CN105390364A - 可检测中性分子产物和离子产物的质谱装置及其操作方法 - Google Patents

可检测中性分子产物和离子产物的质谱装置及其操作方法 Download PDF

Info

Publication number
CN105390364A
CN105390364A CN201511001202.9A CN201511001202A CN105390364A CN 105390364 A CN105390364 A CN 105390364A CN 201511001202 A CN201511001202 A CN 201511001202A CN 105390364 A CN105390364 A CN 105390364A
Authority
CN
China
Prior art keywords
ion
ion trap
product
trap
neutral molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201511001202.9A
Other languages
English (en)
Other versions
CN105390364B (zh
Inventor
熊行创
方向
江游
龚晓云
黄泽建
刘梅英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Metrology
Original Assignee
National Institute of Metrology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Metrology filed Critical National Institute of Metrology
Priority to CN201511001202.9A priority Critical patent/CN105390364B/zh
Publication of CN105390364A publication Critical patent/CN105390364A/zh
Application granted granted Critical
Publication of CN105390364B publication Critical patent/CN105390364B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明提出了一种可检测中性分子产物和离子产物的质谱装置及其操作方法。可检测中性分子产物和离子产物的质谱装置包括一套四极杆串联特殊线性离子阱质量分析器、试剂分子导入离子阱精确控制系统、缓冲气流量导入精确控制系统、真空规、多级梯度真空系统、电控真空隔断阀系统、电子轰击源质谱系统等质谱装置必要部件。此外,本发明还提出了一种操作上述装置进行分子离子反应、精确测量分子离子反应的离子产物,产物中性分子抽取,中性分子电离、再分析离子的方法。

Description

可检测中性分子产物和离子产物的质谱装置及其操作方法
技术领域
本发明涉及气态环境下分子/离子高效反应在线快速精确鉴定产物的系统,特别是有关于及测量反应产物离子,也测试反应产物中性分子的质谱装置系统。
背景技术
常规的化学反应是实验室里化学试剂与化学试剂间的反应,通常成为“湿实验”,具有用样量大及过程产物难以及时检测鉴定等问题。气态环境下分子离子反应能够有效解决这些问题,不仅用试剂量少,而且能够快速及时检测到其中间产物,然而,气态环境下分子离子反应需要一套装置来实现,至少需要分子试剂载入系统、离子源系统和分子离子反应容器及产物定性定量检测系统。
质谱分析仪器是将化学合成产物或化学实验产物进行定性定量检测系统的权威分析仪器。分子离子反应容器与质谱检测系统可以是分开彼此独立,也可以是同一个系统。能够在同一个装置中实现先分子离子反应,再对产物进行质谱检测的是以离子阱为质量分析器的质谱系统。
质量分析器是质谱仪器中将离子依照质核比分离出可以检测的部件,离子阱是重要的一种质量分析器,其原理是将众离子存储于阱内后,再分离检测,相对与其他质量分析器,可以存储离子,因此可以在该质量分析器内做MSn操作。
离子阱的结构多种,传统的3D离子阱和线性离子阱如:某公司的线形离子阱(UnitedStatesPatent5,420,425),以及某博士发明的矩形离子阱(UnitedStatesPatent6,838,666)。线性离子阱相对传统的3D离子阱,能够存储更多数量的离子,更适合做为分子离子反应的容器和离子产物的分离分析器。
将线性离子阱作为分子离子反应容器及离子的分离分析离子的首选质量分析器,其工作原理是:离子源产生离子,经过离子光学系统后进入离子阱,被束缚在离子阱中,往往离子源产生离子不是参与反应的试剂离子(当然,也存在一些离子源直接产生试剂离子的情况,这取决于具体的实验目的),其碎裂后产生的子离子才是参与反应的试剂离子,逐出其他非试剂离子,让参与反应的试剂离子与载入的试剂分子进行反应再检测反应产物离子。
在质谱系统中可以检测到分子离子反应的产物离子。但是在线检测反应产物中性分子,是很多化学家多年的梦想。
在线检测反应产物中性分子存在几个方面的难题:
一、产物中性分子含量很少,通常的光谱分析技术也很难检测。还是需要依赖于质谱技术。
二、分子离子反应的产物中性分子不好控制,不像产物离子那样易于受电场力/磁场力的控制,可以直接分离分析进行性半定量检测。因此,必须将产物中性分子离子化,才能受到电场磁场力的控制。
三、将有限的中性分子离子化后,其离子非常少以至于难以检测到,不仅仅是存在离子化效率的问题,由于产物中性分子往往还没有来得离子化,就被真空泵给抽出了反应器(离子阱)。
总之,在线分子离子反应质谱装置系统中,产物中性分子的离子化信号非常弱以至于几乎看不见有效信号。而且,整个操作时序、逻辑较为复杂,同时反应质谱系统中还有试剂分子和背景分子等物质,这些都增加反应产物中性分子定性定量检测准确度的难度。
发明内容
为了解决上述问题,本发明提出一种可检测中性产物和离子产物的分子离子反应质谱装置及其操作方法。
为实现上述目的,本发明提出了一种可检测中性产物和离子产物的质谱装置,包括:
离子源,设置在标准大气压内,产生离子束;
多级梯度真空系统,包括多个依次通过通孔连通的真空区间,在正对离子源的位置也开有通孔;
离子导入管路,设置在初级真空区间内,正对各真空区间连接的通孔,用以传递离子源产生的离子束;
离子导引管路,设置在初级真空区间以后的各级真空区间内,正对各真空区间连接的通孔,与离子导入管路连通,用以传递离子源产生的离子束;
四极杆系统,位于多级梯度真空系统后方,在多级梯度真空系统的对应位置开有通孔,由离子导引管路传递的离子束进入到四极杆系统内;
离子阱,和四极杆系统设置在相同的真空区间内,位于四极杆系统的后方;
分子试剂导入系统,向离子阱内通入分子试剂,与离子阱的前端盖或后端盖通过管路连通;
缓冲气导入系统,向离子阱内通入缓冲气,与离子阱的前端盖或后端盖通过管路连通;
检测器,设置在离子阱的X方向的两侧,用于离子阱内的离子检测;
真空规,与离子阱的前端盖或后端盖连通,用于检测离子阱内真空度;
电子轰击源质谱系统,位于离子阱的后方,通过传输管路与离子阱的后端盖连通,在传输管路上设置有电磁控制开关阀。
优选地,还包括控制器,在所述分子试剂导入系统和缓冲气导入系统与离子阱连通的管路上均设置有气体质量控制流量器,所述控制器分别与两个气体质量控制流量器和电磁控制开关阀通信连接。
优选地,所述四极杆系统包括四极杆滤质器和设置在四极杆滤质器后方的后四极杆系统。
优选地,所述电子轰击源质谱系统包括电子轰击的离子腔室和串联在所述离子腔室后方的气体分析质谱仪,所述传输管路与电子轰击的离子腔室连通,离子腔室的空间大约为1cm3
优选地,还包括真空泵,在所述多级梯度真空系统的各级真空区间、四极杆所在真空区间和电子轰击源质谱系统所在的真空区间均连接有真空泵。
优选地,所述传输管路的管径为0.5~1.5mm,长度小于200mm。
优选地,在所述离子阱前端盖与四极杆系统之间设置有快门装置。
一种检测中性分子产物的质谱装置的操作方法,依次包括如下步骤:
S1,初始化阶段,关断传输管路上的电磁控制开关阀和分子试剂导入系统和离子阱连通管路上的气体质量控制流量器,并调节各真空区间内的真空度:
调节多级梯度真空系统各级真空区间的真空度,使多级梯度真空系统的初级真空区间内的气压为1Torr,末级真空区间内的气压为10-4Torr;
调节四极杆系统所在真空区间的真空度,使该真空区间内的气压达到10-5Torr~10-6Torr;
调节电子轰击源质谱系统所在真空区间的真空度,使该真空区间内的气压达到10-7Torr;
调节电子轰击的离子腔室内的真空度,使离子腔室内的气压达到10-6Torr~10-7Torr;
打开缓冲气注入系统与离子阱之间连通管路上的气体质量控制流量器,向离子阱内注入缓冲气,使离子阱内气压达到10-4Torr~5E-3Torr;
S2,离子导入阶段,打开离子源,试剂离子通过离子导入管路和离子导引管路进入到滤质四极杆,选择指定的试剂离子,仅让指定的试剂离子通过;通过滤质四极杆选择的试剂离子进入到整形四极杆内进行整形,然后进入到离子阱内,直至离子阱内试剂离子达到饱和;
S3,分子试剂导入阶段,关闭缓冲气导入系统与离子阱连通管路上的气体质量控制流量器,打开分子试剂导入系统与离子阱连通管路上的气体质量控制流量器,持续向离子阱内通入分子试剂,使试剂离子和分子试剂反应,并保持离子阱内气压不高于2E-3Torr;
S4,分子离子反应阶段,关闭分子试剂导入系统与离子阱连通管路上的气体质量控制流量器,使试剂离子和分子试剂反应1ms~10s的时间;
S5,中性产物离子化阶段,在离子阱的后端加推斥电压,使离子阱内离子远离离子阱后端盖上连接的传输管路的中性产物入口,同时或在离子阱后端加推斥电压1ms时间内,通过控制器控制传输管路上的电磁控制开关阀打开,使分子离子反应后产生的中性分子产物随着电磁控制开关阀的打开进入到电子轰击的离子腔室内进行离子化;
S6,离子检测阶段,进入到离子腔室内的中性分子产物离子化后,再进入到气体分析质谱仪内进行离子检测,进而得出中性分子产物的分子量信息。
优选地,在进行步骤S1之后以及进行步骤S1之前,还包括背景信息检测阶段,打开传输管路上的电磁控制开关阀,使离子阱和电子轰击的离子腔室内的中性分子在离子腔室内离子化,然后进入到气体分析质谱仪内进行离子检测,进而得出中性分子的信息;在步骤S6之后,还包括背景信息剔除阶段,通过步骤S6中得到的中性分子产物的信息减掉背景信息检测阶段得到的中性分子的信息,获得分子离子反应后产生的中性分子产物的信息。
一种检测离子产物的质谱装置的操作方法,依次包括如下步骤:
S1,初始化阶段,关断传输管路上的电磁控制开关阀和分子试剂导入系统和离子阱连通管路上的气体质量控制流量器,并调节各真空区间内的真空度:
调节多级梯度真空系统各级真空区间的真空度,使多级梯度真空系统的初级真空区间内的气压为1Torr,末级真空区间内的气压为10-4Torr;
调节四极杆系统所在真空区间的真空度,使该真空区间内的气压达到10-5Torr~10-6Torr;
打开缓冲气注入系统与离子阱之间连通管路上的气体质量控制流量器,向离子阱内注入缓冲气,使离子阱内气压达到10-4Torr~5E-3Torr;
S2,离子导入阶段,打开离子源,试剂离子通过离子导入管路和离子导引管路进入到滤质四极杆,选择指定的试剂离子,仅让指定的试剂离子通过;通过滤质四极杆选择的试剂离子进入到整形四极杆内进行整形,然后进入到离子阱内,直至离子阱内试剂离子达到饱和;
S3,分子试剂导入阶段,关闭缓冲气导入系统与离子阱连通管路上的气体质量控制流量器,打开分子试剂导入系统与离子阱连通管路上的气体质量控制流量器,持续向离子阱内通入分子试剂,使试剂离子和分子试剂反应,并保持离子阱内气压不高于2E-3Torr;
S4,分子离子反应阶段,关闭分子试剂导入系统与离子阱连通管路上的气体质量控制流量器,使试剂离子和分子试剂反应1ms~10s的时间;
S5,离子检测阶段,通过离子阱X方向两侧的检测器对离子阱内的离子进行离子检测,进而得出离子产物的分子量信息。
与现有技术相比,本发明可检测中性产物和离子产物的质谱装置有以下优点:
1、指定试剂离子的数量显著增多,达到100万个离子以上,甚至可达1000万以上,如此反应后的产物离子和产物中性分子也多。装置在两个方面确保此特征实现(一是离子阱前端的四极杆系统保证仅让指定离子进入离子阱,指定离子可以大量富集直到离子阱饱和,而不是让所有离子都进入离子阱再排出非指定离子;二、增长性线性离子阱的离子存储容量,相对于3D离子阱增强了1000倍以上)
2、指定分子离子反应后的产物中性分子流出离子阱的显著减少,以便于有很多的中性分子参与后续电离。装置通过控制离子阱气密性确保此特征实现,关闭了4个出气孔中2个大孔径的出气孔(前后端盖孔),显著减少由于离子阱内气压高于离子阱外气压而流出中性分子的数量。当然,这是最理想情况,如果牺牲一些性能,不需要离子阱前端盖前的一套快门装置也是可以的。
3、分子离子反应后的产物中性分子的可以获得较高的离子化效率。装置通过在反应结束后,迅速打开(1ms时间内)连接离子阱后端盖孔的隔断阀,由于2个数量级的真空压力差(管路没有气阻),非常迅速将产物中性分子抽离离子阱,进入到电子轰击的离子源腔室进行离子化,会瞬间获得非常多的中性分子离子,而不是简单的让产物中性分子自由飘逸到电子轰击的离子源腔室进行离子化。在极短的时间内,其信号会高出1000倍。
综上所述,本发明具有显著增强分子离子反应后的产物中性分子离子化的效率,实现产物中性分子的定性半定量检测,不仅获得分子离子反应的产物离子信息,也可获得分子离子反应的产物中性分子信息,能够更准确地解释分子离子反应的机理,特别对有机合成产物及其中间物的鉴定非常有利,同时该装置具有实现成本低、控制简单等特点,能够作为一款广泛应用的分子离子反应质谱系统。
附图简要说明
图1为可检测中性分子产物和离子产物的质谱装置的结构示意图;
图2为可检测中性分子产物和离子产物的质谱装置进行中性分子产物检测时的操作流程示意图;
图3为可检测中性分子产物和离子产物的质谱装置进行离子产物检测时的操作流程示意图。
具体实施方式
下面结合附图1-3对本发明进行具体说明。
一种可检测中性产物和离子产物的质谱装置,包括:
离子源101,设置在标准大气压内,产生离子束;
多级梯度真空系统110,包括多个依次通过通孔114连通的真空区间,在正对离子源101的位置也开有通孔114;
离子导入管路111,设置在初级真空区间内,正对各真空区间连接的通孔114,用以传递离子源101产生的离子束;
离子导引管路112,设置在初级真空区间以后的各级真空区间内,正对各真空区间连接的通孔114,与离子导入管路111连通,用以传递离子源101产生的离子束;
四极杆系统121,位于多级梯度真空系统110后方,在多级梯度真空系统110的对应位置开有通孔114,由离子导引管路112传递的离子束进入到四极杆系统121内;四极杆系统121包含四极杆滤质器和后四极杆系统,四极杆滤质器只允许指定很窄范围的离子(mzX-0.5amu——mzX+0.5amu)通过,后四极杆系统将通过四极杆滤质器的指定离子很窄范围的离子整形后,顺利的进入后端离子阱131中。
离子阱131,和四极杆系统121通常设置在相同的真空区间内,位于四极杆系统121的后方;离子阱131为特殊线性离子阱系统,与线性离子阱(双曲面的或矩形平板电极)相比具有2点区别:存储离子容量大、具有比线性离子阱好的气密性。
1、存储离子容量大体现在,相对于常规线性离子阱,在X、Y方向电场场形不变的情况下,增长线性离子阱的长度(Z方向),能够容纳更多的离子。离子阱内空间区域为Z方向长度*X方向长度*Y方向长度=40mm*4mm*4mm。
2、具有比线性离子阱好的气密性体现在,离子阱131与外界相通有5个孔(进气孔1个:缓冲气通气孔,约1mm,面积约0.393mm2;出气孔4个:在X方向的一对离子检测狭缝30mm*0.25mm,面积约2*0.75mm2、前后两个端盖孔约2mm,面积约2*1.571mm2)。在离子阱131的前端盖增加一套快门装置134,防止离子阱131内气体从前后端盖流出就可以,后端盖与电子轰击源的气体分析质谱仪163相连(有阀门阻止中性分子流出)。
分子试剂导入系统141,向离子阱131内通入分子试剂,与离子阱131的前端盖或后端盖通过管路连通;缓冲气导入系统151,向离子阱131内通入缓冲气,与离子阱131的前端盖或后端盖通过管路连通;缓冲气导入系统151和分子试剂导入系统141的通气孔可以放在前端盖部分,也可以放在后端盖部分,由于后端盖设计复杂,建议放在前端盖。
检测器132,设置在离子阱131的X方向的两侧,用于离子阱131内的离子检测;
真空规133,与离子阱131的前端盖或后端盖连通,用于检测离子阱131内真空度;
电子轰击源质谱系统,位于离子阱131的后方,通过传输管路162与离子阱131的后端盖连通,在传输管路162上设置有电子控制隔断阀164。
还包括控制器152,在所述分子试剂导入系统141和缓冲气导入系统151与离子阱131连通的管路上均设置有控制质量流量计153,所述控制器152分别与两个气体质量控制流量计153和电磁控制开关阀164通信连接。
所述电子轰击源质谱系统包括电子轰击的离子腔室161和串联在所述离子腔室161后方的气体分析质谱仪163,所述传输管路162与电子轰击的离子腔室161连通,电子轰击的离子腔室161的空间大约为1cm3
还包括真空泵119,在所述多级梯度真空系统110的各级真空区间、四极杆系统121所在真空区间和电子轰击源质谱系统所在的真空区间均连接有真空泵119。
所述传输管路162的管径为0.5~1.5mm,长度小于200mm。
在所述离子阱131前端盖与四极杆系统121之间设置有快门装置134。
一种检测中性分子产物和离子产物的质谱装置检测中性分子产物的操作方法,依次包括如下步骤:
S1,初始化阶段,关断传输管路162上的电磁控制开关阀164和分子试剂导入系统141和离子阱131连通管路上的气体质量控制流量计153,并调节各真空区间内的真空度:
调节多级梯度真空系统110各级真空区间的真空度,使多级梯度真空系统110的初级真空区间内的气压为1Torr,末级真空区间内的气压为10-4Torr;
调节四极杆系统121所在真空区间的真空度,使该真空区间内的气压达到10-5Torr~10-6Torr;
调节电子轰击源质谱系统所在真空区间的真空度,使该真空区间内的气压达到10-7Torr;
调节电子轰击的离子腔室161内的真空度,使离子腔室161内的气压达到10-6Torr~10-7Torr;
打开缓冲气注入系统与离子阱131之间连通管路上的气体质量控制流量计153,向离子阱131内注入缓冲气,使离子阱131内气压达到10-4Torr~5E-3Torr;
S2,离子导入阶段,打开离子源101,试剂离子通过离子导入管路111和离子导引管路112进入到滤质四极杆,选择指定的试剂离子,仅让指定的试剂离子通过;通过滤质四极杆选择的试剂离子进入到整形四极杆内进行整形,然后进入到离子阱131内,直至离子阱131内试剂离子达到饱和;
S3,分子试剂导入阶段,关闭或减弱缓冲气导入系统151与离子阱131连通管路上的气体质量控制流量计153,打开分子试剂导入系统141与离子阱131连通管路上的气体质量控制流量计153,持续向离子阱131内通入分子试剂,使试剂离子和分子试剂反应,并保持离子阱131内气压不高于2E-3Torr;
S4,分子离子反应阶段,关闭分子试剂导入系统141与离子阱131连通管路上的气体质量控制流量计153,使试剂离子和分子试剂反应1ms~10s的时间(反应时间视研究反应的目的而确定);
S5,中性产物离子化阶段,在离子阱131的后端加推斥电压,使离子阱131内离子远离离子阱131后端盖上连接的传输管路162的中性产物入口,同时或在离子阱131后端加推斥电压约1ms时间内,通过控制器152控制传输管路162上的电磁控制开关阀164打开,使分子离子反应后产生的中性分子产物随着电磁控制开关阀164的打开迅速进入到电子轰击的离子腔室161内进行离子化;
S6,离子检测阶段,进入到离子腔室161内的中性分子产物离子化后,再进入到气体分析质谱仪163内进行离子检测,进而得出中性分子产物的分子量信息。
在进行步骤S1之后以及进行步骤S1之前,还包括背景信息检测阶段,打开传输管路162上的电磁控制开关阀164,使离子阱131和电子轰击的离子腔室161内的中性分子在离子腔室161内离子化,然后进入到气体分析质谱仪163内进行离子检测,进而得出中性分子的信息;在步骤S6之后,还包括背景信息剔除阶段,通过步骤S6中得到的中性分子产物的信息减掉背景信息检测阶段得到的中性分子的信息,获得分子离子反应后产生的中性分子产物的信息。
一种检测中性分子产物和离子产物的质谱装置检测离子产物的操作方法,依次包括如下步骤:
S1,初始化阶段,关断传输管路162上的电磁控制开关阀164和分子试剂导入系统141和离子阱131连通管路上的气体质量控制流量计153,并调节各真空区间内的真空度:
调节多级梯度真空系统110各级真空区间的真空度,使多级梯度真空系统110的初级真空区间内的气压为1Torr,末级真空区间内的气压为10-4Torr;
调节四极杆系统121所在真空区间的真空度,使该真空区间内的气压达到10-5Torr~10-6Torr;
打开缓冲气注入系统与离子阱131之间连通管路上的气体质量控制流量器153,向离子阱131内注入缓冲气,使离子阱131内气压达到10-4Torr~5E-3Torr;
S2,离子导入阶段,打开离子源101,试剂离子通过离子导入管路111和离子导引管路112进入到滤质四极杆,选择指定的试剂离子,仅让指定的试剂离子通过;通过滤质四极杆选择的试剂离子进入到整形四极杆内进行整形,然后进入到离子阱131内,直至离子阱131内试剂离子达到饱和;
S3,分子试剂导入阶段,关闭缓冲气导入系统151与离子阱131连通管路上的气体质量控制流量计153,打开分子试剂导入系统141与离子阱131连通管路上的气体质量控制流量计153,持续向离子阱131内通入分子试剂,使试剂离子和分子试剂反应,并保持离子阱131内气压不高于2E-3Torr;
S4,分子离子反应阶段,关闭分子试剂导入系统141与离子阱131连通管路上的气体质量控制流量计153,使试剂离子和分子试剂反应1ms~10s的时间;
S5,离子检测阶段,通过离子阱131X方向两侧的检测器132对离子阱131内的离子进行离子检测,进而得出离子产物的分子量信息。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的普通技术人员当可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (10)

1.一种可检测中性产物和离子产物的质谱装置,其特征在于,包括:
离子源,设置在标准大气压内,产生离子束;
多级梯度真空系统,包括多个依次通过通孔连通的真空区间,在正对离子源的位置也开有通孔;
离子导入管路,设置在初级真空区间内,正对各真空区间连接的通孔,用以传递离子源产生的离子束;
离子导引管路,设置在初级真空区间以后的各级真空区间内,正对各真空区间连接的通孔,与离子导入管路连通,用以传递离子源产生的离子束;
四极杆系统,位于多级梯度真空系统后方,在多级梯度真空系统的对应位置开有通孔,由离子导引管路传递的离子束进入到四极杆系统内;
离子阱,和四极杆系统设置在相同的真空区间内,位于四极杆系统的后方;
分子试剂导入系统,向离子阱内通入分子试剂,与离子阱的前端盖或后端盖通过管路连通;
缓冲气导入系统,向离子阱内通入缓冲气,与离子阱的前端盖或后端盖通过管路连通;
检测器,设置在离子阱的X方向的两侧,用于离子阱内的离子检测;
真空规,与离子阱的前端盖或后端盖连通,用于检测离子阱内真空度;
电子轰击源质谱系统,位于离子阱的后方,通过传输管路与离子阱的后端盖连通,在传输管路上设置有电磁控制开关阀。
2.根据权利要求1所述的可检测中性分子产物和离子产物的质谱装置,其特征在于,还包括控制器,在所述分子试剂导入系统和缓冲气导入系统与离子阱连通的管路上均设置有气体质量控制流量器,所述控制器分别与两个气体质量控制流量器和电磁控制开关阀通信连接。
3.根据权利要求1所述的可检测中性分子产物和离子产物的质谱装置,其特征在于,所述四极杆系统包括四极杆滤质器和设置在四极杆滤质器后方的后四极杆系统。
4.根据权利要求1所述的可检测中性分子产物和离子产物的质谱装置,其特征在于,所述电子轰击源质谱系统包括电子轰击的离子腔室和串联在所述离子腔室后方的气体分析质谱仪,所述传输管路与电子轰击的离子腔室连通。
5.根据权利要求1-4中的任一项所述的可检测中性分子产物和离子产物的质谱装置,其特征在于,还包括真空泵,在所述多级梯度真空系统的各级真空区间、四极杆所在真空区间和电子轰击源质谱系统所在的真空区间均连接有真空泵。
6.根据权利要求4所述的可检测中性分子产物和离子产物的质谱装置,其特征在于,所述传输管路的管径为0.5~1.5mm,长度小于200mm。
7.根据权利要求1-4中的任一项所述的可检测中性分子产物和离子产物的质谱装置,其特征在于,在所述离子阱前端盖与四极杆系统之间设置有快门装置。
8.一种可检测中性分子产物和离子产物的质谱装置检测中性分子产物的操作方法,其特征在于,依次包括如下步骤:
S1,初始化阶段,关断传输管路上的电磁控制开关阀和分子试剂导入系统和离子阱连通管路上的气体质量控制流量器,并调节各真空区间内的真空度:
调节多级梯度真空系统各级真空区间的真空度,使多级梯度真空系统的初级真空区间内的气压为1Torr,末级真空区间内的气压为10-4Torr;
调节四极杆系统所在真空区间的真空度,使该真空区间内的气压达到10-5Torr~10-6Torr;
调节电子轰击源质谱系统所在真空区间的真空度,使该真空区间内的气压达到10-7Torr;
调节电子轰击的离子腔室内的真空度,使离子腔室内的气压达到10-6Torr~10-7Torr;
打开缓冲气注入系统与离子阱之间连通管路上的气体质量控制流量器,向离子阱内注入缓冲气,使离子阱内气压达到10-4Torr~5E-3Torr;
S2,离子导入阶段,打开离子源,试剂离子通过离子导入管路和离子导引管路进入到滤质四极杆,选择指定的试剂离子,仅让指定的试剂离子通过;通过滤质四极杆选择的试剂离子进入到整形四极杆内进行整形,然后进入到离子阱内,直至离子阱内试剂离子达到饱和;
S3,分子试剂导入阶段,关闭缓冲气导入系统与离子阱连通管路上的气体质量控制流量器,打开分子试剂导入系统与离子阱连通管路上的气体质量控制流量器,持续向离子阱内通入分子试剂,使试剂离子和分子试剂反应,并保持离子阱内气压不高于2E-3Torr;
S4,分子离子反应阶段,关闭分子试剂导入系统与离子阱连通管路上的气体质量控制流量器,使试剂离子和分子试剂反应1ms~10s的时间;
S5,中性产物离子化阶段,在离子阱的后端加推斥电压,使离子阱内离子远离离子阱后端盖上连接的传输管路的中性产物入口,同时或在离子阱后端加推斥电压1ms时间内,通过控制器控制传输管路上的电磁控制开关阀打开,使分子离子反应后产生的中性分子产物随着电磁控制开关阀的打开进入到电子轰击的离子腔室内进行离子化;
S6,离子检测阶段,进入到离子腔室内的中性分子产物离子化后,再进入到气体分析质谱仪内进行离子检测,进而得出中性分子产物的分子量信息。
9.根据权利要求8所述的可检测中性分子产物和离子产物的质谱装置检测中性分子产物的操作方法,其特征在于,在进行步骤S1之后以及进行步骤S1之前,还包括背景信息检测阶段,打开传输管路上的电磁控制开关阀,使离子阱和电子轰击的离子腔室内的中性分子在离子腔室内离子化,然后进入到气体分析质谱仪内进行离子检测,进而得出中性分子的信息;在步骤S6之后,还包括背景信息剔除阶段,通过步骤S6中得到的中性分子产物的信息减掉背景信息检测阶段得到的中性分子的信息,获得分子离子反应后产生的中性分子产物的信息。
10.一种可检测中性分子产物和离子产物的质谱装置检测离子产物的操作方法,其特征在于,依次包括如下步骤:
S1,初始化阶段,关断传输管路上的电磁控制开关阀和分子试剂导入系统和离子阱连通管路上的气体质量控制流量器,并调节各真空区间内的真空度:
调节多级梯度真空系统各级真空区间的真空度,使多级梯度真空系统的初级真空区间内的气压为1Torr,末级真空区间内的气压为10-4Torr;
调节四极杆系统所在真空区间的真空度,使该真空区间内的气压达到10-5Torr~10-6Torr;
打开缓冲气注入系统与离子阱之间连通管路上的气体质量控制流量器,向离子阱内注入缓冲气,使离子阱内气压达到10-4Torr~5E-3Torr;
S2,离子导入阶段,打开离子源,试剂离子通过离子导入管路和离子导引管路进入到滤质四极杆,选择指定的试剂离子,仅让指定的试剂离子通过;通过滤质四极杆选择的试剂离子进入到整形四极杆内进行整形,然后进入到离子阱内,直至离子阱内试剂离子达到饱和;
S3,分子试剂导入阶段,关闭缓冲气导入系统与离子阱连通管路上的气体质量控制流量器,打开分子试剂导入系统与离子阱连通管路上的气体质量控制流量器,持续向离子阱内通入分子试剂,使试剂离子和分子试剂反应,并保持离子阱内气压不高于2E-3Torr;
S4,分子离子反应阶段,关闭分子试剂导入系统与离子阱连通管路上的气体质量控制流量器,使试剂离子和分子试剂反应1ms~10s的时间;
S5,离子检测阶段,通过离子阱X方向两侧的检测器对离子阱内的离子进行离子检测,进而得出离子产物的分子量信息。
CN201511001202.9A 2015-12-28 2015-12-28 可检测中性分子产物和离子产物的质谱装置及其操作方法 Active CN105390364B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511001202.9A CN105390364B (zh) 2015-12-28 2015-12-28 可检测中性分子产物和离子产物的质谱装置及其操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511001202.9A CN105390364B (zh) 2015-12-28 2015-12-28 可检测中性分子产物和离子产物的质谱装置及其操作方法

Publications (2)

Publication Number Publication Date
CN105390364A true CN105390364A (zh) 2016-03-09
CN105390364B CN105390364B (zh) 2017-06-09

Family

ID=55422529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511001202.9A Active CN105390364B (zh) 2015-12-28 2015-12-28 可检测中性分子产物和离子产物的质谱装置及其操作方法

Country Status (1)

Country Link
CN (1) CN105390364B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107328844A (zh) * 2017-07-27 2017-11-07 山东省科学院海洋仪器仪表研究所 一种海水中多种可溶性气体现场监测仪
CN107579027A (zh) * 2017-09-06 2018-01-12 上海华力微电子有限公司 一种离子注入机钨金属污染的监控方法
CN108400080A (zh) * 2018-02-11 2018-08-14 复旦大学 一种低真空条件下的质谱离子源装置
CN108956751A (zh) * 2018-06-28 2018-12-07 中国计量科学研究院 一种测定气相分子位点间距离的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004234893A (ja) * 2003-01-28 2004-08-19 Hitachi High-Technologies Corp 高周波誘導結合プラズマイオントラップ質量分析装置
US20050253059A1 (en) * 2004-05-13 2005-11-17 Goeringer Douglas E Tandem-in-time and-in-space mass spectrometer and associated method for tandem mass spectrometry
CN102308361A (zh) * 2009-02-05 2012-01-04 株式会社岛津制作所 Ms/ms型质谱分析装置
CN104025247A (zh) * 2011-12-13 2014-09-03 艾克塞利斯科技公司 生产率及一致性提高的离子注入的系统及方法
CN104201086A (zh) * 2014-08-08 2014-12-10 中国计量科学研究院 一种分子离子反应质谱系统及分子离子反应、清洗方法
CN104813162A (zh) * 2012-11-22 2015-07-29 株式会社岛津制作所 串联四极型质量分析装置
CN105185688A (zh) * 2015-08-26 2015-12-23 中国计量科学研究院 自动调节离子阱内气压的质谱装置及操作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004234893A (ja) * 2003-01-28 2004-08-19 Hitachi High-Technologies Corp 高周波誘導結合プラズマイオントラップ質量分析装置
US20050253059A1 (en) * 2004-05-13 2005-11-17 Goeringer Douglas E Tandem-in-time and-in-space mass spectrometer and associated method for tandem mass spectrometry
CN102308361A (zh) * 2009-02-05 2012-01-04 株式会社岛津制作所 Ms/ms型质谱分析装置
CN104025247A (zh) * 2011-12-13 2014-09-03 艾克塞利斯科技公司 生产率及一致性提高的离子注入的系统及方法
CN104813162A (zh) * 2012-11-22 2015-07-29 株式会社岛津制作所 串联四极型质量分析装置
CN104201086A (zh) * 2014-08-08 2014-12-10 中国计量科学研究院 一种分子离子反应质谱系统及分子离子反应、清洗方法
CN105185688A (zh) * 2015-08-26 2015-12-23 中国计量科学研究院 自动调节离子阱内气压的质谱装置及操作方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107328844A (zh) * 2017-07-27 2017-11-07 山东省科学院海洋仪器仪表研究所 一种海水中多种可溶性气体现场监测仪
CN107579027A (zh) * 2017-09-06 2018-01-12 上海华力微电子有限公司 一种离子注入机钨金属污染的监控方法
CN107579027B (zh) * 2017-09-06 2020-10-16 上海华力微电子有限公司 一种离子注入机钨金属污染的监控方法
CN108400080A (zh) * 2018-02-11 2018-08-14 复旦大学 一种低真空条件下的质谱离子源装置
CN108956751A (zh) * 2018-06-28 2018-12-07 中国计量科学研究院 一种测定气相分子位点间距离的方法
CN108956751B (zh) * 2018-06-28 2021-08-17 中国计量科学研究院 一种测定气相分子位点间距离的方法

Also Published As

Publication number Publication date
CN105390364B (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
US8648293B2 (en) Calibration of mass spectrometry systems
US9697338B2 (en) High-resolution mass spectrometer and methods for determining the isotopic anatomy of organic and volatile molecules
KR101110358B1 (ko) 유해물질 검출 방법 및 테스트 시스템
CN105390364A (zh) 可检测中性分子产物和离子产物的质谱装置及其操作方法
EP2086000A2 (en) Methods and Apparatus for Reducing Noise in Mass Spectrometry
EP3667702A1 (en) Differentially pumped dual linear quadrupole ion trap mass spectrometer
JP2013520673A (ja) 質量分析計の反応および衝突セルのためのガス送達システム
CN104201086B (zh) 一种分子离子反应质谱系统及分子离子反应、清洗方法
EP3726532A1 (en) Stable label isotope tracing for untargeted data
US20160260594A1 (en) Sample Inlet and Vacuum System for Portable Mass Spectrometer
CN104380098B (zh) 用于选择性检测生物学相关酸的方法
CN106170844A (zh) 用于检测和定量样品中的硒和硅的系统和方法
CN110610846A (zh) 加速器质谱系统和相关方法
US9305758B2 (en) Interface for mass spectrometry apparatus
US9164060B2 (en) Reducing interferences in isobaric tag-based quantification
CN108695135A (zh) 用于从气溶胶颗粒生成元素离子的离子源和方法
Brüggemann et al. Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA–MS
US20180108522A1 (en) Imr-ms device
US20230035895A1 (en) Multi-Modal Ionization for Mass Spectrometry
Spesyvyi et al. In‐tube collision‐induced dissociation for selected ion flow‐drift tube mass spectrometry, SIFDT‐MS: a case study of NO+ reactions with isomeric monoterpenes
EP3167270B1 (en) Portable electronic system for the analysis of time-variable gaseous flows
CN105551928A (zh) 高效的分子离子反应质谱简易装置及其操作方法
US20140319366A1 (en) Mass spectrometry
CN107706081B (zh) 质谱系统、色谱-质谱系统及二者的使用方法
US9123514B2 (en) In situ generation of ozone for mass spectrometers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant