CN105419193B - 一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法 - Google Patents

一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法 Download PDF

Info

Publication number
CN105419193B
CN105419193B CN201610001034.1A CN201610001034A CN105419193B CN 105419193 B CN105419193 B CN 105419193B CN 201610001034 A CN201610001034 A CN 201610001034A CN 105419193 B CN105419193 B CN 105419193B
Authority
CN
China
Prior art keywords
soybean protein
plastic film
preparation
film
fast degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610001034.1A
Other languages
English (en)
Other versions
CN105419193A (zh
Inventor
张华江
迟玉杰
魏春立
吕雪鹏
李昂
邵华
吴永庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Agricultural University
Original Assignee
Northeast Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Agricultural University filed Critical Northeast Agricultural University
Priority to CN201610001034.1A priority Critical patent/CN105419193B/zh
Publication of CN105419193A publication Critical patent/CN105419193A/zh
Application granted granted Critical
Publication of CN105419193B publication Critical patent/CN105419193B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/14Gas barrier composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法,属于生物材料及食品包装技术加工领域。本发明提供了一种能够快速降解且具有一定机械强度、弹性、阻气性、阻水性的大豆蛋白模拟塑料薄膜及其制备方法。本发明的配比为:大豆分离蛋白的含量为2~4%,聚乙烯醇的含量1.5~2.5%,纳米纤维素的含量2~3%,增塑剂的含量为2%。纳米纤维素有效加快了膜材料的降解速率且提高了膜材料的机械性能,加入增塑剂使大豆蛋白与聚乙烯醇、纳米纤维素蛋白形成更为致密、均匀的三维立体网状结构,能较高的模拟塑料的多方面性能。该薄膜的降解时间在2~7个月不等。该模拟塑料薄膜制备工艺简单、操作方便、对环境无污染,并具有良好的生物相容性和生物可降解性,达到了环保要求,可广泛应用于食品包装领域。

Description

一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法
技术领域
本发明提供了一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法,更具体地说涉及一种快速降解大豆分离蛋白/聚乙烯醇/纳米纤维素模拟塑料包装膜及其制备方法,属于生物材料及食品包装技术领域。
背景技术
塑料包装薄膜应用十分广泛,但容易产生有毒有害气体和异味,且塑料包装膜不易分解,可造成严重的“白色污染”。可降解型包装薄膜是以天然可降解性物质(如蛋白质、纤维素、多糖及其衍生物等)为原料,通过分子间的相互作用而形成的具有空间网状结构的薄膜。可降解型薄膜的实用性和与合成塑料包装膜性能相似,同时具有优于合成塑料的特点,主要体现在特有的阻隔性、安全性和无污染等优点,因此可降解型薄膜备受包装行业的重视。但是现有技术中可降解塑料的力学性能较差,需要进一步提高。
目前,国内关于可降解大豆蛋白模拟塑料薄膜研究目前多集中在大豆分离蛋白的改性及工艺的研究方面上,例如,专利CN201410681234.7通过加入聚乙烯、聚丙烯及改性大豆分离蛋白从而制备性质较稳定的可降解薄膜;专利CN201410681234.7通过加入淀粉与大豆蛋白制备出拉伸强度及高抗水性的模拟塑料薄膜;专利CN201110214101.5叙述了一种大豆蛋白薄膜的制备方法。然而上述专利中制得的薄膜虽然都为可降解薄膜,但是降解速度较慢且机械性能不够优良。因此,通过调节制备关键技术,提高可降解大豆蛋白模拟塑料薄膜的降解速度,同时保证模拟薄膜具有较好的机械性能、阻隔性能,就成为目前食品包装行业有待解决的问题之一。
发明内容
本发明的目的是要提供一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法,并可应用与食品包装领域。为了实现上述目的,本发明的技术方案是:
一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法,包括以下步骤;
(1)制备聚乙烯醇溶液:1.5~2.5%聚乙烯醇在90℃的水浴锅内,在磁力搅拌的条件下进行溶解,溶解后将聚乙烯醇溶液冷却至30~50℃;
(2)制备纳米纤维素匀浆:将一定量纳米纤维素冻干粉加入到蒸馏水中,在100MPa的高压均质机作用下,形成质量分数为1%的纳米纤维素匀浆;
(3)大豆蛋白模拟塑料薄膜液的制备:将2~4%大豆分离蛋白加入到聚乙烯醇的溶液中;之后加入2~3%的纳米纤维素匀浆,5%的无水乙醇,2%的甘油;
(4)调节pH值:用0.lmol/L的HCl或0.lmol/LNaOH调解复合溶液的pH值为7.0;
(5)恒温水浴加热:磁力搅拌条件下,50℃水浴加热20min;
(6)干燥成膜:将水浴后的模拟塑料薄膜溶液经纱布过滤后,倒置在亚格力板槽内,并置于50℃的鼓风干燥箱内干燥8h;
(7)回软揭膜:将干燥后的亚格力板置于恒温恒湿箱内进行回软揭膜。
进一步的,恒温恒湿箱的温度为22℃,湿度为60%RH。
进一步的,回软时间为24h。
本发明的有益效果为:
(1)本实验以水溶性的、可降解的大豆分离蛋白,可降解的聚乙烯醇及可降解的纳米纤维素为主要原料,对环境无毒无害无污染,环保且可快速降解;
(2)本发明提供了一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法,操作简便,制得的薄膜厚度较均匀,且表面平整光滑,能够快速降解,时间从2~7个月不等,机械性能较强,阻气性能、阻水性能较好,具有良好的生物相容性及生物可降解性。该模拟塑料薄膜降解条件简单,将其埋于湿润且肥沃的土壤中,埋藏深度为20~40cm均可,阳光、空气、湿度等正常的环境条件下即可进行快速降解。纳米纤维素与PVA分子链之间羟基的氢键作用使膜内氢键密度增加,纳米纤维素较强的刚性及其与PVA界面的黏合作用使膜内高分子链之间形成较好的结合,同时PVA的大量轻基,会与SPI中的极基团反应,形成网络结构,因此三者之间形成了较强的结合作用,形成较稳定的且均匀的立体网状结构。
具体实施方式
实施例1
一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法,其特征在于按照以下步骤制备:
(1)向烧杯中加入2.5%聚乙烯醇在90℃的水浴内进行溶解,至聚乙烯醇完全溶解后冷却至30~50℃,磁力搅拌的状态下加入2%大豆分离蛋白,之后加入2%高压均质后的纳米纤维素匀浆,加入重量百分比含量为5%无水乙醇、2.0%甘油,再加入蒸馏水定容;
(2)将定容的溶液调节pH值至7.0,磁力搅拌器不断搅拌,50℃水浴加热20min,采用超声波清洗器超声10min进行消泡脱气处理,脱气后成膜液倒入的亚克力板槽内,倒膜量为60g;
(3)将装有膜液的亚格力板于50℃鼓风干干燥8h,之后放置恒温恒湿箱内24h,回软后揭膜;
(4)制得一种快速降解型大豆蛋白模拟塑料薄膜。
实施例2
一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法,其特征在于按照以下步骤制备:
(1)向烧杯中加入2%聚乙烯醇在90℃的水浴内进行溶解,至聚乙烯醇完全溶解后冷却至30~50℃,磁力搅拌的状态下加入2%大豆分离蛋白,之后加入2.5%高压均质后的纳米纤维素匀浆,加入重量百分比含量为5%无水乙醇、2.0%甘油,再加入蒸馏水定容;
(2)将定容的溶液调节pH值至7.0,磁力搅拌器不断搅拌,50℃水浴加热20min,采用超声波清洗器超声10min进行消泡脱气处理,脱气后成膜液倒入的亚克力板槽内,倒膜量为60g;
(3)将装有膜液的亚格力板于50℃鼓风干干燥8h,之后放置恒温恒湿箱内24h,回软后揭膜;
(4)制得一种快速降解型大豆蛋白模拟塑料薄膜。
实施例3
一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法,其特征在于按照以下步骤制备:
(1)向烧杯中加入1.5%聚乙烯醇在90℃的水浴内进行溶解,至聚乙烯醇完全溶解后冷却至30~50℃,磁力搅拌的状态下加入4%大豆分离蛋白,之后加入3%高压均质后的纳米纤维素匀浆,加入重量百分比含量为5%无水乙醇、2.0%甘油,再加入蒸馏水定容;
(2)将定容的溶液调节pH值至7.0,磁力搅拌器不断搅拌,50℃水浴加热20min,采用超声波清洗器超声10min进行消泡脱气处理,脱气后成膜液倒入的亚克力板槽内,倒膜量为60g;
(3)将装有膜液的亚格力板于50℃鼓风干干燥8h,之后放置恒温恒湿箱内24h,回软后揭膜;
(4)制得一种快速降解型大豆蛋白模拟塑料薄膜。
对实施例1-3制得的大豆蛋白模拟塑料薄膜及普通可降解塑料薄膜PO膜(聚烯烃膜)做降解速度、膜厚度、抗拉强度、断裂伸长率、水蒸气透过率、氧气透过率的性能测试,利用常规土埋法进行降解试验。
土埋法就是将需降解的薄膜掩埋在土壤肥沃,湿度适宜,温度适宜的环境下利用土壤中的微生物进行降解试验。
对实施例1-3制得的大豆蛋白模拟塑料薄膜及普通可降解塑料薄膜PO膜对比结果见下表:
注:每组实验都进行了三组平行试验,每个数值都是三组数据的平均值。

Claims (5)

1.一种快速降解型大豆蛋白模拟塑料薄膜的制备方法,其特征在于按照以下步骤制备:
(1)向装有蒸馏水的烧杯中加入一定量1.5%~2.5%聚乙烯醇在90℃的水浴锅内进行溶解,待将聚乙烯醇溶液放至30~50℃之后加入2%~4%大豆分离蛋白,之后再加入重量百分比含量为5%无水乙醇、2%甘油,最后加入2%~3%的经100MPa高压均质后的纳米纤维素匀浆,匀浆的质量分数为1%,在磁力搅拌的状态下加入,再加入蒸馏水定容;
(2)将定容之后的溶液调节pH值至7.0,50℃水浴加热20min,并不断磁力搅拌,采用超声波清洗器,在40KHz频率下超声10min进行消泡脱气处理,脱气后成膜液倒入的亚克力板槽内;
(3)将装有膜液的亚格力板于50℃鼓风烘干箱内干燥8h,在温度22℃湿度为60%RH的恒温恒湿箱内放置24h,之后进行揭膜;
(4)制得一种快速降解型大豆蛋白模拟塑料薄膜。
2.根据权利要求1所述的一种快速降解型大豆蛋白模拟塑料薄膜的制备方法,其特征在于,步骤(1)所述的大豆分离蛋白、聚乙烯醇、纳米纤维素匀浆的添加量分别为2~4%,2.0%,3%。
3.根据权利要求1所述的一种快速降解型大豆蛋白模拟塑料薄膜的制备方法,其特征在于,步骤(1)中纳米纤维素冻干粉在100MPa的高压均质机的作用下进行高压均质,制得纳米纤维素匀浆。
4.根据权利要求1所述的一种快速降解型大豆蛋白模拟塑料薄膜的制备方法,其特征在于,步骤(3)倒膜选用的基底材料亚格力板槽规格为长200 mm×宽200 mm×高10 mm,倒膜量为60g。
5.根据权利要求3-4任一项所述的大豆蛋白模拟塑料薄膜的制备方法,其特征在于,提高大豆蛋白模拟塑料薄膜的机械性能,降解性能,以及阻隔性能,满足人们日常的需要。
CN201610001034.1A 2016-01-04 2016-01-04 一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法 Active CN105419193B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610001034.1A CN105419193B (zh) 2016-01-04 2016-01-04 一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610001034.1A CN105419193B (zh) 2016-01-04 2016-01-04 一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN105419193A CN105419193A (zh) 2016-03-23
CN105419193B true CN105419193B (zh) 2018-10-02

Family

ID=55497760

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610001034.1A Active CN105419193B (zh) 2016-01-04 2016-01-04 一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN105419193B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108102191A (zh) * 2017-12-22 2018-06-01 浙江惠普科技发展有限公司 一种可降解型番薯淀粉环保薄膜及其制备方法
CN109527080A (zh) * 2018-09-06 2019-03-29 山东禹王生态食业有限公司 一种高透气性豆渣复合涂膜的制备工艺
CN110240808A (zh) * 2019-06-24 2019-09-17 东北农业大学 一种抗氧化性大豆蛋白复合薄膜及其制备方法
CN110393159B (zh) * 2019-08-19 2021-10-26 东北农业大学 一种基于超声协同微纳米气泡技术的鸡蛋清洗及消毒方法
CN110698798B (zh) * 2019-10-28 2022-10-21 江苏省环境科学研究院 一种具有耐水、阻光功能的蓝藻基生物复合薄膜材料及其制备方法
US10882977B1 (en) * 2020-01-30 2021-01-05 Edward Showalter Earth plant compostable biodegradable substrate and method of producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282567A (zh) * 2009-05-18 2013-09-04 康奈尔大学 可生物降解的纳米纤维及其实施方式
CN103387685A (zh) * 2013-08-19 2013-11-13 南京林业大学 一种纤维素纳米纤维/聚乙烯醇复合膜的制备方法
CN104479159A (zh) * 2015-01-08 2015-04-01 江南大学 一种耐水性的聚乙烯醇/大豆分离蛋白pva/spi复合膜的制备方法

Also Published As

Publication number Publication date
CN105419193A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
CN105419193B (zh) 一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法
CN104479368B (zh) 一种纳米纤维素增强的全生物降解薄膜及其制备方法
CN102731810B (zh) 一种制备可降解的干豆腐保鲜包装膜的方法
Jiang et al. Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder
CN112606511B (zh) 一种高阻隔可降解双向拉伸薄膜及其制备方法
CN103351483B (zh) 微球型高疏水性淀粉及其制备方法及应用
CN107540879A (zh) 一种热塑性淀粉/聚乳酸双层膜及其制备方法与应用
CN110128801A (zh) 一种可降解餐盒
CN105153660A (zh) 全生物降解细菌纤维素/聚乳酸复合材料及其制备方法
CN106854283A (zh) 一种纳米阻隔添加剂及其制备方法和相关产品
CN110483961A (zh) 一种全降解地膜及其制备方法
He et al. A combined extrusion, retrogradation, and cross-linking strategy for preparing starch-based straws with desirable mechanical properties
Indarti et al. Characteristics of biofoam cups made from sugarcane bagasse with Rhizopus oligosporus as binding agent
CN102604394B (zh) 一种可生物降解乳液膜材料的制备方法
CN108912409A (zh) 一种环保型发泡缓冲材料的制备方法
CN104194015B (zh) 一种食品包装用大豆蛋白与海藻酸钠交联膜的制备方法
CN116285239A (zh) 一种微发泡生物降解膜及其制备方法
CN109989284A (zh) 一种环保防油用纸
RU2318006C1 (ru) Биологически разрушаемая термопластичная композиция с использованием ржаной муки
Thakur Soy-based bioplastics
Chamnanvatchakit et al. Use of epoxidized natural rubber (ENR) for property improvement of gelatin film
Shao et al. Mechanical and moisture barrier properties of corn distarch phosphate film influenced by modified microcry stalline corn straw cellulose
CN113292865A (zh) 一种植物纤维基复合材料及其制备方法和应用
Antonius et al. Production of biodegradable package material from tofu industry byproduct
CN113563702A (zh) 一种可降解塑料袋及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant