基于印刷电路板的电磁驱动式可调谐珐珀滤波器具有比静电驱动大的多的可调谐范围,能大幅度增大器件的工作波段;通过调节不同子线圈内电流的大小与方向可以微调器件可动部分,从而克服加工及装配误差,保持上下两镜面平行;同时其制作工艺采用机械加工、标准PCB加工、粘接等工艺,成本低、加工周期短、工艺成熟。本发明将促进微机械可调谐珐珀滤波器在实际系统中的应用推广。
附图说明
图1基于印刷电路板的电磁驱动式可调谐珐珀滤波器的基本结构
图2基于印刷电路板的电磁驱动式可调谐珐珀滤波器的工作原理
图3可动镜面结构图
图4梁的典型结构
图5永磁体形状图
图6基于印刷电路板的电磁驱动式可调谐珐珀滤波器的加工方法
其中:1.箱体;2.固定薄膜支撑;3.第一间隔层;4.可动薄膜支撑;5.盖板;6.线圈;7.第一薄膜支撑;8.第一反射镜;9.盖板通光孔;10.可动镜面支撑通光孔;11.固定镜面支撑通光孔;12.箱体通光孔;13.悬臂梁;14.第二反射镜;15.第二薄膜支撑;16.永磁体;17.第二间隔层。
具体实施方式
实施例1
参阅图1,本发明提出的基于印刷电路板的电磁驱动式可调谐珐珀滤波器,主要包括可动镜面支撑4、固定镜面支撑2、第一反射镜8、第二反射镜14、永磁体16和线圈6,所述部件均容纳于箱体1和盖板5形成的空腔内;
所述可动镜面支撑4和固定镜面支撑2分别以与盖板5平行的角度置于箱体1内,两者之间通过第一间隔层3间隔,可动镜面支撑4与永磁体16之间则通过第二间隔层17间隔;所述可动镜面支撑4包含一个中间镜面和一个外周框架,所述中间镜面通过直梁、蟹臂梁或折叠梁等不同结构形式的支撑梁13悬置于外周框架内部;第一反射镜8制作在第一薄膜支撑7上,且通过第一薄膜支撑7置于可动镜面支撑4的中间镜面上,第二反射镜14制作在第二薄膜支撑15上,且通过第二薄膜支撑15置于固定镜面支撑2上;第一反射镜8和第二反射镜14为内侧相对布置;盖板5、可动镜面支撑4、固定镜面支撑2及箱体1的底部,在与第一反射镜8和第二反射镜14对应的位置上,分别开有盖板通光孔9、可动镜面支撑通光孔10、固定镜面支撑通光孔11和箱体通光孔12;
所述盖板5内侧有环状且具有相应通光孔的永磁体16;可动镜面支撑4上有用标准PCB生产工艺制作的线圈6;所述线圈6由多个周向布置的子线圈组成;
所述的可动镜面支撑4和固定镜面支撑2,选用FR4材料制作,是珐珀滤波器的主要工作机构,它们通过粘接工艺或者螺钉连接,与箱体1固连。
所述的第一薄膜支撑7和第二薄膜支撑15的基底材料选择玻璃,工作波长在可见光波段。
所述的第一反射镜8和第二反射镜14为30nm厚的金反射镜,构成珐珀腔,光束可以在反射镜间形成多光束干涉。
所述的盖板通光孔9、可动镜面支撑通光孔10、固定镜面支撑通光孔11和箱体通光孔12的形状为圆形,直径为8mm。
所述的永磁体的结构选择带通光孔的长方形具体尺寸为30×25×5,通光孔直径为8mm,参阅图5(a)。
参阅图2,本发明提出的基于印刷电路板的电磁驱动式可调谐珐珀滤波器,其基本工作原理如下:永磁体16的磁力线方向由上向下。参阅图2(a),向子线圈中分别通入等量的直流电,载流线圈6等效为磁体,与永磁体16相互吸引,使得珐珀腔间隙增大,滤波范围改变,同时与第一反射镜8相连的支撑梁13给镜面一个向下的力,当二力平衡时镜面停止运动。参阅图2(b),向线圈6中通入反向电流,载流线圈6等效为磁力线方向相反的磁体,与永磁体16相互排斥,使得珐珀腔间隙减小,滤波范围改变,同时与第一反射镜8相连的悬臂梁给镜面一个向上的力,当二力平衡时镜面停止运动。若由于加工及装配误差,导致工作时可动镜面与固定镜面不平行,通过调节相应的子线圈中的电流大小和方向,对可动镜面的姿态进行微调,使可动镜面与固定镜面平行。
参阅图6,本实施例提出的基于FR4材料的电磁驱动式可调谐珐珀滤波器的制作工艺包括如下基本步骤:
步骤1:参阅图6(a),用标准PCB生产工艺在厚度为0.2mm的FR4基板上制作10匝线圈,得到线圈6,然后制出悬臂梁13、通光孔10等结构,得到可动镜面支撑4。悬臂梁的结构选择蟹臂梁,宽度为1mm;
步骤2:参阅图6(b),选择玻璃作为第一薄膜支撑7,在第一薄膜支撑7上沉积一层30nm厚的金膜,形成第一反射镜8;
步骤3:参阅图6(c),把第一薄膜支撑7用粘接工艺固定到可动镜面支撑4的相应部位;
步骤4:参阅图6(d),选择玻璃作为第二薄膜支撑15,在第二薄膜支撑15上沉积一层30nm厚的金膜,形成第二反射镜14;
步骤5:参阅图6(e),在FR4基板制出通光孔11,得到固定镜面支撑2;
步骤6:参阅图6(f),把第二薄膜支撑15用粘接工艺固定到固定镜面支撑2的相应部位;
步骤7:参阅图6(g),在铝合金材料上加工通光孔12等结构,成为箱体1;
步骤8:参阅图6(h),在铝合金板材上加工通光孔9,成为盖板5;
步骤9:参阅图6(i),将装配好的固定镜面支撑2用粘接工艺固定到箱体1上,第二反射镜14朝上;
步骤10:参阅图6(j),将第一间隔层3用粘接工艺固定到固定镜面支撑2上紧靠箱体1的位置;
步骤11:参阅图6(k),将装配好的可动镜面支撑4用粘接工艺固定到间隔层3上,第一反射镜8朝下,与第二反射镜14相对;
步骤12:参阅图6(l),将第二间隔层17用粘接工艺固定到可动镜面支撑4上紧靠箱体1的位置;
步骤13:参阅图6(m),将永磁体16放到第二间隔层17上。
步骤14:参阅图6(n),将盖板5用粘接工艺或者螺钉连接与箱体1固定到一起,形成完整滤波器。
实施例2
参阅图1,本发明提出的基于印刷电路板的电磁驱动式可调谐珐珀滤波器,主要包括可动镜面支撑4、固定镜面支撑2、第一反射镜8、第二反射镜14、永磁体16和线圈6,所述部件均容纳于箱体1和盖板5形成的空腔内;
所述可动镜面支撑4和固定镜面支撑2分别以与盖板5平行的角度置于箱体1内,两者之间通过第一间隔层3间隔,可动镜面支撑4与永磁体16之间则通过第二间隔层17间隔;所述可动镜面支撑4包含一个中间镜面和一个外周框架,所述中间镜面通过直梁、蟹臂梁或折叠梁等不同结构形式的支撑梁13悬置于外周框架内部;第一反射镜8制作在第一薄膜支撑7上,且通过第一薄膜支撑7置于可动镜面支撑4的中间镜面上,第二反射镜14制作在第二薄膜支撑15上,且通过第二薄膜支撑15置于固定镜面支撑2上;第一反射镜8和第二反射镜14为内侧相对布置;盖板5、可动镜面支撑4、固定镜面支撑2及箱体1的底部,在与第一反射镜8和第二反射镜14对应的位置上,分别开有盖板通光孔9、可动镜面支撑通光孔10、固定镜面支撑通光孔11和箱体通光孔12;
所述盖板5内侧有环状且具有相应通光孔的永磁体16;可动镜面支撑4上有用标准PCB生产工艺制作的线圈6;所述线圈6由多个周向布置的子线圈组成;
所述的可动镜面支撑4和固定镜面支撑2,材质为PI,是珐珀滤波器的主要工作机构,它们通过粘接工艺或者螺钉连接,与箱体1固连。
所述的第一薄膜支撑7和第二薄膜支撑15的基底材料选择硅,工作波长在红外波段。
所述的第一反射镜8和第二反射镜14为布拉格反射镜,构成珐珀腔,光束可以在反射镜间形成多光束干涉。
所述的盖板通光孔9、可动镜面支撑通光孔10、固定镜面支撑通光孔11和箱体通光孔12的形状为圆形,直径为8mm。
所述的永磁体的结构选择圆环,内径和外径分别为8mm、30mm,厚度为5mm,参阅图5(b)。
参阅图2,本发明提出的基于印刷电路板的电磁驱动式可调谐珐珀滤波器,其基本工作原理如下:永磁体16的磁力线方向由上向下。参阅图2(a),向子线圈中分别通入等量的直流电,载流线圈6等效为磁体,与永磁体16相互吸引,使得珐珀腔间隙增大,滤波范围改变,同时与第一反射镜8相连的支撑梁13给镜面一个向下的力,当二力平衡时镜面停止运动。参阅图2(b),向线圈6中通入反向电流,载流线圈6等效为磁力线方向相反的磁体,与永磁体16相互排斥,使得珐珀腔间隙减小,滤波范围改变,同时与第一反射镜8相连的悬臂梁给镜面一个向上的力,当二力平衡时镜面停止运动。若由于加工及装配误差,导致工作时可动镜面与固定镜面不平行,通过调节相应的子线圈中的电流大小和方向,对可动镜面的姿态进行微调,使可动镜面与固定镜面平行。
参阅图6,本实施例提出的基于PI材料的电磁驱动式可调谐珐珀滤波器的制作工艺包括如下基本步骤:
步骤1:参阅图6(a),用标准PCB生产工艺在厚度为0.1mm的PI基板上制作10匝线圈,得到线圈6,然后制出悬臂梁13、通光孔10等结构,得到可动镜面支撑4。悬臂梁的结构选择直梁,宽度为1mm;
步骤2:参阅图6(b),选择硅作为第一薄膜支撑7,在第一薄膜支撑7上制作布拉格反射镜,形成第一反射镜8;
步骤3:参阅图6(c),把第一薄膜支撑7用粘接工艺固定到可动镜面支撑4的相应部位;
步骤4:参阅图6(d),选择硅作为第二薄膜支撑15,在第二薄膜支撑15上制作布拉格反射镜,形成第二反射镜14;
步骤5:参阅图6(e),在FR4基板上制出通光孔11,得到固定镜面支撑2;
步骤6:参阅图6(f),把第二薄膜支撑15用粘接工艺固定到固定镜面支撑2的相应部位;
步骤7:参阅图6(g),在尼龙材料上加工通光孔12等结构,成为箱体1;
步骤8:参阅图6(h),在尼龙板材上加工通光孔9,成为盖板5;
步骤9:参阅图6(i),将装配好的固定镜面支撑2用粘接工艺固定到箱体1上,第二反射镜14朝上;
步骤10:参阅图6(j),将第一间隔层3用粘接工艺固定到固定镜面支撑2上紧靠箱体1的位置;
步骤11:参阅图6(k),将装配好的可动镜面支撑4用粘接工艺固定到间隔层3上,第一反射镜8朝下,与第二反射镜14相对;
步骤12:参阅图6(l),将第二间隔层17用粘接工艺固定到可动镜面支撑4上紧靠箱体1的位置;
步骤13:参阅图6(m),将永磁体16放到第二间隔层17上。
步骤14:参阅图6(n),将盖板5用粘接工艺或者螺钉连接与箱体1固定到一起,形成完整滤波器。

Claims (6)

1.基于印刷电路板的电磁驱动式可调谐珐珀滤波器,其特征在于,主要包括可动镜面支撑4、固定镜面支撑2、第一反射镜8、第二反射镜14、永磁体16和线圈6,所述部件均容纳于箱体1和盖板5形成的空腔内;
所述可动镜面支撑4和固定镜面支撑2分别以与盖板5平行的角度置于箱体1内,两者之间通过第一间隔层3间隔,可动镜面支撑4与永磁体16之间则通过第二间隔层17间隔;所述可动镜面支撑4包含一个中间镜面和一个外周框架,所述中间镜面通过直梁、蟹臂梁或折叠梁等不同结构形式的支撑梁13悬置于外周框架内部;第一反射镜8制作在第一薄膜支撑7上,且通过第一薄膜支撑7置于可动镜面支撑4的中间镜面上,第二反射镜14制作在第二薄膜支撑15上,且通过第二薄膜支撑15置于固定镜面支撑2上;第一反射镜8和第二反射镜14为内侧相对布置;盖板5、可动镜面支撑4、固定镜面支撑2及箱体1的底部,在与第一反射镜8和第二反射镜14对应的位置上,分别开有盖板通光孔9、可动镜面支撑通光孔10、固定镜面支撑通光孔11和箱体通光孔12;
所述盖板5内侧有环状且具有相应通光孔的永磁体16;可动镜面支撑4上有用标准PCB生产工艺制作的线圈6;所述线圈6由多个周向布置的子线圈组成。
2.如权利要求1所述的基于印刷电路板的电磁驱动式可调谐珐珀滤波器,其特征在于,所述的可动镜面支撑4和固定镜面支撑2材料为FR4、PI或PET,它们通过粘接工艺或者螺钉连接,与箱体1固连。
3.如权利要求1所述的基于印刷电路板的电磁驱动式可调谐珐珀滤波器,其特征在于,所述的第一反射镜8和第二反射镜14为半透半反膜。
4.如权利要求1所述的基于印刷电路板的电磁驱动式可调谐珐珀滤波器,其特征在于,所述的盖板通光孔9、可动镜面支撑通光孔10、固定镜面支撑通光孔11和箱体通光孔12的形状为正方形或者圆形。
5.如权利要求1所述的基于印刷电路板的电磁驱动式可调谐珐珀滤波器,其特征在于,所述的永磁体的形状为带通光孔的圆形或方形。
6.一种如权利要求1-5之一的基于印刷电路板的电磁驱动式可调谐珐珀滤波器的制作工艺,其特征在于,包括如下步骤:
步骤1:用标准PCB生产工艺在基板上制作线圈6,之后在基板上加工出悬臂梁13、通光孔10,得到可动镜面支撑4;
步骤2:在第一薄膜支撑7上沉积一层金属薄膜或者多层介质薄膜,形成第一反射镜8;
步骤3:把第一薄膜支撑7用粘接工艺固定到可动镜面支撑4的特定部位上;
步骤4:在第二薄膜支撑15上沉积一层金属薄膜或者多层介质薄膜,形成第二反射镜14;
步骤5:在基板上制出通光孔11,得到固定镜面支撑2;
步骤6:把第二薄膜支撑15用粘接工艺固定到固定镜面支撑2的相应部位;
步骤7:在金属或者工程塑料上加工通光孔12等结构,成为箱体1;
步骤8:在金属或者工程塑料上加工通光孔9等结构,成为盖板5;
步骤9:将装配好的固定镜面支撑2用粘接工艺固定到箱体1上,第二反射镜14向上;
步骤10:将第一间隔层3用粘接工艺固定到固定镜面支撑2上紧靠箱体1的位置;
步骤11:将装配好的可动镜面支撑4用粘接工艺固定到支撑3上,第一反射镜8朝下,与第二反射镜14相对;
步骤12:将第二间隔层17用粘接工艺固定到可动镜面支撑4上紧靠箱体1的位置;
步骤13:将永磁体16固定到第二间隔层17上;
步骤14:将盖板5用粘接工艺或者螺钉连接与箱体1固定到一起,形成完整滤波器。
CN201510764692.1A 2015-11-11 2015-11-11 一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法 Active CN105425384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510764692.1A CN105425384B (zh) 2015-11-11 2015-11-11 一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510764692.1A CN105425384B (zh) 2015-11-11 2015-11-11 一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法

Publications (2)

Publication Number Publication Date
CN105425384A true CN105425384A (zh) 2016-03-23
CN105425384B CN105425384B (zh) 2018-05-15

Family

ID=55503697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510764692.1A Active CN105425384B (zh) 2015-11-11 2015-11-11 一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法

Country Status (1)

Country Link
CN (1) CN105425384B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508592A (zh) * 2017-02-28 2018-09-07 精工爱普生株式会社 波长可变干涉滤波器及光学模块
CN109842017A (zh) * 2019-04-10 2019-06-04 清华-伯克利深圳学院筹备办公室 一种可调谐激光器及其制作方法
CN110332981A (zh) * 2019-07-10 2019-10-15 西北工业大学 一种mems光纤水听器及其制作方法
CN110383138A (zh) * 2016-11-20 2019-10-25 尤尼斯拜特罗有限责任公司 可调谐mems标准具设备
CN110850587A (zh) * 2019-12-02 2020-02-28 西安交通大学 一种腔长可调型mems法布里珀罗腔
WO2021056257A1 (zh) * 2019-09-25 2021-04-01 深圳市海谱纳米光学科技有限公司 一种可调光学滤波器件
CN114019673A (zh) * 2021-10-21 2022-02-08 西北工业大学宁波研究院 一种电磁驱动珐珀滤波芯片及其圆片级制作工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070257565A1 (en) * 2006-02-09 2007-11-08 Hakan Urey Method and apparatus for making and using 1D and 2D magnetic actuators
CN202600340U (zh) * 2012-02-29 2012-12-12 无锡微奥科技有限公司 带光源的微型扫描投影器件
CN104062700A (zh) * 2013-03-18 2014-09-24 精工爱普生株式会社 干涉滤波器、光学滤波器装置、光学模块及电子设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070257565A1 (en) * 2006-02-09 2007-11-08 Hakan Urey Method and apparatus for making and using 1D and 2D magnetic actuators
CN202600340U (zh) * 2012-02-29 2012-12-12 无锡微奥科技有限公司 带光源的微型扫描投影器件
CN104062700A (zh) * 2013-03-18 2014-09-24 精工爱普生株式会社 干涉滤波器、光学滤波器装置、光学模块及电子设备

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383138A (zh) * 2016-11-20 2019-10-25 尤尼斯拜特罗有限责任公司 可调谐mems标准具设备
US11474343B2 (en) 2016-11-20 2022-10-18 Unispectral Ltd. Tunable MEMS etalon device
CN108508592A (zh) * 2017-02-28 2018-09-07 精工爱普生株式会社 波长可变干涉滤波器及光学模块
CN108508592B (zh) * 2017-02-28 2022-01-14 精工爱普生株式会社 波长可变干涉滤波器及光学模块
CN109842017A (zh) * 2019-04-10 2019-06-04 清华-伯克利深圳学院筹备办公室 一种可调谐激光器及其制作方法
CN110332981A (zh) * 2019-07-10 2019-10-15 西北工业大学 一种mems光纤水听器及其制作方法
WO2021056257A1 (zh) * 2019-09-25 2021-04-01 深圳市海谱纳米光学科技有限公司 一种可调光学滤波器件
CN114981701A (zh) * 2019-09-25 2022-08-30 深圳市海谱纳米光学科技有限公司 一种可调光学滤波器件
CN114981701B (zh) * 2019-09-25 2023-11-21 深圳市海谱纳米光学科技有限公司 一种可调光学滤波器件
CN110850587A (zh) * 2019-12-02 2020-02-28 西安交通大学 一种腔长可调型mems法布里珀罗腔
CN110850587B (zh) * 2019-12-02 2020-11-17 西安交通大学 一种腔长可调型mems法布里珀罗腔
CN114019673A (zh) * 2021-10-21 2022-02-08 西北工业大学宁波研究院 一种电磁驱动珐珀滤波芯片及其圆片级制作工艺

Also Published As

Publication number Publication date
CN105425384B (zh) 2018-05-15

Similar Documents

Publication Publication Date Title
CN105425384A (zh) 一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法
CN105549199A (zh) 电磁驱动微机械双向调谐珐珀滤波器及其制作方法
CN105242395B (zh) 电磁驱动微机械可调谐珐珀滤波器及其制作方法
CN106383377B (zh) 一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法
US9054636B2 (en) Micromechanical resonator arrangement
CN103399402B (zh) 一种电磁驱动微型二维扫描镜装置
CN108519673B (zh) 集成差分式角传感器的扫描微镜
KR960702116A (ko) 변위 검출 기능을 구비한 플래너형 갈바노 미러 및 그 제조 방법(Planar Type Galvanomirror Having a Displacement Detecting Function and Method for Producing the Same)
Ataman et al. A dual-axis pointing mirror with moving-magnet actuation
US20050018322A1 (en) Magnetically actuated fast MEMS mirrors and microscanners
CN104765144A (zh) 电磁—静电混合驱动二维微扫描镜及制作方法
JPH11231252A (ja) 光偏向器及びその製造方法
US6879420B2 (en) Actuator for scanning detecting light
JP2017207630A (ja) 光偏向器
JP2004082288A (ja) 静電型アクチュエータ及びそれを用いた光スイッチ
CN111313747B (zh) 一种多层陶瓷共烧压电驱动器、压电马达及其制备方法
EP1887412A1 (en) Optical deflection element
Sandner et al. Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers
Urey et al. Electromagnetically actuated FR4 scanners
CN102902039A (zh) 一种基于微机电系统的自动对焦镜头
CN103091835B (zh) 一种垂直大位移mems微镜及加工工艺
CN115490201A (zh) 多级驱动的mems静电驱动器
US11604347B2 (en) Force-balanced micromirror with electromagnetic actuation
JPH09159939A (ja) 戻り光制御装置
JP2001208905A (ja) 可変形ミラー

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant