CN110850587A - 一种腔长可调型mems法布里珀罗腔 - Google Patents

一种腔长可调型mems法布里珀罗腔 Download PDF

Info

Publication number
CN110850587A
CN110850587A CN201911213113.9A CN201911213113A CN110850587A CN 110850587 A CN110850587 A CN 110850587A CN 201911213113 A CN201911213113 A CN 201911213113A CN 110850587 A CN110850587 A CN 110850587A
Authority
CN
China
Prior art keywords
cavity
film
movable
adopting
mirror surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911213113.9A
Other languages
English (en)
Other versions
CN110850587B (zh
Inventor
韦学勇
蒋康力
赵明辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201911213113.9A priority Critical patent/CN110850587B/zh
Publication of CN110850587A publication Critical patent/CN110850587A/zh
Application granted granted Critical
Publication of CN110850587B publication Critical patent/CN110850587B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种腔长可调型MEMS法布里珀罗腔,包括固定镜面,固定镜面上方和腔体下端连接,腔体上端和可动镜面下方连接,形成三层结构,采用MEMS体硅工艺加工;可动镜面包括可动结构,可动结构上方设有上层增透膜和上层电极,可动结构下方设有上层增反膜;固定镜面包括固定结构,固定结构下方设有下层增透膜,固定结构上方设有下层增反膜和下层电极;可动结构采用MEMS体硅工艺加工,可动结构包括基座,基座通过梁式弹簧和横向稳定质量块外侧连接,横向稳定质量块内侧通过梁式弹簧和中心质量块连接,横向稳定质量块为分体式块状结构,由四个L型分质量块呈中心对称分布构成;本发明具有光学精细度高、腔长调节精度高、加工难度小、成品率高的优点。

Description

一种腔长可调型MEMS法布里珀罗腔
技术领域
本发明涉及微光机电系统(MOEMS)技术领域,特别涉及一种腔长可调型MEMS法布里珀罗腔。
背景技术
MEMS法布里珀罗腔由于其检测精度高、体积小、功耗低等优势广泛应用于国防、工业及电子消费品等领域,特别是腔长可调型MEMS法布里珀罗腔更是以光谱仪、滤波器、传感器、激光谐振腔等角色在人们生产生活的各个角落大显身手。
腔长可调型MEMS法布里珀腔的性能评价参数主要包括:光学精细度、腔长调节精度、自由光谱范围等,以上参数直接影响到法布里珀罗腔的实际应用。例如,其光学精细度决定着基于法布里珀罗干涉的力、位移和加速度传感器的分辨率;腔长调节精度决定着法布里珀罗光谱仪及滤波器的光谱精度和滤波效果;现有的腔长可调型法布里珀腔存在着精细度低、腔长调节精度差、加工困难等缺点。
发明内容
为了解决上述现有技术的缺点,本发明的目的在于提供了一种腔长可调型MEMS法布里珀罗腔,具有光学精细度高、腔长调节精度高、加工容易等优点。
为了达到上述目的,本发明采取的技术方案为:
一种腔长可调型MEMS法布里珀罗腔,包括可动镜面1、固定镜面2和腔体3,固定镜面2上方和腔体3下端连接,腔体3上端和可动镜面1下方连接,形成三层结构,采用MEMS体硅工艺加工而成;
所述的可动镜面1包括可动结构1-3,可动结构1-3的上方设有上层增透膜1-2和上层电极1-1,可动结构1-3的下方设有上层增反膜1-4;
所述的固定镜面2包括固定结构2-3,固定结构2-3的下方设有下层增透膜2-2,固定结构2-3的上方设有下层增反膜2-4和下层电极2-1。
所述的可动结构1-3由500μm单晶硅晶圆采用MEMS体硅工艺加工而成,可动结构1-3包括基座1-3-1,基座1-3-1通过梁式弹簧1-3-3和横向稳定质量块1-3-2的外侧连接,横向稳定质量块1-3-2的内侧通过梁式弹簧1-3-3和中心质量块1-3-4连接,横向稳定质量块1-3-2为分体式块状结构,由四个L型分质量块呈中心对称分布构成。
所述的上层电极1-1和下层电极2-1的材质为金,采用磁控溅射及剥离工艺制成,上层电极1-1和下层电极2-1两者共同组成电极组,在加电情况下驱动可动结构1-3发生位移,从而调节法布里珀罗腔的腔长;
所述的上层增透膜1-2为190nm氮化硅薄膜,上层增透膜1-2采用磁控溅射工艺溅射于可动镜面1上表面,使得可动结构1-3上表面对红外光的透过率达到98%以上。
所述的上层增反膜1-4由264nm二氧化硅和94nm锗薄膜分别采用等离子体增强化学气相沉积和磁控溅射工艺依次加工于可动结构1-3下表面,使得可动结构1-3下表面对红外光的反射率达到98%以上。
所述的下层增透膜2-2为190nm氮化硅薄膜,下层增透膜2-2采用等离子体增强化学气相沉积工艺沉积于固定结构2-3下表面,使得固定结构2-3下表面对红外光的透过率达到98%以上。
所述的固定结构2-3由500μm单晶硅晶圆加工而成,其与腔体3及可动结构1-3共同组成法布里珀罗腔。
所述的下层增反膜2-4由264nm二氧化硅和94nm锗薄膜分别采用等离子体增强化学气相沉积和磁控溅射工艺依次加工于固定结构2-3上表面,使得固定结构2-3上表面对红外光的反射率达到98%以上。
所述的腔体3由永久键合胶采用标准光刻工艺加工而成,其上端与可动镜面1相接,其下端与固定镜面2相接,腔体3同时起到支撑可动镜面1和固定镜面2形成法布里珀罗腔的腔体,并起到隔离可动镜面1和固定镜面2做绝缘层的作用。
本发明的有益效果为:本发明采用等离子体增强化学气相沉积及磁控溅射工艺在单晶硅表面制作由二氧化硅及锗组成的增反膜,使得法布里珀罗腔对红外光的反射率达到98%以上;本发明的增反膜采用双层膜结构,相对于采用多层膜制作增反膜极大地降低了工艺难度,所以具有光学精细度高、加工难度小,成品率高的优点;同时由于本发明的可动镜面采用分体式低刚度可动结构,结合静电调控方法,使得本发明具有腔长调节精度高的优点。
附图说明
图1为本发明腔长可调型MEMS法布里珀罗腔的三维结构示意图。
图2为本发明腔长可调型MEMS法布里珀罗腔的截面图。
图3为可动结构1-3的俯视图。
图4为本发明腔长可调型MEMS法布里珀罗腔的制备方法流程图。
具体实施方式
下面结合附图对本发明进一步详细描述。
参照图1,一种腔长可调型MEMS法布里珀罗腔,包括可动镜面1、固定镜面2和腔体3,固定镜面2上方和腔体3下端连接,腔体3上端和可动镜面1下方连接,形成三层结构,采用MEMS体硅工艺加工而成,工艺过程包括:双面对准光刻、湿法腐蚀、深反应离子刻蚀、磁控溅射、剥离工艺。
参照图2,所述的可动镜面1包括可动结构1-3,可动结构1-3的上方设有上层增透膜1-2和上层电极1-1,可动结构1-3的下方设有上层增反膜1-4;
所述的固定镜面2包括固定结构2-3,固定结构2-3的下方设有下层增透膜2-2,固定结构2-3的上方设有下层增反膜2-4和下层电极2-1;
为了使所述MEMS法布里珀罗腔的腔长可调,在可动结构1-3和固定结构2-3的上表面分别采用磁控溅射及剥离工艺制备上层电极1-1和下层电极2-1,上层电极1-1和下层电极2-1的材质为金,当在由上层电极1-1和下层电极2-1组成的电极组加电情况下,可以驱动可动结构1-3发生位移,从而调节法布里珀罗腔的腔长。
为了提高腔长可调型MEMS法布里珀罗腔表面对红外波段光的透射率,在可动结构1-3上表面、固定结构2-3下表面分别采用磁控溅射工艺及等离子体增强化学气相沉积工艺制作190nm氮化硅增透膜的上层增透膜1-2、下层增透膜2-2,使得MEMS法布里珀罗腔对红外波段的光的透过率达到98%以上。
为了提高腔长可调型MEMS法布里珀罗腔的腔体内部对红外波段光的反射率,分别在可动结构1-3下表面、固定结构2-3上表面采用等离子体增强化学气相沉积及磁控溅射工艺制作由264nm二氧化硅和94nm锗构成的上层增反膜1-4和下层增反膜2-4,使得所述MEMS法布里珀罗腔的腔体内部对红外波段的光的反射率率达到98%以上。
参照图3,所述的可动结构1-3由500μm单晶硅晶圆采用MEMS体硅工艺加工而成,可动结构1-3包括基座1-3-1,基座1-3-1通过梁式弹簧1-3-3和横向稳定质量块1-3-2的外侧连接,横向稳定质量块1-3-2的内侧通过梁式弹簧1-3-3和中心质量块1-3-4连接,横向稳定质量块1-3-2为分体式块状结构,由四个L型分质量块呈中心对称分布构成。
参照图4,所述的一种腔长可调型MEMS法布里珀罗腔的制备方法,包括以下步骤:
步骤1,可动镜面1的制备:
(a)采用标准清洗工艺清洗双抛500μm单晶硅晶圆用于可动结构1-3的加工,在清洗过的双抛500μm厚单晶硅晶圆上表面利用磁控溅射工艺制作一层190nm厚的氮化硅薄膜用于上层增透膜1-2的加工;
(b)在单晶硅晶圆下表面利用等离子体增强化学气相沉积方法制作一层264nm厚的氧化硅薄膜用作上层增反膜1-4的加工;
(c)利用BOE腐蚀液图形化步骤(b)沉积的氧化硅薄膜,形成上层增反膜1-4的第一层膜;
(d)采用剥离工艺图形化步骤(a)沉积的氮化硅薄膜,形成上层增透膜;
(e)采用磁控溅射及剥离工艺制作上层电极1-1,上层电极1-1为50nm铬加200nm金,其中铬的作用为增加金与硅晶圆的粘附性;
(f)采用磁控溅射工艺溅射一层94nm厚的锗薄膜,并利用剥离工艺图形化以形成上层增反膜1-4的第二层膜;
(g)采用深反应离子刻蚀工艺刻蚀出可动结构1-3的镜体及柔性梁的形状并释放镜面结构使其可动;
步骤2,固定镜面2的制备:
(h)采用标准清洗工艺清洗双抛500μm单晶硅晶圆用于固定结构2-3的加工,在清洗过的双抛500μm厚单晶硅晶圆上表面上表面利用等离子体增强化学气相沉积方法制作一层264nm厚的氧化硅薄膜用作下层增反膜2-4的加工;
(i)在经过步骤(h)的单晶硅晶圆下表面利用等离子体增强化学气相沉积方法制作一层190nm厚的氮化硅薄膜形成下层增透膜2-2;
(j)利用BOE腐蚀液图形化步骤(h)沉积的氧化硅薄膜,形成下层增反膜2-4的第一层膜;
(k)采用磁控溅射及剥离工艺制作下层电极2-1,下层电极2-1为50nm铬加200nm金;
(l)采用磁控溅射工艺溅射一层94nm厚的锗薄膜,并利用剥离工艺图形化以形成下层增反膜2-4的第二层膜;
(m)采用标准光刻工艺制作30μm厚的材质为永久键合胶的腔体3;
步骤3,可动镜面1与固定镜面2键合:
(n)利用永久键合胶的键合工艺将可动镜面1、固定镜面2及腔体3键合形成腔长可调型MEMS法布里珀罗腔。

Claims (9)

1.一种腔长可调型MEMS法布里珀罗腔,包括可动镜面(1)、固定镜面(2)和腔体(3),其特征在于:固定镜面(2)上方和腔体(3)下端连接,腔体(3)上端和可动镜面(1)下方连接,形成三层结构,采用MEMS体硅工艺加工而成;
所述的可动镜面(1)包括可动结构(1-3),可动结构(1-3)的上方设有上层增透膜(1-2)和上层电极(1-1),可动结构(1-3)的下方设有上层增反膜(1-4);
所述的固定镜面(2)包括固定结构(2-3),固定结构(2-3)的下方设有下层增透膜(2-2),固定结构(2-3)的上方设有下层增反膜(2-4)和下层电极(2-1)。
2.根据权利要求1所述的一种腔长可调型MEMS法布里珀罗腔,其特征在于:所述的可动结构(1-3)由500μm单晶硅晶圆采用MEMS体硅工艺加工而成,可动结构(1-3)包括基座(1-3-1),基座(1-3-1)通过梁式弹簧(1-3-3)和横向稳定质量块(1-3-2)的外侧连接,横向稳定质量块(1-3-2)的内侧通过梁式弹簧(1-3-3)和中心质量块(1-3-4)连接,横向稳定质量块(1-3-2)为分体式块状结构,由四个L型分质量块呈中心对称分布构成。
3.根据权利要求1所述的一种腔长可调型MEMS法布里珀罗腔,其特征在于:所述的上层电极(1-1)和下层电极(2-1)的材质为金,采用磁控溅射及剥离工艺制成,上层电极(1-1)和下层电极(2-1)两者共同组成电极组,在加电情况下驱动可动结构(1-3)发生位移,从而调节法布里珀罗腔的腔长。
4.根据权利要求1所述的一种腔长可调型MEMS法布里珀罗腔,其特征在于:所述的上层增透膜(1-2)为190nm氮化硅薄膜,上层增透膜(1-2)采用磁控溅射工艺溅射于可动镜面(1)上表面,使得可动结构(1-3)上表面对红外光的透过率达到98%以上。
5.根据权利要求1所述的一种腔长可调型MEMS法布里珀罗腔,其特征在于:所述的上层增反膜(1-4)由264nm二氧化硅和94nm锗薄膜分别采用等离子体增强化学气相沉积和磁控溅射工艺依次加工于可动结构(1-3)下表面,使得可动结构(1-3)下表面对红外光的反射率达到98%以上。
6.根据权利要求1所述的一种腔长可调型MEMS法布里珀罗腔,其特征在于:所述的下层增透膜(2-2)为190nm氮化硅薄膜,下层增透膜(2-2)采用等离子体增强化学气相沉积工艺沉积于固定结构(2-3)下表面,使得固定结构(2-3)下表面对红外光的透过率达到98%以上。
7.根据权利要求1所述的一种腔长可调型MEMS法布里珀罗腔,其特征在于:所述的下层增反膜(2-4)由264nm二氧化硅和94nm锗薄膜分别采用等离子体增强化学气相沉积和磁控溅射工艺依次加工于固定结构(2-3)上表面,使得固定结构(2-3)上表面对红外光的反射率达到98%以上。
8.根据权利要求1所述的一种腔长可调型MEMS法布里珀罗腔,其特征在于:所述的腔体(3)由永久键合胶采用标准光刻工艺加工而成,其上端与可动镜面(1)相接,其下端与固定镜面(2)相接,腔体(3)同时起到支撑可动镜面(1)和固定镜面(2)形成法布里珀罗腔的腔体,并起到隔离可动镜面(1)和固定镜面(2)做绝缘层的作用。
9.根据权利要求1所述的一种腔长可调型MEMS法布里珀罗腔的制备方法,其特征在于,包括以下步骤:
步骤1,可动镜面(1)的制备:
(a)采用标准清洗工艺清洗双抛500μm单晶硅晶圆用于可动结构(1-3)的加工,在清洗过的双抛500μm厚单晶硅晶圆上表面利用磁控溅射工艺制作一层190nm厚的氮化硅薄膜用于上层增透膜(1-2)的加工;
(b)在单晶硅晶圆下表面利用等离子体增强化学气相沉积方法制作一层264nm厚的氧化硅薄膜用作上层增反膜(1-4)的加工;
(c)利用BOE腐蚀液图形化步骤(b)沉积的氧化硅薄膜,形成上层增反膜(1-4)的第一层膜;
(d)采用剥离工艺图形化步骤(a)沉积的氮化硅薄膜,形成上层增透膜;
(e)采用磁控溅射及剥离工艺制作上层电极(1-1),上层电极(1-1)为50nm铬加200nm金,其中铬的作用为增加金与硅晶圆的粘附性;
(f)采用磁控溅射工艺溅射一层94nm厚的锗薄膜,并利用剥离工艺图形化以形成上层增反膜(1-4)的第二层膜;
(g)采用深反应离子刻蚀工艺刻蚀出可动结构(1-3)的镜体及柔性梁的形状并释放镜面结构使其可动;
步骤2,固定镜面(2)的制备:
(h)采用标准清洗工艺清洗双抛500μm单晶硅晶圆用于固定结构(2-3)的加工,在清洗过的双抛500μm厚单晶硅晶圆上表面上表面利用等离子体增强化学气相沉积方法制作一层264nm厚的氧化硅薄膜用作下层增反膜(2-4)的加工;
(i)在经过步骤(h)的单晶硅晶圆下表面利用等离子体增强化学气相沉积方法制作一层190nm厚的氮化硅薄膜形成下层增透膜(2-2);
(j)利用BOE腐蚀液图形化步骤(h)沉积的氧化硅薄膜,形成下层增反膜(2-4)的第一层膜;
(k)采用磁控溅射及剥离工艺制作下层电极(2-1),下层电极(2-1)为50nm铬加200nm金;
(l)采用磁控溅射工艺溅射一层94nm厚的锗薄膜,并利用剥离工艺图形化以形成下层增反膜(2-4)的第二层膜;
(m)采用标准光刻工艺制作30μm厚的材质为永久键合胶的腔体(3);
步骤3,可动镜面(1)与固定镜面(2)键合:
(n)利用永久键合胶的键合工艺将可动镜面(1)、固定镜面(2)及腔体(3)键合形成腔长可调型MEMS法布里珀罗腔。
CN201911213113.9A 2019-12-02 2019-12-02 一种腔长可调型mems法布里珀罗腔 Active CN110850587B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911213113.9A CN110850587B (zh) 2019-12-02 2019-12-02 一种腔长可调型mems法布里珀罗腔

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911213113.9A CN110850587B (zh) 2019-12-02 2019-12-02 一种腔长可调型mems法布里珀罗腔

Publications (2)

Publication Number Publication Date
CN110850587A true CN110850587A (zh) 2020-02-28
CN110850587B CN110850587B (zh) 2020-11-17

Family

ID=69607144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911213113.9A Active CN110850587B (zh) 2019-12-02 2019-12-02 一种腔长可调型mems法布里珀罗腔

Country Status (1)

Country Link
CN (1) CN110850587B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111924797A (zh) * 2020-09-29 2020-11-13 深圳市海谱纳米光学科技有限公司 一种具有可动镜面的法珀腔器件及其制作工艺
CN114034300A (zh) * 2021-11-09 2022-02-11 中国电子科技集团公司信息科学研究院 光学加速度计和惯性导航系统
CN114487479A (zh) * 2022-01-26 2022-05-13 西安交通大学 一种灵敏度及量程可调的法珀加速度敏感芯片及加工方法
CN114814290A (zh) * 2022-05-09 2022-07-29 西安中科华芯测控有限公司 一种三轴闭环加速度传感器及其监测系统和方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1456923A (zh) * 2003-05-26 2003-11-19 中国科学院上海微系统与信息技术研究所 压电驱动法布里-珀罗腔可调光学滤波器件及制作方法
US7269325B2 (en) * 2003-11-03 2007-09-11 Jidong Hou Tunable optical device
CN102225739A (zh) * 2011-04-15 2011-10-26 中国科学院上海微系统与信息技术研究所 一种基于mems工艺的可调fp光学滤波器的制作方法
CN104909327A (zh) * 2015-04-09 2015-09-16 上海新微技术研发中心有限公司 基于中间层键合的mems光学芯片的封装结构及封装方法
CN105242395A (zh) * 2015-08-31 2016-01-13 西北工业大学 电磁驱动微机械可调谐珐珀滤波器及其制作方法
CN105425384A (zh) * 2015-11-11 2016-03-23 西北工业大学 一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法
CN106383377A (zh) * 2016-01-30 2017-02-08 西北工业大学 一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法
CN106772752A (zh) * 2017-01-17 2017-05-31 中国科学院上海微系统与信息技术研究所 基于mems波长可调谐fp光纤滤波器及其制备方法
CN109384190A (zh) * 2017-08-07 2019-02-26 意法半导体股份有限公司 包括膜和致动器的mems器件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1456923A (zh) * 2003-05-26 2003-11-19 中国科学院上海微系统与信息技术研究所 压电驱动法布里-珀罗腔可调光学滤波器件及制作方法
US7269325B2 (en) * 2003-11-03 2007-09-11 Jidong Hou Tunable optical device
CN102225739A (zh) * 2011-04-15 2011-10-26 中国科学院上海微系统与信息技术研究所 一种基于mems工艺的可调fp光学滤波器的制作方法
CN104909327A (zh) * 2015-04-09 2015-09-16 上海新微技术研发中心有限公司 基于中间层键合的mems光学芯片的封装结构及封装方法
CN105242395A (zh) * 2015-08-31 2016-01-13 西北工业大学 电磁驱动微机械可调谐珐珀滤波器及其制作方法
CN105425384A (zh) * 2015-11-11 2016-03-23 西北工业大学 一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法
CN106383377A (zh) * 2016-01-30 2017-02-08 西北工业大学 一种电磁驱动式微机械可调谐珐珀滤波器及其制作方法
CN106772752A (zh) * 2017-01-17 2017-05-31 中国科学院上海微系统与信息技术研究所 基于mems波长可调谐fp光纤滤波器及其制备方法
CN109384190A (zh) * 2017-08-07 2019-02-26 意法半导体股份有限公司 包括膜和致动器的mems器件

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111924797A (zh) * 2020-09-29 2020-11-13 深圳市海谱纳米光学科技有限公司 一种具有可动镜面的法珀腔器件及其制作工艺
CN114034300A (zh) * 2021-11-09 2022-02-11 中国电子科技集团公司信息科学研究院 光学加速度计和惯性导航系统
CN114487479A (zh) * 2022-01-26 2022-05-13 西安交通大学 一种灵敏度及量程可调的法珀加速度敏感芯片及加工方法
CN114814290A (zh) * 2022-05-09 2022-07-29 西安中科华芯测控有限公司 一种三轴闭环加速度传感器及其监测系统和方法

Also Published As

Publication number Publication date
CN110850587B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
CN110850587B (zh) 一种腔长可调型mems法布里珀罗腔
WO2018205764A1 (zh) 一种液晶天线及其制作方法
EP3722766B1 (en) Fabry-perot sensor and method for manufacturing same
EA021493B1 (ru) Приводное устройство микроэлектромеханического типа для перемещения жесткого элемента
CN109507451B (zh) 一种基于二硫化钼薄膜的加速度传感器芯片及其加工方法
US20050094297A1 (en) Optical tunable filter and method for manufacturing the optical tunable filter
CN101825505B (zh) 一种mems压力敏感芯片及其制作方法
US20200319049A1 (en) Double-membrane capacitive pressure sensor and manufacturing method
CN102853950A (zh) 采用倒装焊接的压阻式压力传感器芯片及其制备方法
CN102243126B (zh) 纳米硅薄膜晶体管压力传感器
CN102175363A (zh) 用离子束溅射硅薄膜制作的压力应变器件及方法
GB1208962A (en) Method of fabricating thin films and membranes
CN114487479B (zh) 一种灵敏度及量程可调的法珀加速度敏感芯片及加工方法
CN114275731A (zh) 一种基于mems的双梁式微压感测芯体及其制备工艺
JP2005309099A (ja) 波長可変フィルタ及びその製造方法
CN114019673A (zh) 一种电磁驱动珐珀滤波芯片及其圆片级制作工艺
CN116425110B (zh) 具有差分结构的高温光电压力传感芯片的晶圆级制造方法
CN105022158B (zh) 一种基于mems的可调红外滤波器
CN116661127A (zh) 一种电磁静电双驱动式珐珀滤波芯片及其制备方法
CN113295303A (zh) 氮化铝压电mems谐振式压力传感器
CN110146977B (zh) 一种轻型大口径连续薄膜变形镜及其制造方法
CN110526200B (zh) 一种具有纯轴向变形敏感梁的面外压阻式加速度计芯片及其制备方法
WO2021077396A1 (zh) 一种可调光学滤波器件
CN113670485A (zh) 一种高性能的mems压力传感器及其制作方法
CN112629660A (zh) 一种新型法布里-珀罗可调谐滤波器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant