CN105355714B - 一种具有铁电和半导体光伏效应的双层钙钛矿薄膜 - Google Patents

一种具有铁电和半导体光伏效应的双层钙钛矿薄膜 Download PDF

Info

Publication number
CN105355714B
CN105355714B CN201510753796.2A CN201510753796A CN105355714B CN 105355714 B CN105355714 B CN 105355714B CN 201510753796 A CN201510753796 A CN 201510753796A CN 105355714 B CN105355714 B CN 105355714B
Authority
CN
China
Prior art keywords
thin film
film
double
photovoltaic
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510753796.2A
Other languages
English (en)
Other versions
CN105355714A (zh
Inventor
徐玉青
袁国亮
杨玉玺
马赫
刘治国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201510753796.2A priority Critical patent/CN105355714B/zh
Publication of CN105355714A publication Critical patent/CN105355714A/zh
Application granted granted Critical
Publication of CN105355714B publication Critical patent/CN105355714B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种具有铁电和半导体光伏效应的双层钙钛矿薄膜,所述薄膜成分以通式Bi2(1‑x)A2x(FeCr)1‑yB2yO6(1‑δ)来表示,其中A为Gd元素,B为Ni元素,且x=0.04~0.075,y=0.06~0.1,δ=0.05~0.3。所述的双层钙钛矿薄膜的制备方法为先采用固相烧结法制备靶材,再利用脉冲激光沉积法生长出均匀致密的薄膜。本发明所述的经掺杂后的双层钙钛矿薄膜具有铁电和N型半导体特征,相对其他铁电薄膜,具有更大的光伏效应开路电压(1.0~1.2V),更大的光伏效应短路电流密度(13~40mA/cm2)。

Description

一种具有铁电和半导体光伏效应的双层钙钛矿薄膜
技术领域
本发明属于半导体材料领域,具体涉及一种基于Bi2FeCrO6材料掺杂的铁电半导体薄膜。
背景技术
光伏材料是能将太阳能直接转换成电能的半导体材料,例如单晶硅、多晶硅、非晶硅、GaAs、GaAlAs、InP、CdS、CdTe等,其中已批量生产的主要有单晶硅、多晶硅、非晶硅、GaAs。目前半导体光伏材料大多是利用PN结界面处的内建电场将光生载流子空间分离从而产生光电流,光伏电压一般不超过半导体的禁带宽度。而铁电材料具有反常光伏效应,其光伏电压不受晶体禁带宽度(Eg)的限制,可比Eg高2~4个数量级,达103~105V/cm。铁电材料所具有的高的输出光生电压、电场调控光伏的特性,使其在铁电光伏电池、光驱动器、光传感器等方面具有广阔的应用前景。
Bi2FeCrO6是一种多铁材料,即既具有铁电性又具有铁磁性。铁电性是指材料具有自发极化,且在一定温度范围内,自发极化偶极矩的方向能随外加电场的改变而改变。铁磁性是指材料具有自发磁矩,且自发磁矩可以随外加磁场变化而翻转。研究表明,Bi2FeCrO6还具备半导体性质,采用第一性原理方法计算得出Bi2FeCrO6是间接带隙材料,它的带隙Eg=1.7eV,能吸收大部分可见光,从而为成为一种高光电转换效率的光伏材料打下理论基础。
中国专利CN101255053利用基于化学压原理的固溶体技术,实现Bi2FeCrO6的单相合成;中国专利CN101840993发明了一种具有交换偏置效应的半金属/多铁材料多层膜结构,利用Bi2FeCrO6等多铁材料的磁电耦合效应来编码存储信息。文章Bandgap tuning ofmultiferroic oxide solar cells(Nechache R,et al,Nature Photonics,9,61-67,2015)讲述的Bi2FeCrO6光伏效应开路电压为0.56~0.84V,单层薄膜的光伏效应短路电流密度最大为11.2mA/cm2,为了提高Bi2FeCrO6在实际应用中的光电转化效率,光伏性能还需要进一步提高。Enhanced Electrical Properties of Bi0.9Gd0.1Fe0.975B0.025O3±δ(B=Ni,Mn,Cu,Ti and V)Thin Films(Kim J W,et al,Ferroelectrics,473,129-136,2014)报道了在BiFeO3普通钙钛矿结构中共掺Gd、Ni元素,制备了生长在衬底Pt(111)/Ti/SiO2/Si(100)上的Bi0.9Gd0.1Fe0.975Ni0.025O3±δ薄膜,相比于纯BiFeO3薄膜,其铁电性能和漏电流都有一定程度的改善。目前还未见在Bi2FeCrO6双层钙钛矿结构基础上共掺Gd、Ni元素制备出具有N型半导体特征的双层钙钛矿铁电薄膜的报道。
发明内容
本发明的目的是制备一种掺杂的光伏性能良好的双层钙钛矿铁电薄膜。
实现本发明的技术方案是:
一种双层钙钛矿光伏薄膜,所述薄膜组成成分的分子式为Bi2(1-x)A2x(FeCr)1- yB2yO6(1-δ),其中A为Gd元素,B为Ni元素,且x=0.04~0.075,2y=0.06~0.1,δ=0.05~0.3。
所述的光伏薄膜具有N型半导体特征,300K时载流子浓度为1018cm-3至1020cm-3,300K时载流子迁移率为2.2cm2·V-1·s-1至25.6cm2·V-1·s-1
上述双层钙钛矿光伏薄膜在制备PN结中的应用。
所述的PN结的光伏电流和薄膜的铁电极化方向相反;PN结的最大光伏电流密度为-36.2mA/cm2或17.5mA/cm2
与现有技术相比,本发明的有益效果是:
(1)本发明通过引入Gd、Ni元素及氧空位,双层钙钛矿薄膜具备N型半导体性质,300K时载流子浓度为1018cm-3至1020cm-3,300K时载流子迁移率为2.2cm2·V-1·s-1至25.6cm2·V-1·s-1
(2)相对于目前的铁电材料,本发明所述薄膜具有较高的光伏效应短路电流密度和光伏效应开路电压。
(3)以本发明的N型双层钙钛矿薄膜与P型GaAs(或P型GaN)构成的PN结,该PN结的光伏特性可由外电场来调控,通过外电场翻转铁电极化从而改变光伏电流的方向和大小。
附图说明
图1为双层钙钛矿薄膜器件结构示意图。
图2为实施例1Bi1.9Gd0.1(FeCr)0.95Ni0.1O5.7薄膜的X射线衍射谱。
图3为实施例2Bi1.85Gd0.15(FeCr)0.97Ni0.06O4.2薄膜的X射线衍射谱。
图4为实施例3Bi1.92Gd0.08(FeCr)0.96Ni0.08O5.1薄膜的X射线衍射谱。
图5为实施例1-3三种薄膜的电滞回线。
图6为实施例1-3三种薄膜的透射谱。
图7为实施例1-3三种薄膜经过+10V电压极化后的电流-电压特性。
图8为在外电场作用下GaAs-实施例3薄膜异质PN结的电流-时间曲线。
具体实施方式
下面的实施例是对本发明的进一步说明,而不是限制本发明的范围。
下述实施例中涉及的电场方向、电流方向、铁电极化方向皆规定由薄膜指向衬底为正,由衬底指向薄膜为负。
如图1,本发明所述的双层钙钛矿光伏薄膜的制备过程如下:
1.靶材制备:将Bi2O3、Fe2O3、Cr2O3以及所选择的掺杂元素氧化物按照一定比例称量,混合均匀后,放入球磨罐中球磨;将混合均匀的粉末压制成圆柱体,放入高温炉800~880摄氏度烧结1~3小时;
2.薄膜制备:采用脉冲激光沉积法生长出均匀致密的薄膜。将步骤1中制得的靶材放入生长腔,将衬底放入生长腔,先在基片上生长一层导电缓冲层,导电缓冲层可为La0.66Sr0.33MnO3或SrRuO3;再生长双层钙钛矿光伏薄膜层,控制腔内气氛为纯氧,且气压在0.1Pa~10Pa,腔内温度为670~690℃,单次激光脉冲能量为60~100mJ,生长频率为1~10Hz,脉冲次数为5000~20000。
实施例1:在La0.66Sr0.33MnO3缓冲层上生长Bi1.9Gd0.1(FeCr)0.95Ni0.1O5.7(简称F1)薄膜。
1.靶材制备:将Bi2O3、Gd2O3、Fe2O3、Cr2O3、Ni2O3粉末按照摩尔比190:10:95:95:10混合均匀,放入球磨罐,以300r/min的转速球磨12小时,将混合均匀的粉料压制成陶瓷片,在850摄氏度下烧结2h,将多余的粉料堆积在陶瓷片四周以避免Bi元素的挥发。
2.薄膜制备:将步骤1中制得的靶材放入生长腔,将衬底放入生长腔,选用(001)晶面的SrTiO3(STO)单晶衬底;先在基片上生长一层导电缓冲层La0.66Sr0.33MnO3,升高基片温度至650摄氏度,控制腔内气氛为纯氧,且气压在10Pa,单次激光脉冲能量为80mJ,生长频率为2Hz,脉冲次数为5000。
然后生长双层结构钙钛矿薄膜,改变基片温度为680摄氏度,控制腔内气氛为纯氧,且气压在1Pa,单次激光脉冲能量为60mJ,生长频率为5Hz,脉冲次数为20000。
3.电极制备:将具有100μm直径圆孔的掩膜版贴在步骤2中制得的薄膜上,采用脉冲激光沉积法制备电极。选用电极材料为ITO,控制腔内气氛为纯氧,且气压在3Pa,单次激光脉冲能量为120mJ,室温下生长,生长频率为5Hz,脉冲次数为6000。
4.性能测试:对所制备的F1薄膜样品作X射线衍射测试。X射线图谱如图2,在SrTiO3单晶衬底上生长的F1单晶薄膜晶格匹配好,无杂相。
采用铁电测试仪测试所制备的F1薄膜的铁电性能。电滞回线如图5,F1薄膜的剩余极化强度为19.3μC/cm2,矫顽电场为63.2kV/cm。
对所制备的F1薄膜样品作透射率测试。透射谱如图6,经计算可知F1薄膜的禁带宽度为1.53eV。
对所制备的F1薄膜样品作光伏性能测试。先采用Keithley 2635A数字源表对步骤3中制得的薄膜进行极化。采用+10V电压极化1秒,撤去极化电压,然后采用100mW/cm2的光照垂直照射在极化后的样品上表面测试其光伏性能,光伏特性曲线如图7,可知F1薄膜开路电压为1.02V,短路电流密度为13.1mA/cm2
采用综合物性测量系统(PPMS)测试所制备的F1薄膜的电学性能。F1单晶薄膜具有N型半导体特征,300K时载流子浓度为4.5×1018cm-3,300K时载流子迁移率为2.4cm2·V-1·s-1
实施例2:在SrRuO3缓冲层上生长Bi1.85Gd0.15(FeCr)0.97Ni0.06O4.2(简称F2)薄膜。
1.靶材制备:将Bi2O3、Gd2O3、Fe2O3、Cr2O3、Ni2O3粉末按照摩尔比185:15:97:97:6混合均匀,放入球磨罐,以300r/min的转速球磨12小时,将混合均匀的粉料压制成陶瓷片,在835摄氏度下烧结2h,将多余的粉料堆积在陶瓷片四周以避免Bi元素的挥发。
2.薄膜制备:将步骤1中制得的靶材放入生长腔,将衬底放入生长腔,选用(001)晶面的SrTiO3单晶衬底;先在基片上生长一层导电缓冲层La0.66Sr0.33MnO3,升高基片温度至685摄氏度,控制腔内气氛为纯氧,且气压在10Pa,单次激光脉冲能量为80mJ,生长频率为2Hz,脉冲次数为5000。
然后生长双层结构钙钛矿薄膜,改变基片温度为670摄氏度,控制腔内气氛为纯氧,且气压在0.1Pa,单次激光脉冲能量为100mJ,生长频率为1Hz,脉冲次数为20000。
3.电极制备:将具有100μm直径圆孔的掩膜版贴在步骤2中制得的薄膜上,采用脉冲激光沉积法制备电极。选用电极材料为ITO,控制腔内气氛为纯氧,且气压在3Pa,单次激光脉冲能量为120mJ,室温下生长,生长频率为5Hz,脉冲次数为6000。
4.性能测试:对所制备的F2薄膜样品作X射线衍射测试。X射线图谱如图3,在SrTiO3单晶衬底上生长的F2单晶薄膜晶格匹配好,无杂相。
采用铁电测试仪测试所制备的F2薄膜的铁电性能。电滞回线如图5,F2薄膜的剩余极化强度为24.5μC/cm2,矫顽电场为65.5kV/cm。
对所制备的F2薄膜样品作透射率测试。透射谱如图6,经计算可知F2薄膜的禁带宽度为1.59eV。
对所制备的F2薄膜样品作光伏性能测试。先采用Keithley 2635A数字源表对步骤3中制得的薄膜进行极化。采用+10V电压极化1秒,撤去极化电压,然后采用100mW/cm2的光照垂直照射在极化后的样品上表面测试其光伏性能,光伏特性曲线如图7,可知F2薄膜开路电压为1.06V,短路电流密度为20.3mA/cm2
采用综合物性测量系统(PPMS)测试所制备的F2薄膜的电学性能。F2单晶薄膜具有N型半导体特征,300K时载流子浓度为3.2×1019cm-3,300K时载流子迁移率为6.5cm2·V-1·s-1
实施例3:在La0.66Sr0.33MnO3缓冲层上生长Bi1.92Gd0.08(FeCr)0.96Ni0.08O5.1(简称F3)薄膜。
1.靶材制备:将Bi2O3、Gd2O3、Fe2O3、Cr2O3、Ni2O3粉末按照摩尔比192:8:96:96:8混合均匀,放入球磨罐,以300r/min的转速球磨12小时,将混合均匀的粉料压制成陶瓷片,在865摄氏度下烧结2h,将多余的粉料堆积在陶瓷片四周以避免Bi元素的挥发。
2.薄膜制备:将步骤1中制得的靶材放入生长腔,将衬底放入生长腔,选用(001)晶面的SrTiO3单晶衬底;先在基片上生长一层导电缓冲层La0.66Sr0.33MnO3,升高基片温度至650摄氏度,控制腔内气氛为纯氧,且气压在10Pa,单次激光脉冲能量为80mJ,生长频率为2Hz,脉冲次数为5000。
然后生长双层结构钙钛矿薄膜,改变基片温度为670摄氏度,控制腔内气氛为纯氧,且气压在1Pa,单次激光脉冲能量为85mJ,生长频率为1Hz,脉冲次数为20000。
3.电极制备:将具有100μm直径圆孔的掩膜版贴在步骤2中制得的薄膜上,采用脉冲激光沉积法制备电极。选用电极材料为ITO,控制腔内气氛为纯氧,且气压在3Pa,单次激光脉冲能量为120mJ,室温下生长,生长频率为5Hz,脉冲次数为6000。
4.性能测试:对所制备的F3薄膜样品作X射线衍射测试。X射线图谱如图4,在SrTiO3单晶衬底上生长的F3单晶薄膜晶格匹配好,无杂相。
采用铁电测试仪测试所制备的F3薄膜的铁电性能。电滞回线如图5,F3薄膜的剩余极化强度为32.2μC/cm2,矫顽电场为69.1kV/cm。
对所制备的F3薄膜样品作透射率测试。透射谱如图6,经计算可知F3薄膜的禁带宽度为1.45eV。
对所制备的F3薄膜样品作光伏性能测试。先采用Keithley 2635A数字源表对步骤3中制得的薄膜进行极化。采用+10V电压极化1秒,撤去极化电压,然后采用100mW/cm2的光照垂直照射在极化后的样品上表面测试其光伏性能,光伏特性曲线如图7,可知F3薄膜开路电压为1.18V,短路电流密度为36.4mA/cm2
采用综合物性测量系统(PPMS)测试所制备的F3薄膜的电学性能。F3单晶薄膜具有N型半导体特征,300K时载流子浓度为8.1×1019cm-3,300K时迁移率为22.3cm2·V-1·s-1
实施例4:在p型的GaAs衬底上生长F3薄膜,制备GaAs-F3异质PN结。
1.靶材制备:选用实施例3中的F3靶材。
2.薄膜制备:将F3靶材放入生长腔,将衬底放入生长腔,选用(001)晶面的p型GaAs单晶衬底,载流子浓度为2.6×1018cm-3;在基片上生长双层结构钙钛矿薄膜,改变基片温度为670摄氏度,控制腔内气氛为纯氧,且气压在1Pa;单次激光脉冲能量为85mJ,生长频率为1Hz,脉冲次数为20000。
3.电极制备:将具有100μm直径圆孔的掩膜版贴在步骤2中制得的薄膜上,采用脉冲激光沉积法制备顶电极。选用顶电极材料为ITO,控制腔内气氛为纯氧,且气压在3Pa,单次激光脉冲能量为120mJ,室温下生长,生长频率为5Hz,脉冲次数为6000。
将具有100μm直径圆孔的掩膜版贴在该样品的GaAs一面制备采用脉冲激光沉积法制备底电极。选用底电极材料为Pt,单次激光脉冲能量为200mJ,室温下生长,生长频率为5Hz,脉冲次数为20000。
4.光伏性能测试:先采用Keithley 2635A数字源表对步骤3中制得的薄膜进行极化。采用不同电压极化1秒,撤去极化电压,对极化后的薄膜,采用2秒黑暗2秒光照(垂直照射样品顶电极,光照强度为100mW/cm2)的交替条件测试PN结的电流,结果如图8所示:黑暗条件下没有电流,光照条件下产生电流;外加电压极化后会影响该PN结的电流特性,光照电流的方向与极化电压的方向相反,铁电极化正、反方向的时候,该PN结的最大光伏电流分别为-36.2mA/cm2、17.5mA/cm2

Claims (4)

1.一种双层钙钛矿光伏薄膜,其特征在于,所述薄膜组成成分的分子式为Bi2(1-x)A2x(FeCr)1-yB2yO6(1-δ),其中A为Gd元素,B为Ni元素,且x=0.04~0.075,2y=0.06~0.1,δ=0.05~0.3。
2.如权利要求1所述的双层钙钛矿光伏薄膜,其特征在于,所述的光伏薄膜具有N型半导体特征,300K时载流子浓度为1018cm-3至1020cm-3,300K时载流子迁移率为2.2cm2·V-1·s-1至25.6cm2·V-1·s-1
3.如权利要求1或2所述的双层钙钛矿光伏薄膜在制备PN结中的应用。
4.如权利要求3所述的应用,其特征在于,所述的PN结的光伏电流和薄膜的铁电极化方向相反;PN结的最大光伏电流密度为-36.2mA/cm2或17.5mA/cm2
CN201510753796.2A 2015-11-06 2015-11-06 一种具有铁电和半导体光伏效应的双层钙钛矿薄膜 Active CN105355714B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510753796.2A CN105355714B (zh) 2015-11-06 2015-11-06 一种具有铁电和半导体光伏效应的双层钙钛矿薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510753796.2A CN105355714B (zh) 2015-11-06 2015-11-06 一种具有铁电和半导体光伏效应的双层钙钛矿薄膜

Publications (2)

Publication Number Publication Date
CN105355714A CN105355714A (zh) 2016-02-24
CN105355714B true CN105355714B (zh) 2017-03-22

Family

ID=55331643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510753796.2A Active CN105355714B (zh) 2015-11-06 2015-11-06 一种具有铁电和半导体光伏效应的双层钙钛矿薄膜

Country Status (1)

Country Link
CN (1) CN105355714B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109507561B (zh) * 2018-11-19 2020-08-18 福建师范大学 一种基于可变磁场及自由电极的半导体特性稳定测量系统
CN109830550B (zh) * 2019-01-16 2021-02-05 暨南大学 一种无铅双钙钛矿单晶的紫外光探测器及其制备方法
CN115216745B (zh) * 2022-06-30 2023-09-05 中国工程物理研究院电子工程研究所 基于次序物理沉积的压电厚膜制备方法及工业级压电厚膜
CN116322083B (zh) * 2023-05-16 2023-11-24 宁德时代新能源科技股份有限公司 钙钛矿电池、光伏组件、光伏发电系统及用电设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4365737B2 (ja) * 2004-06-30 2009-11-18 シャープ株式会社 可変抵抗素子の駆動方法及び記憶装置
US7585474B2 (en) * 2005-10-13 2009-09-08 The Research Foundation Of State University Of New York Ternary oxide nanostructures and methods of making same
CN101255053B (zh) * 2008-04-08 2011-06-22 同济大学 高温单相亚铁磁-铁电多重铁性陶瓷材料及其制备方法
WO2014172131A2 (en) * 2013-04-18 2014-10-23 Drexel University Methods of forming perovskite films

Also Published As

Publication number Publication date
CN105355714A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
Wang et al. Structure, performance, and application of BiFeO 3 nanomaterials
Lee et al. Ionic conductivity increased by two orders of magnitude in micrometer-thick vertical yttria-stabilized ZrO2 nanocomposite films
Lin et al. Effects of annealing temperature on the microstructure, optical, ferroelectric and photovoltaic properties of BiFeO3 thin films prepared by sol–gel method
A Jalaja et al. Ferroelectrics and multiferroics for next generation photovoltaics
CN105355714B (zh) 一种具有铁电和半导体光伏效应的双层钙钛矿薄膜
CN105762197B (zh) 基于铌镁酸铅钛酸铅单晶的半导体铁电场效应异质结构及其制备方法和应用
CN103343315B (zh) 一种掺杂铁酸铋半导体薄膜材料及其制备方法
Afzal et al. Enhancement in photovoltaic properties of bismuth ferrite/zinc oxide heterostructure solar cell device with graphene/indium tin oxide hybrid electrodes
CN109161847B (zh) 镓掺杂铁酸铋超四方相外延薄膜及其制备方法和应用
CN104004988A (zh) 一种镧锶锰氧-氧化镍纳米复合薄膜材料及其制备方法
Tian et al. Large photocurrent density in polycrystalline hexagonal YMnO3 thin film induced by ferroelectric polarization and the positive driving effect of grain boundary
CN102593191B (zh) 偏置电场调制的氧化物半导体异质结构、其制备方法和装置
CN102544093B (zh) 半导体场效应结构、及其制备方法和用途
Jin et al. Positive colossal magnetoresistance effect in ZnO∕ La0. 7Sr0. 3MnO3 heterostructure
CN101826549A (zh) 半导体异质结构、其制备方法及半导体装置
CN102683577B (zh) BiFe1-yMnyO3外延复合薄膜及其制备方法
Chen et al. Bandgap narrowing and polarization enhancement in (K, Na, Li)(Nb, Sb, Ta) O 3+ x% Fe 2 O 3 lead-free ceramics for photovoltaic applications.
CN101419947B (zh) 一种过渡金属氧化物p-n异质结及其制备方法
CN111270205B (zh) 尖晶石相p型铁酸镍半导体氧化物薄膜的制备方法
Zhang et al. Room temperature ferromagnetism of Ni-doped SnO2 system
CN101645464B (zh) 具有双向整流特性的铽锰氧p-n异质结及其制备方法
Agarwal et al. Photovoltaic effect in ITO/rGO/BFO/Au heterostructures
Zhang et al. Magnetic and Photoluminescent Coupling in SrTi0. 87Fe0. 13O3− δ/ZnO Vertical Nanocomposite Films
CN104480427B (zh) 氧化锌基稀磁半导体薄膜的制备方法及其电荷浓度的原位调控方法
Gong et al. Switchable ferroelectric diode effect and piezoelectric properties of Bi0. 9La0. 1FeO3 ceramics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant