CN108102191A - 一种可降解型番薯淀粉环保薄膜及其制备方法 - Google Patents

一种可降解型番薯淀粉环保薄膜及其制备方法 Download PDF

Info

Publication number
CN108102191A
CN108102191A CN201711399992.XA CN201711399992A CN108102191A CN 108102191 A CN108102191 A CN 108102191A CN 201711399992 A CN201711399992 A CN 201711399992A CN 108102191 A CN108102191 A CN 108102191A
Authority
CN
China
Prior art keywords
sweet potato
potato starch
degradable
parts
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711399992.XA
Other languages
English (en)
Inventor
杨培雪
王佩斯
曾辊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Hp Science And Technology Development Co Ltd
Original Assignee
Zhejiang Hp Science And Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Hp Science And Technology Development Co Ltd filed Critical Zhejiang Hp Science And Technology Development Co Ltd
Priority to CN201711399992.XA priority Critical patent/CN108102191A/zh
Publication of CN108102191A publication Critical patent/CN108102191A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/14Gas barrier composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种可降解型番薯淀粉环保薄膜,其原料按重量份包括:聚乙烯50‑75份,聚乙烯醇10‑30份,纳米纤维素冻干粉15‑30份,有机番薯淀粉20‑50份,无水乙醇5‑10份,甘油2‑5份。本薄膜的降解速度快,具有较好的机械性能和阻隔性能。

Description

一种可降解型番薯淀粉环保薄膜及其制备方法
技术领域
本发明涉及食品包装材料领域,具体涉及一种可降解型番薯淀粉环保薄膜及其制备方法。
背景技术
塑料包装薄膜应用十分广泛,但容易产生有毒有害气体和异味,且塑料包装膜不易分解,可造成严重的“白色污染和水土污染”。可降解型包装薄膜是以天然可降解性物质(如蛋白质、纤维素、多糖及其衍生物等)为原料,通过分子间的相互作用而形成的具有空间网状结构的薄膜。可降解型薄膜与合成塑料包装膜性能相似,同时具有优于合成塑料包装膜的特点,主要体现在特有的阻隔性、安全性和无污染等优点,因此可降解型薄膜备受包装行业的重视。但是现有技术中可降解塑料的力学性能较差,需要进一步提高。
目前,国内尚无关于可降解番薯淀粉模拟塑料薄膜的研究。相关可降解型薄膜的研究多集中在大豆分离蛋白的改性及工艺上,例如,专利CN201410681234.7通过加入聚乙烯、聚丙烯及改性大豆分离蛋白从而制备性质较稳定的可降解薄膜;专利CN201410681234.7通过加入淀粉与大豆蛋白制备出拉伸强度及高抗水性的模拟塑料薄膜;专利CN201110214101.5叙述了一种大豆蛋白薄膜的制备方法。然而上述专利中制得的薄膜虽然都为可降解薄膜,但是降解速度较慢且机械性能不够优良。因此,通过调节制备关键技术,提高可降解番薯淀粉模拟塑料薄膜的降解速度,同时保证模拟薄膜具有较好的机械性能、阻隔性能,就成为目前食品包装行业有待解决的问题之一。
发明内容
为了解决上述问题,本发明提供了一种可降解型番薯淀粉环保薄膜及其制备方法,能提高薄膜的降解速度,保证薄膜具有较好的机械性能、阻隔性能。
本发明采取的技术方案是:
一种可降解型番薯淀粉环保薄膜,其原料按重量份包括:聚乙烯50-75份,聚乙烯醇10-30份,纳米纤维素冻干粉15-30份,有机番薯淀粉20-50份,无水乙醇5-10份,甘油2-5份。
作为优选,所述的可降解型番薯淀粉环保薄膜的制备方法,包括以下步骤:
a.制备聚乙烯基础溶液:将聚乙烯颗粒置入120℃的水浴锅内,在混合搅拌的条件下进行溶解,在聚乙烯颗粒全部溶解后,加入聚乙烯醇颗粒,混合溶解,得到聚乙烯基础溶液;溶解后聚乙烯颗粒溶液冷却至20~37℃;
b.制备纳米有机纤维素匀浆:将纳米纤维素冻干粉加入到蒸馏水中,在165MPa的高压均质机作用下,形成质量分数为3.5%的纳米纤维素匀浆;
c.制备塑料薄膜液:将有机番薯淀粉加入到冷却至20~37℃的聚乙烯寄出溶液中,混合搅拌,之后加入纳米纤维素匀浆、无水乙醇和甘油,混合搅拌,得到塑料薄膜液;
d.调节塑料薄膜液的pH值:用0.35mol/L的HCl或0.32mol/LNaOH调解塑料薄膜液的pH值为8—8.50;
e.均温水浴加热塑料薄膜液:磁力搅拌条件下,87℃水浴加热35min;
f.干燥成膜:将水浴后的塑料薄膜液经纱布纳米过滤后,倒置在成膜机板槽内,并置于65℃的鼓风干燥箱内干燥12h;
g.回软揭膜:将干燥后的亚格力板置于恒温恒湿箱内进行回软揭膜。
作为优选,所述步骤g中,恒温恒湿箱的温度为35℃,湿度为75%RH。
作为优选,所述步骤g中,回软时间为42h。
本发明的有益效果为:
(1)本发明以水溶性的、可降解的番薯有机淀粉,可降解的聚乙烯颗粒及可降解的纳米有机纤维素为主要原料,对环境无毒无害无污染,环保且可快速降解;
(2)本发明提供的可降解型番薯淀粉环保薄膜的制备方法,操作简便,制得的薄膜厚度为0.012丝,且表面平整光滑,能够快速降解,时间从10天~25天不等,机械性能较强,阻气性能、阻水性能较好,具有良好的生物相容性及生物可降解性。该环保薄膜降解条件简单,将其埋于湿润且肥沃的土壤中或者丢弃在大自然中均可以快速降解.或者埋藏深度为7~12cm均可,阳光、空气、湿度等正常的环境条件下即可进行快速降解。纳米有机纤维素与PVA(聚乙烯醇)分子链之间羟基的氢键作用使膜内氢键密度增加,纳米有机纤维素较强的刚性及其与PVA界面的黏合作用使膜内高分子链之间形成较好的结合,同时PVA的大量轻基,会与SPI中的极基团反应,形成网络结构,因此三者之间形成了较强的结合作用,形成较稳定的且均匀的立体网状结构,从而大大增强了本薄膜的机械性能。
具体实施方式
下面结合实施例对本发明的技术方案做进一步说明。
实施例1:
一种可降解型番薯淀粉环保薄膜,其原料按重量份包括:聚乙烯50份,聚乙烯醇30份,纳米纤维素冻干粉25份,有机番薯淀粉40份,无水乙醇10份,甘油4份。
所述的可降解型番薯淀粉环保薄膜的制备方法,包括以下步骤:
a.制备聚乙烯基础溶液:将聚乙烯颗粒置入120℃的水浴锅内,在混合搅拌的条件下进行溶解,在聚乙烯颗粒全部溶解后,加入聚乙烯醇颗粒,混合溶解,得到聚乙烯基础溶液;
b.制备纳米有机纤维素匀浆:将纳米纤维素冻干粉加入到蒸馏水中,在165MPa的高压均质机作用下,形成质量分数为3.5%的纳米纤维素匀浆;
c.制备塑料薄膜液:将有机番薯淀粉加入到冷却至20~37℃的聚乙烯寄出溶液中,混合搅拌,之后加入纳米纤维素匀浆、无水乙醇和甘油,混合搅拌,得到塑料薄膜液;甘油用于辅助软化。
d.调节塑料薄膜液的pH值:用0.35mol/L的HCl或0.32mol/LNaOH调解塑料薄膜液的pH值为8.50;
e.均温水浴加热塑料薄膜液:磁力搅拌条件下,87℃水浴加热35min;
f.干燥成膜:将水浴后的塑料薄膜液经纱布纳米过滤后,倒置在成膜机板槽内,并置于65℃的鼓风干燥箱内干燥12h;
g.回软揭膜:将干燥后的亚格力板置于恒温恒湿箱内进行回软揭膜,恒温恒湿箱的温度为35℃,湿度为75%RH,回软时间为42h。
本方法制备的可降解型番薯淀粉环保薄膜,需降解时间约为15天,刚性强,耐拉伸,阻气性能、阻水性能较好。
实施例2:
一种可降解型番薯淀粉环保薄膜,其原料按重量份包括:聚乙烯60份,聚乙烯醇15份,纳米纤维素冻干粉30份,有机番薯淀粉20份,无水乙醇8份,甘油2份。
所述的可降解型番薯淀粉环保薄膜的制备方法,包括以下步骤:
a.制备聚乙烯基础溶液:将聚乙烯颗粒置入120℃的水浴锅内,在混合搅拌的条件下进行溶解,在聚乙烯颗粒全部溶解后,加入聚乙烯醇颗粒,混合溶解,得到聚乙烯基础溶液;
b.制备纳米有机纤维素匀浆:将纳米纤维素冻干粉加入到蒸馏水中,在165MPa的高压均质机作用下,形成质量分数为3.5%的纳米纤维素匀浆;
c.制备塑料薄膜液:将有机番薯淀粉加入到冷却至20~37℃的聚乙烯寄出溶液中,混合搅拌,之后加入纳米纤维素匀浆、无水乙醇和甘油,混合搅拌,得到塑料薄膜液;
d.调节塑料薄膜液的pH值:用0.35mol/L的HCl或0.32mol/LNaOH调解塑料薄膜液的pH值为8.20;
e.均温水浴加热塑料薄膜液:磁力搅拌条件下,87℃水浴加热35min;
f.干燥成膜:将水浴后的塑料薄膜液经纱布纳米过滤后,倒置在成膜机板槽内,并置于65℃的鼓风干燥箱内干燥12h;
g.回软揭膜:将干燥后的亚格力板置于恒温恒湿箱内进行回软揭膜,恒温恒湿箱的温度为35℃,湿度为75%RH,回软时间为42h。
本方法制备的可降解型番薯淀粉环保薄膜,需降解时间约为12天,刚性较强,耐拉伸,阻气性能、阻水性能好。
实施例3:
一种可降解型番薯淀粉环保薄膜,其原料按重量份包括:聚乙烯75份,聚乙烯醇10份,纳米纤维素冻干粉15份,有机番薯淀粉50份,无水乙醇5份,甘油5份。
所述的可降解型番薯淀粉环保薄膜的制备方法,包括以下步骤:
a.制备聚乙烯基础溶液:将聚乙烯颗粒置入120℃的水浴锅内,在混合搅拌的条件下进行溶解,在聚乙烯颗粒全部溶解后,加入聚乙烯醇颗粒,混合溶解,得到聚乙烯基础溶液;
b.制备纳米有机纤维素匀浆:将纳米纤维素冻干粉加入到蒸馏水中,在165MPa的高压均质机作用下,形成质量分数为3.5%的纳米纤维素匀浆;
c.制备塑料薄膜液:将有机番薯淀粉加入到冷却至20~37℃的聚乙烯寄出溶液中,混合搅拌,之后加入纳米纤维素匀浆、无水乙醇和甘油,混合搅拌,得到塑料薄膜液;
d.调节塑料薄膜液的pH值:用0.35mol/L的HCl或0.32mol/LNaOH调解塑料薄膜液的pH值为8;
e.均温水浴加热塑料薄膜液:磁力搅拌条件下,87℃水浴加热35min;
f.干燥成膜:将水浴后的塑料薄膜液经纱布纳米过滤后,倒置在成膜机板槽内,并置于65℃的鼓风干燥箱内干燥12h;
g.回软揭膜:将干燥后的亚格力板置于恒温恒湿箱内进行回软揭膜,恒温恒湿箱的温度为35℃,湿度为75%RH,回软时间为42h。
本方法制备的可降解型番薯淀粉环保薄膜,需降解时间约为20天,刚性较强,耐拉伸,阻气性能、阻水性能较好。
显然,本发明的上述实施例仅仅是为了说明本发明所作的举例,而并非对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷例。而这些属于本发明的实质精神所引申出的显而易见的变化或变动仍属于本发明的保护范围。

Claims (4)

1.一种可降解型番薯淀粉环保薄膜,其特征在于,其原料按重量份包括:聚乙烯50-75份,聚乙烯醇10-30份,纳米纤维素冻干粉15-30份,有机番薯淀粉20-50份,无水乙醇5-10份,甘油2-5份。
2.如权利要求1所述的一种可降解型番薯淀粉环保薄膜的制备方法,其特征在于,所述的快速降解型番薯淀粉模拟塑料薄膜的制备方法,包括以下步骤:
a.制备聚乙烯基础溶液:将聚乙烯颗粒置入120℃的水浴锅内,在混合搅拌的条件下进行溶解,在聚乙烯颗粒全部溶解后,加入聚乙烯醇颗粒,混合溶解,得到聚乙烯基础溶液;溶解后聚乙烯颗粒溶液冷却至20~37℃;
b.制备纳米有机纤维素匀浆:将纳米纤维素冻干粉加入到蒸馏水中,在165MPa的高压均质机作用下,形成质量分数为3.5%的纳米纤维素匀浆;
c.制备塑料薄膜液:将有机番薯淀粉加入到冷却至20~37℃的聚乙烯寄出溶液中,混合搅拌,之后加入纳米纤维素匀浆、无水乙醇和甘油,混合搅拌,得到塑料薄膜液;
d.调节塑料薄膜液的pH值:用0.35mol/L的HCl或0.32mol/LNaOH调解塑料薄膜液的pH值为8—8.50;
e.均温水浴加热塑料薄膜液:磁力搅拌条件下,87℃水浴加热35min;
f.干燥成膜:将水浴后的塑料薄膜液经纱布纳米过滤后,倒置在成膜机板槽内,并置于65℃的鼓风干燥箱内干燥12h;
g.回软揭膜:将干燥后的亚格力板置于恒温恒湿箱内进行回软揭膜。
3.如权利要求2所述的一种可降解型番薯淀粉环保薄膜的制备方法,其特征在于,所述步骤g中,恒温恒湿箱的温度为35℃,湿度为75%RH。
4.如权利要求2所述的一种可降解型番薯淀粉环保薄膜的制备方法,其特征在于,所述步骤g中,回软时间为42h。
CN201711399992.XA 2017-12-22 2017-12-22 一种可降解型番薯淀粉环保薄膜及其制备方法 Pending CN108102191A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711399992.XA CN108102191A (zh) 2017-12-22 2017-12-22 一种可降解型番薯淀粉环保薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711399992.XA CN108102191A (zh) 2017-12-22 2017-12-22 一种可降解型番薯淀粉环保薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN108102191A true CN108102191A (zh) 2018-06-01

Family

ID=62211682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711399992.XA Pending CN108102191A (zh) 2017-12-22 2017-12-22 一种可降解型番薯淀粉环保薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN108102191A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105419193A (zh) * 2016-01-04 2016-03-23 东北农业大学 一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法
CN106279960A (zh) * 2016-08-25 2017-01-04 太仓市鸿运包装材料有限公司 一种可生物降解的抗菌食品包装膜及其制备方法
CN106700134A (zh) * 2016-11-24 2017-05-24 广东新佳源生物科技股份有限公司 淀粉基生物可降解流延膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105419193A (zh) * 2016-01-04 2016-03-23 东北农业大学 一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法
CN106279960A (zh) * 2016-08-25 2017-01-04 太仓市鸿运包装材料有限公司 一种可生物降解的抗菌食品包装膜及其制备方法
CN106700134A (zh) * 2016-11-24 2017-05-24 广东新佳源生物科技股份有限公司 淀粉基生物可降解流延膜及其制备方法

Similar Documents

Publication Publication Date Title
Ji et al. A biodegradable chitosan-based composite film reinforced by ramie fibre and lignin for food packaging
Arrieta et al. Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films
Wang et al. Development and characterization of bacterial cellulose reinforced biocomposite films based on protein from buckwheat distiller’s dried grains
Ning et al. Preparation and characterization of black biodegradable mulch films from multiple biomass materials
CN105419193B (zh) 一种快速降解型大豆蛋白模拟塑料薄膜及其制备方法
Gao et al. Preparation of Polyvinyl Alcohol/Xylan Blending Films with 1, 2, 3, 4‐Butane Tetracarboxylic Acid as a New Plasticizer
CN104610757A (zh) 一种可降解的谷类醇溶蛋白-壳聚糖复合性果蔬包装膜
Machmud et al. Characteristics of red algae bioplastics/latex blends under tension
CN102634103A (zh) 一种添加稀土的可降解转光地膜
Weiwei et al. Anaerobic biodegradation, physical and structural properties of normal and high-amylose maize starch films
CN105153660A (zh) 全生物降解细菌纤维素/聚乳酸复合材料及其制备方法
Gomaa Biodegradable plastics based on algal polymers: recent advances and applications
Zhang et al. Physicochemical properties and antibacterial activity of polylactic acid/starch acetate films incorporated with chitosan and tea polyphenols
Tang et al. Preparation and characterization of eco-friendly polysaccharide-based liquid mulch with soil amendment function
CN102604394B (zh) 一种可生物降解乳液膜材料的制备方法
Li et al. Recent Advances of Biodegradable Agricultural Mulches from Renewable Resources
Li et al. Formulation, performance and environmental/agricultural benefit analysis of biomass-based biodegradable mulch films: A review
Zhang et al. UV-functional flexible nanocomposite film with high lignin-cellulose nanocrystals content
CN102517798A (zh) 一种地膜及其制备方法
CN108102191A (zh) 一种可降解型番薯淀粉环保薄膜及其制备方法
Anuar et al. Physical and functional properties of durian skin fiber biocomposite films filled with natural antimicrobial agents
Koshy et al. Soy protein-and starch-based green composites/nanocomposites: preparation, properties, and applications
Techawinyutham et al. Lignocellulose based biofiller reinforced biopolymer composites from fruit peel wastes as natural pigment
Hong-rui et al. Effect of plasticizers on properties of rice straw fiber film
CN104893208A (zh) 一种抗冻韧性佳的全降解塑料薄膜及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180601

RJ01 Rejection of invention patent application after publication