CN105401153B - 一种具有耐蚀性能的纯铜超疏水表面的制备方法 - Google Patents

一种具有耐蚀性能的纯铜超疏水表面的制备方法 Download PDF

Info

Publication number
CN105401153B
CN105401153B CN201510530848.XA CN201510530848A CN105401153B CN 105401153 B CN105401153 B CN 105401153B CN 201510530848 A CN201510530848 A CN 201510530848A CN 105401153 B CN105401153 B CN 105401153B
Authority
CN
China
Prior art keywords
fine copper
resisting property
super hydrophobic
hydrophobic surface
corrosion resisting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510530848.XA
Other languages
English (en)
Other versions
CN105401153A (zh
Inventor
徐群杰
刘伟
韩杰
陈晓航
闵宇霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
Original Assignee
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power filed Critical Shanghai University of Electric Power
Priority to CN201510530848.XA priority Critical patent/CN105401153B/zh
Publication of CN105401153A publication Critical patent/CN105401153A/zh
Application granted granted Critical
Publication of CN105401153B publication Critical patent/CN105401153B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

本发明涉及一种具有耐蚀性能的纯铜超疏水表面的制备方法,该方法以氨水作为刻蚀液,将纯铜先进行预处理,以除去表面油污及油脂,随后,用刻蚀液对预处理后的纯铜进行化学刻蚀,再经水热处理,制得具有粗糙结构的纯铜表面,最后再置于硬脂酸的乙醇溶液中,浸泡,在纯铜粗糙表面自组装生成超疏水膜,后经过滤,洗涤,干燥,即制得所述的具有耐蚀性能的纯铜超疏水表面。与现有技术相比,本发明采用将化学刻蚀和水热处理相结合的方法,在纯铜表面构建表面粗糙度,能强烈吸附硬脂酸分子,使所得的超疏水表面具有较强的耐腐蚀性能,制备工艺简单,条件温和,成本较低,稳定性较高,绿色环保,具有很好的应用前景。

Description

一种具有耐蚀性能的纯铜超疏水表面的制备方法
技术领域
本发明属于化工技术领域,涉及一种新型纯铜超疏水表面技术,尤其是涉及一种具有耐蚀性能的纯铜超疏水表面的制备方法。
背景技术
铜是人类应用最早和最广的一种有色金属,由于其优良的导热性能、机械性能和抗污性能,产量仅次于钢和铝位居第三,同时因为具有比较好的的强度、弹性和耐磨性,在国民经济中占有重要的位置。在电力行业中,大部分电厂的凝汽器、低压加热和冷油器的换热器件以及水冷发电机的空芯导线都是铜合金材料;在海洋军事工业中,航空母舰等军事战舰中的水管路系统中也大多是一些铜材料。但是,由于铜材料在使用过程中暴露出来了严重的腐蚀问题,给铜产品的应用带来了很多的限制,因此有关于铜及其合金腐蚀方面的研究至关重要。在铜及其合金表面构筑超疏水膜,大大提高了其耐蚀性能,在生产和实践中具有极大的应用价值。
近年来,随着国内外对于超疏水材料研究的兴起,利用超疏水性能来制备耐腐蚀的铜材料也逐渐成为研究的热点之一。超疏水表面处理技术是一种新型防腐蚀技术,超疏水表面对于金属材料可以起到自清洁、抑制表面腐蚀和表面氧化以及降低摩擦系数的效果。需要说明的是,超疏水表面是自然界常见的自然现象,例如,当水滴落在荷叶上时,水与荷叶形成接近170°的接触角,聚集成珠状而不铺展,极度疏水。水滴在荷叶表面上可以实现自由滚动,当水滴(如雨水、露水等)滚动时,可以将附着在表面上的灰尘等污染物带走,从而使表面保持清洁,这样的表面为荷叶效应表面,又称超疏水表面。
目前,超疏水铜材料主要是通过电沉积、化学刻蚀、化学沉积以及热氧化法等方法,在铜材料表面构筑能够产生超疏水性能的粗糙表面,利用化学修饰后降低表面能从而得到超疏水表面。然而,上述这些方法通常都存在处理工序复杂,成本较高,稳定性较差及环保性差等技术缺点。
针对现有技术的不足,申请号为201410178640.1的中国发明专利公布了一种具有耐蚀性能的纯铜超疏水表面的制备方法,该方法依次包括以下步骤,即制备刻蚀液、纯铜的预处理、化学刻蚀、高温煅烧以及在纯铜粗糙表面自组装超疏水膜,最后得到一种具有较强耐蚀性能的纯铜超疏水表面。上述专利公布的技术方案主要是采用双氧水和盐酸混合液为刻蚀液对纯铜表面刻蚀,再经高温煅烧构建表面粗糙度,用以吸附硬脂酸分子,进而获得超疏水表面。然而,上述专利技术制备的超疏水表面的稳定性能和阻抗值相对不足,本发明相对于该技术在疏水性、稳定性以及超疏水膜的阻抗值等方面具有提升,例如,本发明制备的纯铜超疏水表面,其疏水接触角由154.6°提升至156.5°;在3.5wt%的NaCl水溶液中浸泡12天的腐蚀效率仍有95.4%,高于上述专利技术在3.5wt%的NaCl水溶液中浸泡10天的腐蚀效率86.4%;而在阻抗值方面,上述专利并没有展示其超疏水表面的阻抗值,只展示了浸泡2天后的阻抗值接近1.2×105ohms,而本发明的超疏水膜表面阻抗值接近3×106ohms,浸泡3天后阻抗值高于2.75×106ohms。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种绿色环保,处理工序简单,成本低,稳定性好的具有耐蚀性能的纯铜超疏水表面的制备方法,用以解决现有技术中的纯铜超疏水表面技术存在的处理工序复杂、成本较高、稳定性较差和环境污染等技术问题。
本发明的目的可以通过以下技术方案来实现:
一种具有耐蚀性能的纯铜超疏水表面的制备方法,该方法以氨水溶液作为刻蚀液,将纯铜先进行预处理,以除去表面油污及油脂,随后,用刻蚀液对预处理后的纯铜进行化学刻蚀,再经水热处理,制得具有粗糙结构的纯铜表面,最后再置于硬脂酸的乙醇溶液中,浸泡,在纯铜粗糙表面自组装生成超疏水膜,后经过滤,洗涤,干燥,即制得所述的具有耐蚀性能的纯铜超疏水表面。
一种具有耐蚀性能的纯铜超疏水表面的制备方法,该方法具体包括以下步骤:
(1)刻蚀液的制备:配制质量浓度为10-15%的氨水溶液,作为刻蚀液;
(2)纯铜的预处理:将纯铜经打磨处理后,置于丙酮中,超声清洗,过滤,再依次用无水乙醇、去离子水冲洗,以除去纯铜表面油污和油脂;
(3)化学刻蚀:将经预处理后的纯铜置于刻蚀液中,进行化学刻蚀,刻蚀后经超声清洗,干燥,备用;
(4)水热处理:将经化学刻蚀后的纯铜置于碱溶液中,并转移至反应釜中,进行水热反应,待反应结束后,即制得具有粗糙结构的纯铜表面;
(5)在纯铜粗糙表面自组装生成超疏水膜:将经水热处理的纯铜置于硬脂酸的乙醇溶液中,浸泡,过滤,再依次用无水乙醇、去离子水冲洗,随后置于烘箱中干燥,即制得所述的具有耐蚀性能的纯铜超疏水表面。
步骤(2)所述的打磨处理为:将纯铜依次经1#、3#、6#金相砂纸打磨。
步骤(3)所述的化学刻蚀的条件为:于25℃刻蚀25h。
优选地,步骤(3)所述的化学刻蚀的条件为:于25-30℃刻蚀20-25h。
步骤(4)所述的碱溶液为NaOH溶液、KOH溶液、Ba(OH)2或Ca(OH)2中的一种。
优选地,步骤(4)所述的碱溶液为NaOH溶液。
所述的碱溶液的摩尔浓度为0.1-0.2mol/L。
优选地,所述的碱溶液的摩尔浓度为0.2mol/L。
步骤(4)所述的水热反应的条件为:于180-220℃反应2-3h。
步骤(5)所述的硬脂酸的乙醇溶液中,硬脂酸的摩尔浓度为0.02-0.1mol/L。
优选地,步骤(5)所述的硬脂酸的乙醇溶液中,硬脂酸的摩尔浓度为0.1mol/L。
步骤(5)所述的浸泡的条件为:于25-30℃浸泡3-4h。
优选地,步骤(5)所述的浸泡的条件为:于25℃浸泡3.5h。
步骤(5)所述的干燥的条件为:于40-60℃干燥20-35min。
本发明中,采用氨水溶液进行化学刻蚀的机理如下:
4Cu+8NH3+O2+2H2O=4[Cu(NH3)2]OH (1)
2Cu+8NH3+O2+2H2O=2[Cu(NH3)4](OH)2 (2)
本发明采用氨水溶液作为刻蚀液具有以下优点:
一方面,氨水化学刻蚀的过程中非常温和,能有效控制纯铜表面的形貌变化;另一方面,氨水的成本较其他化学刻蚀液更为低廉。
本发明中,水热处理的反应机理如下:
2Cu+4OH-+O2+2H2O=2[Cu(OH)4]2- (3)
水热处理过程中,对于压力没有特殊要求。而温度控制范围的选择非常重要,温度过低时,铜几乎不发生反应,温度过高时,对铜的形貌影响不大,出于成本考虑,选择180-220℃进行水热处理最适宜,在该温度范围中,反应可以使得纯铜表面形貌更加均匀,晶面选择性刻蚀效果更加显著,有利于构建优异的微纳米表面结构。
在纯铜粗糙表面自组装生成超疏水膜过程中,经水热处理的纯铜表面出现Cu-Cu2+微纳米结构(其他基团已用去离子水洗净),其与CH3(CH2)16COOH分子发生反应,从而在纯铜表面生成了铜的脂肪酸盐,能强烈地吸附硬脂酸分子,从而使所得的超疏水表面具有较强的耐腐蚀性能,具体反应如下:
Cu2++2CH3(CH2)16COOH=Cu[CH3(CH2)16COO]2+2H+ (4)
本发明制备所得的纯铜超疏水表面,其接触角可达156.5°,在3.5wt.%的NaCl水溶液中浸泡12天后,表现出非常好的耐蚀性能,其缓蚀效率η达到了95.40%。
本发明中,由于采用氨水溶液作为刻蚀液,对纯铜表面进行缓慢刻蚀,再经高温煅烧构建表面粗糙度,能强烈地吸附硬脂酸分子,从而使所得的超疏水表面具有较强的耐腐蚀性能,是一种比较简单,廉价易控制及绿色环保的新型制备方法,通过本发明的制备方法最终所得的新型纯铜超疏水表面具有较高的防腐性能。
与现有技术相比,本发明具有以下特点:
1)采用将化学刻蚀和高温水热处理相结合的方法,在纯铜表面构建表面粗糙度,能强烈吸附硬脂酸分子,使所得的超疏水表面具有较强的耐腐蚀性能;
2)制备工艺简单,条件温和,成本较低,稳定性较高,绿色环保,制备所得的纯铜超疏水表面,其接触角可达156.5°,具有优异的耐蚀性能。
附图说明
图1为纯铜疏水表面在3.5wt.%的NaCl水溶液中浸泡不同时间的Nyquist图;
图2为纯铜疏水表面在3.5wt.%的NaCl水溶液中浸泡不同时间的极化曲线图;
图3为2000倍率下空白纯铜空白表面形貌表征图;
图4为具有超疏水表面的纯铜表面在放大2000倍率下的表面形貌图;
图5为具有超疏水表面的纯铜表面在放大6000倍率下的表面形貌图;
图6为水滴在纯铜空白表面上稳定的存在形态;
图7为水滴在纯铜超疏水表面上稳定的存在形态。
具体实施方式
下面通过实施例并结合附图对本发明进一步阐述,但并不限制本发明。
本发明的一种具有防腐蚀性能的新型纯铜超疏水表面形貌表征的测定方法用扫描电子显微镜(SU-1500,日本Hitachi公司)观察试样的表面形貌。再通过表面张力测试仪(K100-MK2型,德国KRUSS公司)测量水滴在超疏水表面的接触角,同时利用JC2000C表征水滴在黄铜表面稳定存在的形态。
电化学分析
交流阻抗测试和极化曲线的测量都在三电极体系中完成,工作电极为已构建疏水膜的黄铜电极,辅助电极和参比电极分别为Pt电极和饱和甘汞电极(SCE)。电化学测试采用仪器为EG&G公司的恒电位仪Potentiostat/Galvanostat Model 277和锁相放大器Model1025 LOCK IN AMPLIFIER。交流阻抗测量使用PRAC M398,其系统频率范围为100kHz-0.05Hz,交流激励信号峰值为5mV;极化曲线扫描范围-0.15~0.15V(vs.OCP),扫描速度为1mV/s。
缓蚀效率(η%)
按照如下公式计算:
其中I0和I分别为未处理和纯铜疏水处理后电极的腐蚀电流密度。
实施例1:
一种具有耐蚀性能的纯铜超疏水表面的制备方法,包括如下步骤:
(1)、刻蚀液的制备
将氨水稀释成10wt.%的刻蚀液;
(2)、纯铜的预处理
将6块纯铜依次经1#、3#、6#金相砂纸打磨后,在丙酮液中用超声波清洗机清洗15min左右后,再依次用无水乙醇、去离子水冲洗,以除去表面油污和油脂;
(3)、化学刻蚀
将步骤(2)预处理后的纯铜取出5块分别浸入到步骤(1)所得的6份刻蚀液中,在室温的条件下缓慢刻蚀25h,刻蚀后经超声波清洗15min;
(4)、高温水热处理
将步骤(3)刻蚀之后得到的铜,放入到反应釜中,在200℃的条件下高温水热处理2h,水热处理的溶液为0.2mol/L的NaOH溶液,即可得到具有良好表面粗糙的纯铜;
(5)、在纯铜粗糙表面自组装超疏水膜
将步骤(3)所得的刻蚀和高温水热处理的5块具有表面粗糙度的纯铜放入预先配置好的浓度为0.1mol/L的的硬脂酸的乙醇溶液中,在室温下浸泡3.5h后取出,先用乙醇冲洗,再经去离子水冲洗,放入50℃的烘箱中,干燥25min后取出,即得一种具有耐蚀性能的纯铜超疏水表面。
图1和图2分别是使用上述方法制备的纯铜疏水表面在3.5wt.%的NaCl水溶液中分别浸泡0天、3天、6天、9天、12天及空白样的Nyquist图和极化曲线。其中曲线1、曲线2、曲线3、曲线4、曲线5和曲线6分别表示空白样、浸泡0天、浸泡3天、浸泡6天、浸泡9天和浸泡12天的电化学分析结果。
从图1中可以看出随着浸泡的延长,纯铜电极阻抗值逐渐减小,但是纯铜的阻抗值仍远远大于空白样阻抗值,在浸泡12天之后,仍表现出了比较好的耐蚀性。表1列出了由图2得出的腐蚀电位Ecoor、腐蚀电流密度Icoor和缓蚀效率η。
表1纯铜疏水表面在3.5%(w)NaCl溶液浸泡不同时间的电化学参数
结合图2和表1可以得出,浸泡12天之后,纯铜仍然保持了非常好的耐蚀性,其缓蚀效率仍能达到95.40%,其疏水膜非常稳定,此外在最初阶段,浸泡3天后,其缓蚀效率更能达到99.54%。
实施例2:
一种具有耐蚀性能的纯铜超疏水表面的制备方法,包括如下步骤:
(1)、刻蚀液的制备
将氨水稀释成10wt.%的刻蚀液;
(2)、纯铜的预处理
将纯铜依次经1#、3#、6#金相砂纸打磨后,在丙酮液中用超声波清洗机清洗15min左右后,再依次用无水乙醇、去离子水冲洗,以除去表面油污和油脂;
(3)、化学刻蚀
将步骤(2)预处理后的纯铜取出5块分别浸入到步骤(1)所得的刻蚀液中,在室温的条件下缓慢刻蚀25h,刻蚀后经超声波清洗15min;
(4)、高温煅烧
将步骤(3)刻蚀之后得到的铜,放入到反应釜中,在200℃的条件下高温水热处理2h,水热处理的溶液为0.2mol/L的NaOH溶液,即可得到具有良好表面粗糙的纯铜;
(5)、在纯铜粗糙表面自组装超疏水膜
将步骤(3)所得的刻蚀和高温煅烧的具有表面粗糙度的纯铜放入预先配置好的浓度为0.1mol/L的的硬脂酸的乙醇溶液中,在室温下浸泡3.5h后取出,先用乙醇冲洗,再经去离子水冲洗,放入50℃的烘箱中,干燥15min后取出,即得一种具有防腐蚀性能的纯铜超疏水表面。
图3、图4、图5分别是空白纯铜放大2000倍,和上述的所具有超疏水的纯铜的表面在放大2000倍、6000倍下的形貌图。从图4、图5中可以看出纯铜表面,呈现出纳米级阶梯层次分明状的表面形貌,正是由于这些纳米级结构之间的空隙能够捕捉空气,使铜表面由亲水状态变成超疏水状态。
实施例3:
一种具有耐蚀性能的纯铜超疏水表面的制备方法,包括如下步骤:
(1)、刻蚀液的制备
将氨水稀释成10wt.%的刻蚀液;
(2)、纯铜的预处理
将2块纯铜依次经1#、3#、6#金相砂纸打磨后,在丙酮液中用超声波清洗机清洗15min左右后,再依次用无水乙醇、去离子水冲洗,以除去表面油污和油脂;
(3)、化学刻蚀
将步骤(2)预处理后的纯铜取出1块分别浸入到步骤(1)所得的刻蚀液中,在室温的条件下缓慢刻蚀25h,刻蚀后经超声波清洗15min;
(4)、高温水热处理
将步骤(3)刻蚀之后得到的铜,放入到反应釜中,在200℃的条件下高温水热处理2h,水热处理的溶液为0.2mol/L的NaOH溶液,即可得到具有良好表面粗糙的纯铜;
(5)、在纯铜粗糙表面自组装超疏水膜
将步骤(3)所得的刻蚀和高温煅烧的具有表面粗糙度的纯铜放入预先配置好的浓度为0.1mol/L的的硬脂酸的乙醇溶液中,在室温下浸泡3.5h后取出,先用乙醇冲洗,再经去离子水冲洗,放入50℃的烘箱中,干燥25min后取出,即得一种具有防腐蚀性能的纯铜超疏水表面。
将水滴分别滴在空白纯铜的表面和上述所得的具有超疏水表面的纯铜表面上,通过表面张力测试仪(K100-MK2型,德国KRUSS公司)测量水滴在超疏水表面的接触角,如图6和图7所示,结果表明,空白纯铜表面对水的接触角是42.5°,而具有超疏水表面的纯铜对水的接触角是156.5°。由此印证了,由于实施例2所得的具有超疏水表面的纯铜具有纳米级阶梯层次分明状结构,而这些树叶结构间的空隙恰好能捕获空气,使纯铜由亲水状态变为超疏水状态。
实施例4:
本实施例一种具有耐蚀性能的纯铜超疏水表面的制备方法,具体包括以下步骤:
(1)刻蚀液的制备:配制质量浓度为15%的氨水溶液,作为刻蚀液;
(2)纯铜的预处理:将纯铜经打磨处理后,置于丙酮中,超声清洗,过滤,再依次用无水乙醇、去离子水冲洗,以除去纯铜表面油污和油脂;
(3)化学刻蚀:将经预处理后的纯铜置于刻蚀液中,进行化学刻蚀,刻蚀后经超声清洗,干燥,备用;
(4)水热处理:将经化学刻蚀后的纯铜置于碱溶液中,并转移至反应釜中,进行水热反应,待反应结束后,即制得具有粗糙结构的纯铜表面;
(5)在纯铜粗糙表面自组装生成超疏水膜:将经水热处理的纯铜置于硬脂酸的乙醇溶液中,浸泡,过滤,再依次用无水乙醇、去离子水冲洗,随后置于烘箱中干燥,即制得所述的具有耐蚀性能的纯铜超疏水表面。
其中,步骤(2)中,打磨处理为:将纯铜依次经1#、3#、6#金相砂纸打磨。
步骤(3)中,化学刻蚀的条件为:于30℃刻蚀20h。
步骤(4)中,碱溶液为KOH溶液,该KOH溶液的摩尔浓度为0.1mol/L;水热反应的条件为:于180℃反应3h。
步骤(5)中,硬脂酸的乙醇溶液中,硬脂酸的摩尔浓度为0.02mol/L;浸泡的条件为:于30℃浸泡3h;干燥的条件为:于60℃干燥20min。
实施例5:
本实施例一种具有耐蚀性能的纯铜超疏水表面的制备方法,具体包括以下步骤:
(1)刻蚀液的制备:配制质量浓度为12%的氨水溶液,作为刻蚀液;
(2)纯铜的预处理:将纯铜经打磨处理后,置于丙酮中,超声清洗,过滤,再依次用无水乙醇、去离子水冲洗,以除去纯铜表面油污和油脂;
(3)化学刻蚀:将经预处理后的纯铜置于刻蚀液中,进行化学刻蚀,刻蚀后经超声清洗,干燥,备用;
(4)水热处理:将经化学刻蚀后的纯铜置于碱溶液中,并转移至反应釜中,进行水热反应,待反应结束后,即制得具有粗糙结构的纯铜表面;
(5)在纯铜粗糙表面自组装生成超疏水膜:将经水热处理的纯铜置于硬脂酸的乙醇溶液中,浸泡,过滤,再依次用无水乙醇、去离子水冲洗,随后置于烘箱中干燥,即制得所述的具有耐蚀性能的纯铜超疏水表面。
其中,步骤(2)中,打磨处理为:将纯铜依次经1#、3#、6#金相砂纸打磨。
步骤(3)中,化学刻蚀的条件为:于25℃刻蚀25h。
步骤(4)中,碱溶液为Ca(OH)2溶液,该Ca(OH)2溶液的摩尔浓度为0.12mol/L;水热反应的条件为:于180℃反应2.5h。
步骤(5)中,硬脂酸的乙醇溶液中,硬脂酸的摩尔浓度为0.06mol/L;浸泡的条件为:于25℃浸泡4h;干燥的条件为:于40℃干燥35min。
实施例6:
本实施例一种具有耐蚀性能的纯铜超疏水表面的制备方法,具体包括以下步骤:
(1)刻蚀液的制备:配制质量浓度为14%的氨水溶液,作为刻蚀液;
(2)纯铜的预处理:将纯铜经打磨处理后,置于丙酮中,超声清洗,过滤,再依次用无水乙醇、去离子水冲洗,以除去纯铜表面油污和油脂;
(3)化学刻蚀:将经预处理后的纯铜置于刻蚀液中,进行化学刻蚀,刻蚀后经超声清洗,干燥,备用;
(4)水热处理:将经化学刻蚀后的纯铜置于碱溶液中,并转移至反应釜中,进行水热反应,待反应结束后,即制得具有粗糙结构的纯铜表面;
(5)在纯铜粗糙表面自组装生成超疏水膜:将经水热处理的纯铜置于硬脂酸的乙醇溶液中,浸泡,过滤,再依次用无水乙醇、去离子水冲洗,随后置于烘箱中干燥,即制得所述的具有耐蚀性能的纯铜超疏水表面。
其中,步骤(2)中,打磨处理为:将纯铜依次经1#、3#、6#金相砂纸打磨。
步骤(3)中,化学刻蚀的条件为:于28℃刻蚀24h。
步骤(4)中,碱溶液为Ba(OH)2溶液,该Ba(OH)2溶液的摩尔浓度为0.18mol/L;水热反应的条件为:于220℃反应2h。
步骤(5)中,硬脂酸的乙醇溶液中,硬脂酸的摩尔浓度为0.08mol/L;浸泡的条件为:于28℃浸泡3h;干燥的条件为:于50℃干燥25min。
以上所述内容仅为本发明构思下的基本说明,而依据本发明的技术方案所作的任何等效变换,均应属于本发明的保护范围。

Claims (8)

1.一种具有耐蚀性能的纯铜超疏水表面的制备方法,其特征在于,该方法以氨水溶液作为刻蚀液,将纯铜先进行预处理,以除去表面油污及油脂,随后,用刻蚀液对预处理后的纯铜进行化学刻蚀,再经水热处理,制得具有粗糙结构的纯铜表面,最后再置于硬脂酸的乙醇溶液中,浸泡,在纯铜粗糙表面自组装生成超疏水膜,后经过滤,洗涤,干燥,即制得所述的具有耐蚀性能的纯铜超疏水表面;
该方法具体包括以下步骤:
(1)刻蚀液的制备:配制质量浓度为10-15%的氨水溶液,作为刻蚀液;
(2)纯铜的预处理:将纯铜经打磨处理后,置于丙酮中,超声清洗,过滤,再依次用无水乙醇、去离子水冲洗,以除去纯铜表面油污和油脂;
(3)化学刻蚀:将经预处理后的纯铜置于刻蚀液中,进行化学刻蚀,刻蚀后经超声清洗,干燥,备用;
(4)水热处理:将经化学刻蚀后的纯铜置于碱溶液中,并转移至反应釜中,进行水热反应,待反应结束后,即制得具有粗糙结构的纯铜表面;
(5)在纯铜粗糙表面自组装生成超疏水膜:将经水热处理的纯铜置于硬脂酸的乙醇溶液中,浸泡,过滤,再依次用无水乙醇、去离子水冲洗,随后置于烘箱中干燥,即制得所述的具有耐蚀性能的纯铜超疏水表面;
步骤(4)所述的水热反应的条件为:于180-220℃反应2-3h。
2.根据权利要求1所述的一种具有耐蚀性能的纯铜超疏水表面的制备方法,其特征在于,步骤(2)所述的打磨处理为:将纯铜依次经1#、3#、6#金相砂纸打磨。
3.根据权利要求1所述的一种具有耐蚀性能的纯铜超疏水表面的制备方法,其特征在于,步骤(3)所述的化学刻蚀的条件为:于25-30℃刻蚀20-25h。
4.根据权利要求1所述的一种具有耐蚀性能的纯铜超疏水表面的制备方法,其特征在于,步骤(4)所述的碱溶液为NaOH溶液、KOH溶液、Ba(OH)2或Ca(OH)2中的一种。
5.根据权利要求4所述的一种具有耐蚀性能的纯铜超疏水表面的制备方法,其特征在于,所述的碱溶液的摩尔浓度为0.1-0.2mol/L。
6.根据权利要求1所述的一种具有耐蚀性能的纯铜超疏水表面的制备方法,其特征在于,步骤(5)所述的硬脂酸的乙醇溶液中,硬脂酸的摩尔浓度为0.02-0.1mol/L。
7.根据权利要求1所述的一种具有耐蚀性能的纯铜超疏水表面的制备方法,其特征在于,步骤(5)所述的浸泡的条件为:于25-30℃浸泡3-4h。
8.根据权利要求1所述的一种具有耐蚀性能的纯铜超疏水表面的制备方法,其特征在于,步骤(5)所述的干燥的条件为:于40-60℃干燥20-35min。
CN201510530848.XA 2015-08-26 2015-08-26 一种具有耐蚀性能的纯铜超疏水表面的制备方法 Active CN105401153B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510530848.XA CN105401153B (zh) 2015-08-26 2015-08-26 一种具有耐蚀性能的纯铜超疏水表面的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510530848.XA CN105401153B (zh) 2015-08-26 2015-08-26 一种具有耐蚀性能的纯铜超疏水表面的制备方法

Publications (2)

Publication Number Publication Date
CN105401153A CN105401153A (zh) 2016-03-16
CN105401153B true CN105401153B (zh) 2018-07-13

Family

ID=55466900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510530848.XA Active CN105401153B (zh) 2015-08-26 2015-08-26 一种具有耐蚀性能的纯铜超疏水表面的制备方法

Country Status (1)

Country Link
CN (1) CN105401153B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106513267B (zh) * 2016-11-17 2019-06-21 榆林学院 一种铝粉掺杂氧化铝疏水薄膜及其制备方法
CN107796798B (zh) * 2017-10-18 2020-08-18 福建医科大学 基于氨刻蚀反应的尿素荧光测定方法
CN107893225A (zh) * 2017-10-31 2018-04-10 东南大学 一种具有超疏水表面的泡沫铜的制备方法及其应用
CN107740083B (zh) * 2017-10-31 2020-04-07 重庆理工大学 一种镁合金表面超疏水氟转化涂层的制备方法
CN108977801B (zh) * 2018-08-17 2020-07-14 西北大学 一种高抗水耐蚀的三维纳米结构钢板膜的制备方法
CN109295419A (zh) * 2018-09-12 2019-02-01 山东科技大学 一种制备具有树枝状结构的超疏水表面的方法
CN109338451A (zh) * 2018-12-03 2019-02-15 中国科学院海洋研究所 一种铝基抗腐蚀、抗微生物附着超疏水膜及其制备方法
CN113293361A (zh) * 2021-05-25 2021-08-24 常州大学 一种提升超疏水氧化铜薄膜耐蚀性能的方法
CN113480941B (zh) * 2021-07-27 2022-05-20 辽宁工业大学 一种超疏水涂料及使用该涂料制备水泥基超疏水表面的方法
CN113680625B (zh) * 2021-08-16 2023-03-28 四川工程职业技术学院 一种在铝铜合金表面构建超疏水改性层的方法
CN115418641A (zh) * 2022-09-08 2022-12-02 南通大学 一种金属材料超疏水防腐表面的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101748411A (zh) * 2008-12-02 2010-06-23 中国科学院兰州化学物理研究所 金属钛或钛合金超疏水表面的制备方法
CN103952712A (zh) * 2014-04-30 2014-07-30 上海电力学院 一种具有耐蚀性能的纯铜超疏水表面的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101748411A (zh) * 2008-12-02 2010-06-23 中国科学院兰州化学物理研究所 金属钛或钛合金超疏水表面的制备方法
CN103952712A (zh) * 2014-04-30 2014-07-30 上海电力学院 一种具有耐蚀性能的纯铜超疏水表面的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
钢铁表面超疏水膜的制备与表征;葛圣松 等;《功能材料》;20121231;第43卷(第5期);645-649 *
铜基底超疏水薄膜的制备;张万强 等;《广东化工》;20150615;第42卷(第11期);67-68 *

Also Published As

Publication number Publication date
CN105401153A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
CN105401153B (zh) 一种具有耐蚀性能的纯铜超疏水表面的制备方法
CN105220155B (zh) 一种白铜超疏水表面的制备方法
CN102259087B (zh) 一种具有耐蚀性能的黄铜超疏水表面的制备方法
CN104005026B (zh) 一种在镁合金表面制备耐腐蚀超疏水膜层的方法
CN106935880B (zh) 一种质子交换膜燃料电池用铝合金双极板的表面改性方法
CN104561999B (zh) 一种在镁合金表面制备超疏水膜层的方法
CN105568330B (zh) 一种钢基防垢表面层的制备方法
CN104611751A (zh) 一种镁合金表面微弧氧化自组装复合膜层及其制备方法
CN103695906A (zh) 一种超疏水铝及铝合金表面的制备方法
CN112553664B (zh) 一种具有层状双氢氧化物-氧化石墨烯硅烷复合涂层的铝合金制件及其制备方法
CN105297011A (zh) 一种在镁合金表面制备超疏水复合膜层的方法
CN109183126A (zh) 一种镁合金表面疏水膜层的制备方法
CN104264196A (zh) 镁合金表面一步法制备超疏水膜层的方法及其合金和应用
CN102335651A (zh) 一种具有耐蚀性能的超疏水表面的黄铜的制备方法
CN104289402B (zh) 具有耐蚀性能的黄铜超疏水表面的制备方法
CN101812680B (zh) 一种金属铜表面超疏水处理方法
CN103952712B (zh) 一种具有耐蚀性能的纯铜超疏水表面的制备方法
CN101934268B (zh) 一种镁合金表面超疏水耐腐蚀功能膜的制备方法
CN103046041B (zh) 在铝合金表面具有耐腐蚀功能的掺杂纳米微粒自组装膜的制备方法
CN103074629A (zh) 一种具有超疏水表面的白铜b30及其制备方法
CN101492815A (zh) 在金属铜或者铜合金基材表面获得超双疏性质的方法
CN110644026A (zh) 一种具有自修复特性的超疏水铝合金表面的制备方法
CN104005066A (zh) 一种镁合金表面超疏水膜层及其制备方法和应用
CN102268662B (zh) 一种具有缓蚀性能的超疏水表面的白铜b30的制备方法
CN105734569A (zh) 一种具有耐蚀性能的白铜超疏水表面的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant