CN105355454A - 一种形状记忆的同轴线状超级电容器及其制备方法 - Google Patents
一种形状记忆的同轴线状超级电容器及其制备方法 Download PDFInfo
- Publication number
- CN105355454A CN105355454A CN201510755149.5A CN201510755149A CN105355454A CN 105355454 A CN105355454 A CN 105355454A CN 201510755149 A CN201510755149 A CN 201510755149A CN 105355454 A CN105355454 A CN 105355454A
- Authority
- CN
- China
- Prior art keywords
- shape memory
- super capacitor
- gel electrolyte
- carbon nanotube
- coaxial line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 239000003990 capacitor Substances 0.000 title abstract description 12
- 239000002238 carbon nanotube film Substances 0.000 claims abstract description 19
- 239000011245 gel electrolyte Substances 0.000 claims abstract description 19
- 239000000835 fiber Substances 0.000 claims abstract description 15
- 229920000431 shape-memory polymer Polymers 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 7
- 238000013519 translation Methods 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 2
- 238000004804 winding Methods 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 abstract description 4
- 230000006386 memory function Effects 0.000 abstract description 4
- 230000007704 transition Effects 0.000 abstract description 3
- 230000007334 memory performance Effects 0.000 abstract 3
- 229920005594 polymer fiber Polymers 0.000 abstract 1
- 238000007599 discharging Methods 0.000 description 6
- 238000004513 sizing Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 210000004177 elastic tissue Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229920006306 polyurethane fiber Polymers 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000010512 thermal transition Effects 0.000 description 2
- 238000002166 wet spinning Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/40—Fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
本发明属于超级电容器技术领域,具体为一种具有形状记忆性能的线状超级电容器及其制备方法。本发明超级电容器,以包裹了取向碳纳米管薄膜的形状记忆聚合物纤维为超级电容器的内电极,内电极表面为H3PO4-PVA凝胶电解质层;电解质层外包裹有一层取向碳纳米管薄膜,作为外电极;外电极表面同样有一层H3PO4-PVA凝胶电解质层。本发明利用具有形状记忆性能的高分子纤维,首次制备出具有形状记忆性能的同轴线状超级电容器。该超级电容器的比容量达到24Fg-1,能够定型成不同的曲率和不同的长度,并且在达到转变温度时能够回到原始的形状。这种形状记忆超级电容器为其他多功能电子器件和可穿戴能源期间的制备提供了新的思路。
Description
技术领域
本发明属于超级电容器制备技术领域,具体涉及一种形状记忆的线状超级电容器及其制备方法。
背景技术
柔性可穿戴便携设备的近年来得到了蓬勃的发展,该领域也是未来电子设备发展的主流方向。为了满足实际应用中多方面的需求,迫切需要发展高性能,可集成和多功能的能源设备来给各种电子设备供能。此外,能源器件微型化是另外一个重要的发展方向。将能源器件制备成纤维状是其中一个有效的手段,近年来已经发展出一系列微型储能设备,如纤维状超级电容器和锂离子电池。但是这些器件都仅仅具有一种单一的形状,难以满足给多种电子设备功能或者多样化实际应用的需求,虽然已经有一些研究实现了超级电容器的可拉伸性,来防止使用过程中的破坏,但是这种变形在外力作用下就会消失。而实际应用中,不同的形状常常需要被固定,例如将可穿戴电子器件中固定在身体的不同部位上。因此,发展一种能够满足多种需求,实现用户自定义形状的储能设备就尤其重要,迄今为止,没有关于形状记忆高性能线状超级电容器的相关研究,这主要是受到电极材料的限制。
本发明运用形状记忆纤维表面包裹取向碳纳米管的方法,成功实现了具有形状记忆功能的超级电容器,这为其他多功能电子器件和可穿戴能源期间的制备提供了新的思路。
发明内容
本发明的目的在于提供一种具有形状记忆功能的超级电容器及其制备方法。
本发明提供的具有形状记忆功能的超级电容器,是一种形状记忆同轴线状超级电容器,其结构组成如下:以包裹了取向碳纳米管薄膜的形状记忆聚合物(如聚氨酯)纤维为超级电容器的内电极,内电极表面为H3PO4-PVA凝胶电解质层;电解质层外包裹有一层取向碳纳米管薄膜,作为外电极;外电极表面同样有一层H3PO4-PVA凝胶电解质层。
本发明提供的形状记忆同轴线状超级电容器,能够在外力和高于转变温度的条件下,弯曲或者拉伸成各种形状,并且能保持该形状;最小曲率半径为1.5cm,最大拉伸量能达到100%;当温度再次达到转变温度时,该超级电容器能够恢复到最初的形状。
本发明提供的形状记忆同轴线状超级电容器的制备方法,具体步骤为:
(1)把聚氨酯颗粒溶解于二甲基甲酰胺中,将其从针管中注入到凝固液体中固化,再将其转移到纯水中进一步固化,干燥后得到形状记忆纤维;
(2)将形状记忆纤维固定在转速一致的两个马达上,配合平移台,将取向碳纳米管薄膜以一定角度缠绕在形状记忆纤维上;控制马达的转速和平移台的速度,使缠绕的碳纳米管薄膜厚度和角度可控,制备得到形状记忆电极,即内电极;
(3)将H3PO4-PVA凝胶电解液均匀包裹在内电极表面,真空干燥后成为凝胶电解质层;
(4)然后,用步骤(2)的同样方法在凝胶电解质层外包裹取向碳纳米管薄膜,制备得到外电极;
(5)最后,将H3PO4-PVA凝胶电解液均匀包裹在步骤(4)得到的外电极表面,真空干燥后成为凝胶电解质层,从而得到形状记忆超级电容器。
本发明通过把取向碳纳米管薄膜包裹在湿法纺丝得到的形状记忆纤维表面制得内电极,表面均匀涂上H3PO4-PVA凝胶电解液,通过真空干燥的方法使电解液在干燥的过程中与电极完全接触,再包裹一层取向碳纳米管薄膜作为外电极。用同样的方法涂上H3PO4-PVA凝胶电解液,制备得到形状记忆线状超级电容器(图1)。两层电极上的碳纳米管薄膜具有很好的取向结构,电解液层层包裹同时起到了保护作用,在拉伸和弯曲的状态下,结构都能保持稳定(图2a-2j)。通过上述方法制备得到的超级电容器的比容量达到24F/g。
图3a显示该形状记忆超级电容器能够定型成不同的弯曲程度。并且在不同的曲率下,超级电容器的充放电曲线基本保持不变,这显示出了很好的性能稳定性。图3c测试了原始形状,定型后的弯曲形状以及回复到原始形状三种不同状态的循环伏安曲线。接近矩形的循环伏安曲线显示出了双电层电容器的基本特点,并且重叠的曲线也显示出了性能的稳定。多次定型后,超级电容器的容量基本保持不变。甚至在定型和回复的动态过程中,从平稳的充放电曲线中可以看出其能够正常工作。
本发明研究了该超级电容器在拉伸定型状态下的电化学和力学性能。图4a显示该形状记忆超级电容器能够分别拉伸50%、100%、150%和200%,并且定型在25%、50%、75%和100%。当再次加热至热转变温度时,该超级电容器能够恢复到原始的形状。并且该形状记忆效应能够多次循环。图4b显示了不同拉伸定型后电容器的电化学性能。超级电容器的容量能够在定型100%的条件下容量保持80%以上。当超级电容器收缩回复到原始形状后,从充放电曲线中可以看出,性能基本保持不变。定型回复循环500次后,电化学性能基本保持不变,体现出良好的稳定性。
附图说明
图1为本发明形状记忆超级电容器制备流程图示。
图2为缠绕取向碳纳米管薄膜的形状记忆纤维低倍(a)和高倍(b)扫描电镜照片。c,PVA凝胶电解液表面扫描电镜照片。d,形状记忆线状超级电容器截面。形状记忆线状超级电容器弯曲状态下低倍(e)和高倍(f)扫描电镜照片。形状记忆线状超级电容器拉伸50%的状态下低倍(g)和高倍(h)扫描电镜照片。拉伸回复后低倍(i)和高倍(j)扫描电镜照片。
图3为形状记忆超级电容器电学性能图示。其中,a,形状记忆超级电容器弯曲定型光学照片。b,形状记忆超级电容器在定型成不同曲率状态下的充放电曲线。c,弯曲定型前后循环伏安曲线。d,弯曲变形次数与比容量关系。e,在动态变形过程中的充放电曲线。
图4为本发明形状记忆超级电容器物理性能图示。其中,a,形状记忆回复率与循环次数关系曲线。插图:不同拉伸率下形状记忆的应力应变曲线。b,不同定型拉伸率与比容量关系。c,拉伸变形前后和回复原始形状后充放电曲线。d,拉伸变形次数与比容量关系。
具体实施方式
第一,形状记忆聚氨酯纤维的制备
把聚氨酯颗粒溶解于N,N-二甲基甲酰胺中配制成6g/mL的粘稠溶液,通过湿法纺丝的方法将溶液通过针管注入到凝固液(VH2O:VDMF=1:1)中,通过控制针管的直径和注射速度能够控制纤维的直径。将静置于凝固液10分钟后的形状记忆纤维放入蒸馏水中进一步凝固,取出后在60℃的温度下干燥1h。
第二,形状记忆的同轴线状超级电容器的制备
将制备好的形状记忆纤维两端固定在两个马达上,把一个可纺碳纳米管阵列放在平移台上,然后把碳纳米管薄膜从阵列中拉出,并以一定的角度搭在弹性纤维上。当两个马达和平移台同时开启的时候,连续的碳纳米管薄膜会不断地裹在弹性纤维上,通过匹配平移台的速度和马达的转速,可以使得碳纳米管在纤维上的螺旋角保持不变。从而得到电学性能稳定的导电弹性纤维。在该导电弹性纤维上均匀的涂一层H3PO4-PVA凝胶电解液,真空干燥30分钟。再用上述方法在涂有电解液的导电弹性纤维上包裹一层连续的取向碳纳米管薄膜,并再涂一层H3PO4-PVA凝胶电解液,真空干燥30分钟。把上述制备好的超级电容器上,用金属丝分别引出内电极和外电极,完成线状形状记忆超级电容器的制备。该形状记忆超级电容器的容量能够达到24F/g,并且能够在受力和加热下固定成不同的弯曲曲率和不同的拉伸长度,在定型成不同形状时,该超级电容器的容量基本保持不变。当温度达到其热转变温度时,该形状记忆超级电容器又能够回复到原始的形状。
Claims (2)
1.一种形状记忆同轴线状超级电容器,其特征在于其结构组成如下:以包裹了取向碳纳米管薄膜的形状记忆聚合物纤维为超级电容器的内电极,内电极表面为H3PO4-PVA凝胶电解质层;电解质层外包裹有一层取向碳纳米管薄膜,作为外电极;外电极表面同样有一层H3PO4-PVA凝胶电解质层。
2.一种形状记忆同轴线状超级电容器的制备方法,其特征在于具体步骤为:
(1)把聚氨酯颗粒溶解于二甲基甲酰胺中,将其从针管中注入到凝固液体中固化,再将其转移到纯水中进一步固化,干燥后得到形状记忆纤维;
(2)将形状记忆纤维固定在转速一致的两个马达上,配合平移台,将取向碳纳米管薄膜以一定角度缠绕在形状记忆纤维上;控制马达的转速和平移台的速度,使缠绕的碳纳米管薄膜厚度和角度可控,制备得到形状记忆电极,即内电极;
(3)将H3PO4-PVA凝胶电解液均匀包裹在内电极表面,真空干燥;
(4)然后,用步骤(2)的同样方法在凝胶电解质层外包裹取向碳纳米管薄膜,制备得到外电极;
(5)最后,将H3PO4-PVA凝胶电解液均匀包裹在步骤(4)得到的外电极表面,真空干燥后,得到形状记忆超级电容器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510755149.5A CN105355454A (zh) | 2015-11-09 | 2015-11-09 | 一种形状记忆的同轴线状超级电容器及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510755149.5A CN105355454A (zh) | 2015-11-09 | 2015-11-09 | 一种形状记忆的同轴线状超级电容器及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105355454A true CN105355454A (zh) | 2016-02-24 |
Family
ID=55331402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510755149.5A Pending CN105355454A (zh) | 2015-11-09 | 2015-11-09 | 一种形状记忆的同轴线状超级电容器及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105355454A (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108831762A (zh) * | 2018-06-07 | 2018-11-16 | 芜湖市亿仑电子有限公司 | 一种电容器结构及其制备方法 |
US10181381B2 (en) | 2016-08-18 | 2019-01-15 | King Abdulaziz University | Tunable shape memory capacitor and a method of preparation thereof |
CN110957133A (zh) * | 2019-12-05 | 2020-04-03 | 华中科技大学 | 一种基于4d打印的仿生可变形电容器 |
CN112216519A (zh) * | 2020-09-21 | 2021-01-12 | 西安交通大学 | 一种柔性电极、电容器及制备方法 |
CN112885611A (zh) * | 2019-11-29 | 2021-06-01 | 清华大学 | 超级电容器 |
CN113130215A (zh) * | 2021-04-19 | 2021-07-16 | 浙江理工大学 | 可拉伸平面微型超级电容器及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090168302A1 (en) * | 2007-12-29 | 2009-07-02 | Tsinghua University | Electrochemical capacitor with carbon nanotubes |
CN102810406A (zh) * | 2012-09-11 | 2012-12-05 | 复旦大学 | 以聚苯胺/取向碳纳米管复合膜为电极的超级电容器及其制备方法 |
CN103247446A (zh) * | 2013-04-26 | 2013-08-14 | 复旦大学 | 一种具有同轴结构的纤维状超级电容器及其制备方法与应用 |
CN103400702A (zh) * | 2013-07-04 | 2013-11-20 | 复旦大学 | 一种弹性的同轴线状超级电容器及其制备方法 |
-
2015
- 2015-11-09 CN CN201510755149.5A patent/CN105355454A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090168302A1 (en) * | 2007-12-29 | 2009-07-02 | Tsinghua University | Electrochemical capacitor with carbon nanotubes |
CN102810406A (zh) * | 2012-09-11 | 2012-12-05 | 复旦大学 | 以聚苯胺/取向碳纳米管复合膜为电极的超级电容器及其制备方法 |
CN103247446A (zh) * | 2013-04-26 | 2013-08-14 | 复旦大学 | 一种具有同轴结构的纤维状超级电容器及其制备方法与应用 |
CN103400702A (zh) * | 2013-07-04 | 2013-11-20 | 复旦大学 | 一种弹性的同轴线状超级电容器及其制备方法 |
Non-Patent Citations (2)
Title |
---|
JING ZHONG等: "Shape memory fiber supercapacitors", 《NANO ENERGY》 * |
JUE DENG等: "A Shape-Memory Supercapacitor Fiber", 《ANGEWANDTE CHEMIE INTERNATIONAL EDITION》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10181381B2 (en) | 2016-08-18 | 2019-01-15 | King Abdulaziz University | Tunable shape memory capacitor and a method of preparation thereof |
CN108831762A (zh) * | 2018-06-07 | 2018-11-16 | 芜湖市亿仑电子有限公司 | 一种电容器结构及其制备方法 |
CN112885611A (zh) * | 2019-11-29 | 2021-06-01 | 清华大学 | 超级电容器 |
CN110957133A (zh) * | 2019-12-05 | 2020-04-03 | 华中科技大学 | 一种基于4d打印的仿生可变形电容器 |
CN110957133B (zh) * | 2019-12-05 | 2021-04-06 | 华中科技大学 | 一种基于4d打印的仿生可变形电容器 |
CN112216519A (zh) * | 2020-09-21 | 2021-01-12 | 西安交通大学 | 一种柔性电极、电容器及制备方法 |
CN112216519B (zh) * | 2020-09-21 | 2022-06-07 | 西安交通大学 | 一种柔性电极、电容器及制备方法 |
CN113130215A (zh) * | 2021-04-19 | 2021-07-16 | 浙江理工大学 | 可拉伸平面微型超级电容器及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105355454A (zh) | 一种形状记忆的同轴线状超级电容器及其制备方法 | |
Yang et al. | A highly stretchable, fiber-shaped supercapacitor. | |
Lu et al. | Superelastic hybrid CNT/graphene fibers for wearable energy storage | |
Shang et al. | Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions | |
Li et al. | Recent progress of conductive hydrogel fibers for flexible electronics: fabrications, applications, and perspectives | |
Senthilkumar et al. | Advances and prospects of fiber supercapacitors | |
Guo et al. | Smart supercapacitors with deformable and healable functions | |
Zhang et al. | Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles | |
Kim et al. | Thermally responsive torsional and tensile fiber actuator based on graphene oxide | |
CN101937776B (zh) | 超级电容 | |
WO2021114321A1 (zh) | 一种柔性导电纤维膜材料及其制备方法 | |
US10446330B2 (en) | Elastic fiber electrode, micro-supercapacitor using same, and preparation method therefor | |
Zhang et al. | Ultrahigh energy fiber-shaped supercapacitors based on porous hollow conductive polymer composite fiber electrodes | |
Wang et al. | High performance two-ply carbon nanocomposite yarn supercapacitors enhanced with a platinum filament and in situ polymerized polyaniline nanowires | |
Xu et al. | Highly stretchable, fast thermal response carbon nanotube composite heater | |
Zhou et al. | Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers | |
Wu et al. | One-step coaxial spinning of core-sheath hydrogel fibers for stretchable ionic strain sensors | |
CN111500063B (zh) | 一种聚苯胺导电水凝胶及其制备方法和超级电容器 | |
Zhao et al. | Preparation of a self-healing polyaniline-based gel and its application as a healable all-in-one capacitor | |
CN104485234A (zh) | 基于纺织纤维和电沉积聚吡咯制备柔性超级电容器 | |
CN113249961B (zh) | 基于导电纤维网络的柔性器件结构及其制备方法与应用 | |
Sun et al. | High performance carbon nanotube/polymer composite fibers and water-driven actuators | |
CN107275121B (zh) | 一种具有自愈合的超级电容器及其制备方法 | |
Han et al. | Conductive Core–Shell Aramid Nanofibrils: Compromising Conductivity with Mechanical Robustness for Organic Wearable Sensing | |
Ma et al. | Wearable supercapacitors based on conductive cotton yarns |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160224 |