CN105418077B - 一种纳米陶瓷内部三维微细通道的加工方法 - Google Patents

一种纳米陶瓷内部三维微细通道的加工方法 Download PDF

Info

Publication number
CN105418077B
CN105418077B CN201510771261.8A CN201510771261A CN105418077B CN 105418077 B CN105418077 B CN 105418077B CN 201510771261 A CN201510771261 A CN 201510771261A CN 105418077 B CN105418077 B CN 105418077B
Authority
CN
China
Prior art keywords
nano ceramics
micro
nano
channel
base substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510771261.8A
Other languages
English (en)
Other versions
CN105418077A (zh
Inventor
卢振
黄臻瀚
蒋少松
王重阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201510771261.8A priority Critical patent/CN105418077B/zh
Publication of CN105418077A publication Critical patent/CN105418077A/zh
Application granted granted Critical
Publication of CN105418077B publication Critical patent/CN105418077B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Micromachines (AREA)

Abstract

一种纳米陶瓷内部三维微细通道的加工方法,涉及一种纳米陶瓷内部三维微细通道的加工方法。本发明是为了解决在陶瓷材料上获得密闭的三维微细通道困难的技术问题。本发明:一、制备纳米陶瓷坯体结构;二、纳米陶瓷坯体结构表面抛光;三、纳米陶瓷坯体结构烘干处理;四、蚀刻制作掩模板;五、喷涂;六、真空塑封;七、冷等静压;八、脱脂处理;九、烧结强化。本发明提出了微细通道形状及精度的控制方法,解决了传统陶瓷微细通道难加工的问题,本发明制备的三维微细通道的宽度可以达到500微米~100纳米。本发明应用于在纳米陶瓷内部加工三维微细通道。

Description

一种纳米陶瓷内部三维微细通道的加工方法
技术领域
本发明涉及一种纳米陶瓷内部三维微细通道的加工方法。
背景技术
目前,微细通道结构件应用十分广泛,并开始在化学、生命科学及医学器件等领域发挥重要作用,如微流控芯片。这一类结构件在数平方厘米的基片上分布有微腔体和微管道网络结构及其它功能单元,以实现微量样品的制备、进样、反应、分离及检测等,广泛用于药物检测、环境监测、基因分析等诸多领域中,由于其试剂消耗量少、检测效率高、环境污染小、体积小、易于携带等优点,在生物医学、化学领域受到越来越多的重视。但是微细通道结构件的制作方法十分困难,尤其是在陶瓷材料上获得密闭的三维微细通道更加困难。
发明内容
本发明是为了解决在陶瓷材料上获得密闭的三维微细通道困难的技术问题,而提供一种纳米陶瓷内部三维微细通道的加工方法。
本发明的一种纳米陶瓷内部三维微细通道的加工方法是按以下步骤进行的:
一、制备纳米陶瓷坯体结构:采用金属钢制模具将纳米陶瓷粉末通过液压机在压力为100MPa~150MPa的条件下保压5s~10s,顶出脱模,得到纳米陶瓷坯体结构;
二、纳米陶瓷坯体结构表面抛光:将步骤一得到的纳米陶瓷坯体结构在抛光机转速为30转/分钟~80转/分钟和抛光介质为绒布的条件下抛光30min,然后置于数控雕刻机上进行三维加工,得到微细通道三维结构坯体;
三、纳米陶瓷坯体结构烘干处理:将步骤二得到的微细通道三维结构坯体放置在马弗炉中,在温度为40℃~80℃的条件下保温5h~10h,得到脱水的纳米陶瓷坯体I;
四、蚀刻制作掩模板:通过蚀刻技术将硅片制备成掩模板,使得掩模板上布置微细通道,微细通道的形状和尺寸根据实际需要进行设计;
五、喷涂:将步骤四制备的掩模板覆盖于步骤三制备的脱水的纳米陶瓷坯体I的抛光面上,然后通过喷涂机在脱水的纳米陶瓷坯体I的抛光面上覆盖的掩模板面上喷涂有机微米线或有机纳米线,得到喷涂有机微米线或有机纳米线的喷涂面;
六、真空塑封:重复步骤一至三制备一个脱水的纳米陶瓷坯体II,将脱水的纳米陶瓷坯体II覆盖在步骤五得到的喷涂有机微米线或有机纳米线的喷涂面上,然后放置于塑料密封袋内,在真空塑封机内进行真空塑封,得到塑封后的坯体;
七、冷等静压:将步骤六得到的塑封后的坯体置于冷等静压机内,在压力为150MPa~300MPa的条件下压制3mim~5min;
八、脱脂处理:将步骤七冷等静压后的坯体放置在马弗炉中,以0.5℃/min~1.5℃/min的升温速率从室温升温至300℃,然后以1.5℃/min~3℃/min的升温速率从300℃升温至550℃,然后以3℃/min~5℃/min的升温速率从550℃升温至900℃,然后在温度为900℃的条件下保温1h~2h,得到脱脂后的胚体;
九、烧结强化:将步骤八得到的脱脂后的胚体放置在高温烧结炉中,在温度为1400℃~1600℃和真空或保护气氛的条件下烧结2h~3h,得到致密的纳米陶瓷微细通道制品。
本发明的优点:
本发明提出了微细通道形状及精度的控制方法,解决了传统陶瓷微细通道难加工的问题,本发明制备的三维微细通道的宽度可以达到500微米~100纳米。
具体实施方式:
具体实施方式一:本实施方式为一种纳米陶瓷内部三维微细通道的加工方法,具体是按以下步骤进行的:
一、制备纳米陶瓷坯体结构:采用金属钢制模具将纳米陶瓷粉末通过液压机在压力为100MPa~150MPa的条件下保压5s~10s,顶出脱模,得到纳米陶瓷坯体结构;
二、纳米陶瓷坯体结构表面抛光:将步骤一得到的纳米陶瓷坯体结构在抛光机转速为30转/分钟~80转/分钟和抛光介质为绒布的条件下抛光30min,然后置于数控雕刻机上进行三维加工,得到微细通道三维结构坯体;
三、纳米陶瓷坯体结构烘干处理:将步骤二得到的微细通道三维结构坯体放置在马弗炉中,在温度为40℃~80℃的条件下保温5h~10h,得到脱水的纳米陶瓷坯体I;
四、蚀刻制作掩模板:通过蚀刻技术将硅片制备成掩模板,使得掩模板上布置微细通道,微细通道的形状和尺寸根据实际需要进行设计;
五、喷涂:将步骤四制备的掩模板覆盖于步骤三制备的脱水的纳米陶瓷坯体I的抛光面上,然后通过喷涂机在脱水的纳米陶瓷坯体I的抛光面上覆盖的掩模板面上喷涂有机微米线或有机纳米线,得到喷涂有机微米线或有机纳米线的喷涂面;
六、真空塑封:重复步骤一至三制备一个脱水的纳米陶瓷坯体II,将脱水的纳米陶瓷坯体II覆盖在步骤五得到的喷涂有机微米线或有机纳米线的喷涂面上,然后放置于塑料密封袋内,在真空塑封机内进行真空塑封,得到塑封后的坯体;
七、冷等静压:将步骤六得到的塑封后的坯体置于冷等静压机内,在压力为150MPa~300MPa的条件下压制3mim~5min;
八、脱脂处理:将步骤七冷等静压后的坯体放置在马弗炉中,以0.5℃/min~1.5℃/min的升温速率从室温升温至300℃,然后以1.5℃/min~3℃/min的升温速率从300℃升温至550℃,然后以3℃/min~5℃/min的升温速率从550℃升温至900℃,然后在温度为900℃的条件下保温1h~2h,得到脱脂后的胚体;
九、烧结强化:将步骤八得到的脱脂后的胚体放置在高温烧结炉中,在温度为1400℃~1600℃和真空或保护气氛的条件下烧结2h~3h,得到致密的纳米陶瓷微细通道制品。
具体实施方式二:本实施方式与具体实施方式一的不同点是:步骤一中所述的纳米陶瓷粉末为氧化铝、氧化锆和氧化钛中的一种或几种的混合物。其他与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二的不同点是:步骤五中所述的有机微米线和有机纳米线熔点为50℃~200℃,分解温度低于500℃。其他与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三的不同点是:步骤九中所述的真空的真空度为1×10-1Pa~1×10-3Pa。其他与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一不同点是:步骤九中所述的保护气氛的保护气为氮气。其他与具体实施方式一相同。
具体实施方式六:本实施方式与具体实施方式三不同点是:步骤五中所述的有机微米线和有机纳米线为石蜡、聚丙烯和聚乙烯中的一种或几种的混合物。其他与具体实施方式三相同。
通过以下试验验证本发明的有益效果:
试验一:本试验为一种纳米陶瓷内部三维微细通道的加工方法,具体是按以下步骤进行的:
一、制备纳米陶瓷坯体结构:采用金属钢制模具将纳米陶瓷粉末通过液压机在压力为150MPa的条件下保压8s,顶出脱模,得到纳米陶瓷坯体结构;
二、纳米陶瓷坯体结构表面抛光:将步骤一得到的纳米陶瓷坯体结构在抛光机转速为50转/分钟和抛光介质为绒布的条件下抛光30min,然后置于数控雕刻机上进行三维加工,得到微细通道三维结构坯体;
三、纳米陶瓷坯体结构烘干处理:将步骤二得到的微细通道三维结构坯体放置在马弗炉中,在温度为60℃的条件下保温8h,得到脱水的纳米陶瓷坯体I;
四、蚀刻制作掩模板:通过蚀刻技术将硅片制备成掩模板,使得掩模板上布置微细通道,微细通道的形状和尺寸根据实际需要进行设计;
五、喷涂:将步骤四制备的掩模板覆盖于步骤三制备的脱水的纳米陶瓷坯体I的抛光面上,然后通过喷涂机在脱水的纳米陶瓷坯体I的抛光面上覆盖的掩模板面上喷涂高度为100微米的有机微米线,得到喷涂有机微米线或有机纳米线的喷涂面;
六、真空塑封:重复步骤一至三制备一个脱水的纳米陶瓷坯体II,将脱水的纳米陶瓷坯体II覆盖在步骤五得到的喷涂有机微米线或有机纳米线的喷涂面上,然后放置于塑料密封袋内,在真空塑封机内进行真空塑封,得到塑封后的坯体;
七、冷等静压:将步骤六得到的塑封后的坯体置于冷等静压机内,在压力为200MPa的条件下压制5min;
八、脱脂处理:将步骤七冷等静压后的坯体放置在马弗炉中,以0.5℃/min~1.5℃/min的升温速率从室温升温至300℃,然后以1.5℃/min~3℃/min的升温速率从300℃升温至550℃,然后以3℃/min~5℃/min的升温速率从550℃升温至900℃,然后在温度为900℃的条件下保温1h,得到脱脂后的胚体;
九、烧结强化:将步骤八得到的脱脂后的胚体放置在高温烧结炉中,在温度为1500℃和保护气氛的条件下烧结3h,得到致密的纳米陶瓷微细通道制品。
步骤一中所述的纳米陶瓷粉末为氧化铝;步骤五中所述的有机微米线为石蜡;步骤九中所述的保护气氛的保护气为氮气。

Claims (6)

1.一种纳米陶瓷内部三维微细通道的加工方法,其特征在于纳米陶瓷内部三维微细通道的加工方法是按以下步骤进行的:
一、制备纳米陶瓷坯体结构:采用金属钢制模具将纳米陶瓷粉末通过液压机在压力为100MPa~150MPa的条件下保压5s~10s,顶出脱模,得到纳米陶瓷坯体结构;
二、纳米陶瓷坯体结构表面抛光:将步骤一得到的纳米陶瓷坯体结构在抛光机转速为30转/分钟~80转/分钟和抛光介质为绒布的条件下抛光30min,然后置于数控雕刻机上进行三维加工,得到微细通道三维结构坯体;
三、微细通道三维结构坯体烘干处理:将步骤二得到的微细通道三维结构坯体放置在马弗炉中,在温度为40℃~80℃的条件下保温5h~10h,得到脱水的纳米陶瓷坯体I;
四、蚀刻制作掩模板:通过蚀刻技术将硅片制备成掩模板,使得掩模板上布置微细通道;
五、喷涂:将步骤四制备的掩模板覆盖于步骤三制备的脱水的纳米陶瓷坯体I的抛光面上,然后通过喷涂机在脱水的纳米陶瓷坯体I的抛光面上覆盖的掩模板面上喷涂有机微米线或有机纳米线,得到喷涂有机微米线或有机纳米线的喷涂面;
六、真空塑封:重复步骤一至三制备一个脱水的纳米陶瓷坯体II,将脱水的纳米陶瓷坯体II覆盖在步骤五得到的喷涂有机微米线或有机纳米线的喷涂面上,然后放置于塑料密封袋内,在真空塑封机内进行真空塑封,得到塑封后的坯体;
七、冷等静压:将步骤六得到的塑封后的坯体置于冷等静压机内,在压力为150MPa~300MPa的条件下压制3mim~5min;
八、脱脂处理:将步骤七冷等静压后的坯体放置在马弗炉中,以0.5℃/min~1.5℃/min的升温速率从室温升温至300℃,然后以1.5℃/min~3℃/min的升温速率从300℃升温至550℃,然后以3℃/min~5℃/min的升温速率从550℃升温至900℃,然后在温度为900℃的条件下保温1h~2h,得到脱脂后的胚体;
九、烧结强化:将步骤八得到的脱脂后的胚体放置在高温烧结炉中进行真空烧结或保护气氛烧结,得到致密的纳米陶瓷微细通道制品;所述的真空烧结温度为1400℃~1600℃,真空烧结时间为2h~3h;所述的保护气氛烧结温度为1400℃~1600℃,保护气氛烧结时间为2h~3h。
2.根据权利要求1所述的一种纳米陶瓷内部三维微细通道的加工方法,其特征在于步骤一中所述的纳米陶瓷粉末为氧化铝、氧化锆和氧化钛中的一种或几种的混合物。
3.根据权利要求1所述的一种纳米陶瓷内部三维微细通道的加工方法,其特征在于步骤五中所述的有机微米线熔点为50℃~200℃,分解温度低于500℃;步骤五中所述的有机纳米线熔点为50℃~200℃,分解温度低于500℃。
4.根据权利要求1所述的一种纳米陶瓷内部三维微细通道的加工方法,其特征在于步骤九中所述的真空烧结是在真空度为1×10-1Pa~1×10-3Pa和真空烧结温度为1400℃~1600℃的条件下烧结2h~3h。
5.根据权利要求1所述的一种纳米陶瓷内部三维微细通道的加工方法,其特征在于步骤九中所述的保护气氛烧结是在氮气气氛和烧结温度为1400℃~1600℃的条件下烧结2h~3h。
6.根据权利要求3所述的一种纳米陶瓷内部三维微细通道的加工方法,其特征在于步骤五中所述的有机微米线和有机纳米线为石蜡、聚丙烯和聚乙烯中的一种或几种的混合物。
CN201510771261.8A 2015-11-12 2015-11-12 一种纳米陶瓷内部三维微细通道的加工方法 Active CN105418077B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510771261.8A CN105418077B (zh) 2015-11-12 2015-11-12 一种纳米陶瓷内部三维微细通道的加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510771261.8A CN105418077B (zh) 2015-11-12 2015-11-12 一种纳米陶瓷内部三维微细通道的加工方法

Publications (2)

Publication Number Publication Date
CN105418077A CN105418077A (zh) 2016-03-23
CN105418077B true CN105418077B (zh) 2017-09-29

Family

ID=55496696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510771261.8A Active CN105418077B (zh) 2015-11-12 2015-11-12 一种纳米陶瓷内部三维微细通道的加工方法

Country Status (1)

Country Link
CN (1) CN105418077B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108558408B (zh) * 2018-06-05 2020-12-01 李钰龙 一种一体化微通道板的制备方法
CN115055137B (zh) * 2022-08-04 2024-02-06 之江实验室 一种微反应器的加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449534A1 (en) * 1990-03-28 1991-10-02 Ngk Insulators, Ltd. Method of producing ceramic products
CN1462262A (zh) * 2001-03-01 2003-12-17 日本碍子株式会社 陶瓷结构体的制造方法
CN103003220A (zh) * 2010-06-30 2013-03-27 新加坡国立大学 多孔陶瓷基体
CN103992096A (zh) * 2013-02-18 2014-08-20 福建省乐普陶板制造有限公司 一种能循环使用的多通道陶瓷地板砖

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449534A1 (en) * 1990-03-28 1991-10-02 Ngk Insulators, Ltd. Method of producing ceramic products
CN1462262A (zh) * 2001-03-01 2003-12-17 日本碍子株式会社 陶瓷结构体的制造方法
US6808663B2 (en) * 2001-03-01 2004-10-26 Ngk Insulators, Ltd. Method of manufacturing ceramic structure
CN103003220A (zh) * 2010-06-30 2013-03-27 新加坡国立大学 多孔陶瓷基体
CN103992096A (zh) * 2013-02-18 2014-08-20 福建省乐普陶板制造有限公司 一种能循环使用的多通道陶瓷地板砖

Also Published As

Publication number Publication date
CN105418077A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
Franks et al. Colloidal processing: enabling complex shaped ceramics with unique multiscale structures
CN105418077B (zh) 一种纳米陶瓷内部三维微细通道的加工方法
RU2016116942A (ru) Порошкообразный материал для формирования трехмерного изделия, жидкий отвердитель и набор для формирования трехмерного изделия, и способ формирования и устройство для формирования трехмерного изделия
CN106048502B (zh) 纳米yag涂层、其制备方法及应用
CN103924184A (zh) 一种多孔微纳结构wo3气敏涂层及其制备方法
CN104628393A (zh) 一种高性能陶瓷的制备方法
CN106927820A (zh) 高纯高强高韧氧化锆复合陶瓷结构件及其制备方法
EP2612954A3 (en) Applying bond coat using cold spraying processes and articles thereof
CN103864032B (zh) 一种纳米材料的制备方法
CN107604675A (zh) 一种基于气相碳纳米管分散雾的定向碳纳米管改性碳纤维表面的接触端处理方法
CN104987081A (zh) 采用复合粉末粒型制备氮化铝陶瓷基片的方法
CN104152890B (zh) 在柔性金属部件上制备抗热冲击的耐高温绝缘涂层的方法
CN103896561A (zh) 具有规整层状结构的二氧化硅隔热材料制备方法
Wu et al. Densification and microstructures of PbTiO3 ceramics prepared by spark plasma sintering
CN104195495B (zh) 一种氧化物纳米粒子掺杂的wo3气敏涂层及其制备方法
CN106987835A (zh) 一种耐磨超疏水涂层及其制备方法
CN106082337A (zh) Vo2(m)纳米线有序阵列及其制备方法
CN106977199A (zh) 高纯超韧氧化锆复合陶瓷齿轮及其制备方法
CN106086779A (zh) 一种微纳米尺寸流通孔径多孔固体材料及其制备方法
US20170182554A1 (en) Method for producing ceramic and/or metal components
Ji et al. Effects of oxidation processes and microstructures on the hydrophilicity of copper surface
CN104073797B (zh) 复合结构物
Zheng et al. Fabrication of super-hydrophobic magnetic Fe/SiO2 surface with tunable adhesion inspired by lotus leaf
CN102357390A (zh) 一种利用滚压振动磨制备纳米氧化锆/氧化铝复合粉体的方法
Zuruzi et al. Superhydrophilicity on microstructured titanium surfaces via a superficial titania layer with interconnected nanoscale pores

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant