CN105304707A - 一种增强型hemt器件 - Google Patents

一种增强型hemt器件 Download PDF

Info

Publication number
CN105304707A
CN105304707A CN201510713864.2A CN201510713864A CN105304707A CN 105304707 A CN105304707 A CN 105304707A CN 201510713864 A CN201510713864 A CN 201510713864A CN 105304707 A CN105304707 A CN 105304707A
Authority
CN
China
Prior art keywords
metal
layer
source
gan
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510713864.2A
Other languages
English (en)
Inventor
陈万军
施宜军
王泽恒
胡官昊
刘丽
周琦
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201510713864.2A priority Critical patent/CN105304707A/zh
Publication of CN105304707A publication Critical patent/CN105304707A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7789Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface the two-dimensional charge carrier gas being at least partially not parallel to a main surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • H01L29/475Schottky barrier electrodes on AIII-BV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明属于半导体技术领域,涉及一种增强型HEMT器件。本发明提供的栅控增强型HMET器件,与常规的凹槽栅-增强型AlGaN/GaN?HEMT器件不同的是,本发明中源极金属与半导体之间的接触是肖特基接触而不是常规结构中的欧姆接触,而且源极位于栅极和漏极之间;栅极是侧壁绝缘栅电极,在源极边缘通过刻蚀AlGaN和GaN形成的侧壁上。本发明的有益效果为,实现了常关型沟道,使得器件更加利于控制;同时克服了短沟道效应,使得特征频率显著提高,可以应用于高频电路中;并且可以改善器件的回滞电压和电流崩塌现象;还可以与传统工艺兼容。

Description

一种增强型HEMT器件
技术领域
本发明属于半导体技术领域,具体的说涉及一种增强型高电子迁移率晶体管(HEMT)器件。
背景技术
氮化镓(GaN)是第三代宽禁带半导体的代表之一,具有优良的特性:高的临界击穿电场(~3.5×106V/cm)、高电子迁移率(~2000cm2/V·s)、高的二维电子气(2DEG)浓度(~1013cm-2)、高的高温工作能力。基于AlGaN/GaN异质结的高电子迁移率晶体管(HEMT)(或异质结场效应晶体管HFET,调制掺杂场效应晶体管MODFET,以下统称为HEMT器件)在半导体领域已经取得广泛应用。该类器件具有反向阻断电压高、正向导通电阻低、工作频率高等特性,因此可以满足系统对半导体器件更大功率、更高频率、更小体积和更恶劣高温工作的要求。
对于AlGaN/GaNHEMT器件而言,增强型(常关型)HEMT器件比耗尽型(常开型)HEMT器件具有更多的优势,其实现技术是研究者们极其关注的问题。虽然近年来增强型HEMT的研究工作已经取得了巨大的进步,但目前增强型AlGaN/GaNHEMT的阈值电压都比较低(大多小于1V),性能要明显比耗尽型HEMT的差。通常器件阈值电压要求在3~5V以上,才能避免由于噪音而引起的误操作,满足功率开关应用。其中,降低Al组分或者生长薄的势垒层降低了沟道中2DEG浓度,增大了AlGaN/GaNHEMT的寄生电阻和开态电阻,因此Al组分和势垒层厚度只能够在有限的范围内降低;生长InGaN盖帽层或p-GaN盖帽层制作增强型HEMT,盖帽层使栅极对于沟道的控制变弱,降低了器件的跨导,对于AlGaN/GaNHEMT高频工作不利;凹栅刻蚀能够有效地耗尽栅极下方2DEG浓度,极大地提高阈值电压,但是凹栅刻蚀需要精确地控制刻蚀深度和降低等离子体处理引起的刻蚀损伤;尽管目前F基等离子体处理是一种十分有前途的制作增强型HEMT的方法,但有可能遇到注入损伤和高压工作稳定性问题。因此目前的增强型HEMT器件存在阈值电压较低的问题。
发明内容
本发明所要解决的,就是针对上述问题,提出一种增强型HEMT器件。
为实现上述目的,本发明采用如下技术方案:
一种增强型HEMT器件,包括衬底3、位于衬底3上表面的GaN层1和位于GaN层1上表面的MGaN层2;所述GaN层1和MGaN层2的接触面形成异质结;所述MGaN层2一端的上层具有金属漏电极4,所述MGaN层2另一端的上表面具有金属源电极5;所述金属源电极5与MGaN层2之间为肖特基势垒接触;所述金属漏电极4与金属源电极5之间的MGaN层2的上表面具有绝缘栅介质6;所述绝缘栅介质6还完全覆盖住金属源电极5的表面并沿金属源电极5远离金属漏电极4的一侧沿器件垂直方向延伸入GaN层1中;所述绝缘栅介质6位于金属源电极5上表面的部分及延伸入GaN层1中的部分的截面图形为Z型;所述绝缘栅介质6所形成的Z型结构的表面覆盖有金属栅电极7;所述M为除Ga之外的Ⅲ族元素。
具体的,所述金属栅电极7沿绝缘栅介质6的上表面向靠近金属漏电极4的一侧延伸。
具体的,所述M为Al或In。
具体的,所述绝缘栅介质6采用的材料为SiO2、Si3N4、AlN、Al2O3、MgO或Sc2O3中的一种。
本发明的有益效果为,实现了常关型沟道,使得器件更加利于控制;同时克服了短沟道效应,使得特征频率显著提高,可以应用于高频电路中;并且可以改善器件的回滞电压和电流崩塌现象;还可以与传统工艺兼容。
附图说明
图1为传统的AlGaN/GaNHEMT器件结构示意图;
图2为本发明的AlGaN/GaNHEMT器件结构示意图;
图3为本发明的器件VGS>0时的导带示意图;
图4为本发明的器件VGS=0时的导带示意图;
图5为本发明的器件VGS<0时的导带示意图;
图6为本发明的器件在不同栅压下对沟道中导带能量的调制仿真示意图;
图7为本发明的器件的转移特性曲线示意图;
图8为本发明的器件的输出特性曲线示意图;
图9为本发明的器件的制造工艺流程中在衬底上形成MGaN和GaN后的结构示意图;
图10为本发明的器件的制造工艺流程中刻蚀MGaN和GaN侧壁形成凹槽后的结构示意图;
图11为本发明的器件的制造工艺流程中制作漏极金属电极后的结构示意图;
图12为本发明的器件的制造工艺流程中制作源极金属后的结构示意图;
图13为本发明的器件的制造工艺流程中制作淀积绝缘层后的结构示意图;
图14为本发明的器件的制造工艺流程中制作侧壁栅极结构后的结构示意图;
图15为本发明的另一种应用结构示意图;
图16为本发明器件在截止时的等势线分布图;
图17为本发明的器件在正向开启时栅附近等势线分布图。
具体实施方式
下面结合附图,详细描述本发明的技术方案:
如图2所示,本发明的一种增强型HEMT器件,包括衬底3、位于衬底3上表面的GaN层1和位于GaN层1上表面的MGaN层2;所述GaN层1和MGaN层2的接触面形成异质结;所述MGaN层2一端的上层具有金属漏电极4,所述MGaN层2另一端的上表面具有金属源电极5;所述金属源电极5与MGaN层2之间为肖特基势垒接触;所述金属漏电极4与金属源电极5之间的MGaN层2的上表面具有绝缘栅介质6;所述绝缘栅介质6还完全覆盖住金属源电极5的表面并沿金属源电极5远离金属漏电极4的一侧沿器件垂直方向延伸入GaN层1中;所述绝缘栅介质6位于金属源电极5上表面的部分及延伸入GaN层1中的部分的截面图形为Z型;所述绝缘栅介质6所形成的Z型结构的表面覆盖有金属栅电极7;所述M为除Ga之外的Ⅲ族元素。
本发明的工作原理是:
本发明提供的栅控增强型HMET器件,与常规的凹槽栅-增强型AlGaN/GaNHEMT器件(如图1所示)不同的是,本发明中源极金属(S)与半导体之间的接触是肖特基接触而不是常规结构中的欧姆接触,而且源极位于栅极(G)和漏极(D)之间;栅极是侧壁绝缘栅电极,在源极边缘通过刻蚀AlGaN和GaN形成的侧壁上。常规的凹槽栅-增强型AlGaN/GaNHEMT器件的导电通道有非栅控的2DEG沟道和栅区下方栅控2DEG沟道,栅压通过控制栅区下方2DEG沟道的电导来实现栅控;而本发明提供的增强型HMET器件的导电通道有非栅控的2DEG沟道和源极下方的垂直栅控隧穿通道,在侧壁绝缘栅极施加电压可以改变场控隧穿通道的导通状况,而对2DEG沟道没有太大影响。在侧壁绝缘栅极加较大正向电压时源极正下方的AlGaN势垒会变薄,即电子从源极金属隧穿到2DEG沟道的隧穿势垒变薄,电子隧穿的几率变大,即场控隧穿通道开启,大量电子可以直接隧穿过势垒并且进入2DEG中,并在漏极电压的作用下流向漏极,形成从漏极欧姆电极流向源极肖特基电极的电流,实现器件的开启;在栅极加较小正向电压或者方向电压时AlGaN势垒变厚,隧穿的几率变小,甚至无法隧穿,即场控隧穿通道关闭,导致漏极和源极之间无法形成电流通道,实现了器件的关断,即实现了常关型器件功能。由此,通过侧壁绝缘栅电极对源极下方AlGaN势垒的控制,即控制隧穿通道的开启和关闭,达到了对器件的开启和关断控制,从而实现了增强型AlGaN/GaNHMET器件功能。同时,由于截止状态时耗尽区在源极边缘而并非在栅极边缘,它将不会在栅极边缘产生高电场,有利于降低高电场对栅极失效的影响。
对本发明内容的栅控隧穿通道(如图1所示),GaN异质结以AlGaN/GaN为例,AlGaN/GaN异质结界面形成2DEG,主要由于GaN和AlGaN两种材料的晶格不匹配和界面应力等因素的存在而形成。此器件利用了自发极化和压电极化的方式实现了器件的2DEG导电沟道的存在。由于极化产生的2DEG使得AlGaN/GaN材料体系是常开型沟道。为了实现本发明所需的常关型沟道,本发明构建了侧壁绝缘栅电极结构,器件的导通与关断不在依赖于2DEG的浓度,而是与栅控隧穿通道的开启与关闭有关。而栅控隧穿通道的开启与关闭可以通过改变侧壁绝缘栅电极电压来实现。在侧壁绝缘栅电极加较大的正向电压时场控隧穿通道的势垒变薄,场控隧穿通道开启,电子可以直接隧穿过势垒并且积聚在2DEG沟道(图3为在侧壁绝缘栅电极加较大正向电压的导带示意图),电子进入2DEG沟道后在漏极电压的作用下流向漏极,形成从漏极欧姆电极流向源极肖特基电极的电流,实现器件的导通。在侧壁绝缘栅电极加较小正向电压或者方向电压时场控隧穿通道的势垒变厚,场控隧穿通道关闭(图4、图5为在侧壁绝缘栅电极加较小正向电压和反向电压后的导带示意图),导致漏极和源极之间无法形成电流通道,实现了器件的关断,即实现了常关型器件功能。图6是不同栅电压下源极下方隧穿势垒变化的仿真结果,图7是器件转移特性曲线的仿真结果,图8是输出特性曲线的仿真结果。
图9-图14为本发明的制造工艺流程示意图;本发明的制造工艺与传统的器件的制造工艺兼容,不同的地方为:本发明中的刻蚀作用与常规凹槽栅-增强型AlGaN/GaNHEMT器件的刻蚀作用不同:本发明中的刻蚀是为了形成侧墙并隔离器件,会将大部分GaN刻蚀掉,刻蚀的深度比较深;而常规凹槽栅-增强型AlGaN/GaNHEMT器件的刻蚀是为了耗尽2DEG,实现增强型功能,一般不刻蚀GaN。
在本发明中,可采用以下两种方案来制备绝缘栅介质材料。
(a)采用原子层淀积(ALD)制备Al2O3、HfO2、TiO2等介质材料。ALD所生长的薄膜是自限制的,能精确地控制薄膜的厚度和化学组分,而且淀积的薄膜具有很好的均匀性和保形性。应考虑采用复合叠层的办法来实现,比如HfO2/Al2O3等。
(b)采用MOCVD设备制备Ga2O3、Al2O3、AlGaO或AlGaO/Al2O3等各种单层、混合层以及各种叠层结构,以制备高性能绝缘栅介质。采用MOCVD方法具有介质材料成膜状态致密、厚度控制精准、易于形成混合膜和多层膜重复性好等优点,特别是对界面态控制的可控空间较大。
如图15所示,为本发明的另一种应用结构示意图,该结构使栅极金属跃过源极,可以使栅极与源极之间的电场再分布,事实上等于形成了一个场板,防止了高电场峰的出现,使得器件耐压提高。
仿真说明:
采用器件仿真软件ISE-Dessis对本发明所提结构进行了初步仿真分析。在本仿真分析中,AlGaN势垒层为23nm,GaN层厚度为1μm,漏极是长度为1μm的欧姆接触,源极为长度是0.2μm的肖特基接触(Ni/Au)。在源极侧面的侧壁中,通过在竖壁侧面淀积~10nm厚的SiN介质层以及肖特基金属形成栅电极。由于极化效应的存在,在AlGaN/GaN异质结界面引入1×1013cm-2的负的极化电荷,以表征2DEG的存在;在AlGaN和GaN中分别引入1.8eV和2.2eV的受主型深陷阱以表征体缺陷。仿真模型中,没有考虑镜像力对肖特基势垒高度的影响。
当栅极电压为0V时,场控隧穿通道没有开启,源极金属上的电子无法隧穿到2DEG沟道中,在肖特基源极边缘产生的耗尽区承受漏极电压,如同反向偏置的SBD一样,如图16所示。随着栅极电压的增加,场控隧穿通道的隧穿势垒变薄,通道开启,源极金属上的电子可以隧穿到2DEG沟道中,如图4所示。大量电子可以直接隧穿过势垒并且进入2DEG中,并在漏极电压的作用下流向漏极,形成从漏极欧姆电极流向源极肖特基电极的电流。图17是栅压为4.5V时栅附近等势线分布。
图7是器件的转移特性曲线仿真结果,由图中可以得到阈值电压达到2V。图8是直流输出电流仿真结果,在栅压为4.5V时漏极电流为~600mA/mm。通过上述ISE仿真分析,验证了本发明所提出器件工作机理的可行性。

Claims (4)

1.一种增强型HEMT器件,包括衬底(3)、位于衬底(3)上表面的GaN层(1)和位于GaN层(1)上表面的MGaN层(2);所述GaN层(1)和MGaN层(2)的接触面形成异质结;所述MGaN层(2)一端的上层具有金属漏电极(4),所述MGaN层(2)另一端的上表面具有金属源电极(5);所述金属源电极(5)与MGaN层(2)之间为肖特基势垒接触;所述金属漏电极(4)与金属源电极(5)之间的MGaN层(2)的上表面具有绝缘栅介质(6);所述绝缘栅介质(6)还完全覆盖住金属源电极(5)的表面并沿金属源电极(5)远离金属漏电极(4)的一侧沿器件垂直方向延伸入GaN层(1)中;所述绝缘栅介质(6)位于金属源电极(5)上表面的部分及延伸入GaN层(1)中的部分的截面图形为Z型;所述绝缘栅介质(6)所形成的Z型结构的表面覆盖有金属栅电极(7);所述M为除Ga之外的Ⅲ族元素。
2.根据权利要求1所述的一种增强型HEMT器件,其特征在于,所述金属栅电极(7)沿绝缘栅介质(6)的上表面向靠近金属漏电极(4)的一侧延伸。
3.根据权利要求2所述的一种增强型HEMT器件,其特征在于,所述M为Al或In。
4.根据权利要求3所述的一种增强型HEMT器件,其特征在于,所述绝缘栅介质(6)采用的材料为SiO2、Si3N4、AlN、Al2O3、MgO或Sc2O3中的一种。
CN201510713864.2A 2015-10-28 2015-10-28 一种增强型hemt器件 Pending CN105304707A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510713864.2A CN105304707A (zh) 2015-10-28 2015-10-28 一种增强型hemt器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510713864.2A CN105304707A (zh) 2015-10-28 2015-10-28 一种增强型hemt器件

Publications (1)

Publication Number Publication Date
CN105304707A true CN105304707A (zh) 2016-02-03

Family

ID=55201726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510713864.2A Pending CN105304707A (zh) 2015-10-28 2015-10-28 一种增强型hemt器件

Country Status (1)

Country Link
CN (1) CN105304707A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576020A (zh) * 2016-02-26 2016-05-11 大连理工大学 具有纵向栅极结构的常关型hemt器件及其制备方法
CN107170810A (zh) * 2017-05-24 2017-09-15 电子科技大学 一种逆阻型氮化镓器件
CN111354777A (zh) * 2018-12-24 2020-06-30 东南大学 一种低导通电阻的异质结半导体器件
CN113394285A (zh) * 2021-06-28 2021-09-14 电子科技大学 一种具有ESD栅极防护的p-GaN HEMT器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120205717A1 (en) * 2011-02-10 2012-08-16 Fujitsu Limited Compound semiconductor device, method for manufacturing the device and electric device
CN102881716A (zh) * 2012-09-27 2013-01-16 电子科技大学 一种场致隧穿增强型hemt器件
US20140092638A1 (en) * 2012-09-28 2014-04-03 Fujitsu Semiconductor Limited Compound semiconductor device and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120205717A1 (en) * 2011-02-10 2012-08-16 Fujitsu Limited Compound semiconductor device, method for manufacturing the device and electric device
CN102881716A (zh) * 2012-09-27 2013-01-16 电子科技大学 一种场致隧穿增强型hemt器件
US20140092638A1 (en) * 2012-09-28 2014-04-03 Fujitsu Semiconductor Limited Compound semiconductor device and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576020A (zh) * 2016-02-26 2016-05-11 大连理工大学 具有纵向栅极结构的常关型hemt器件及其制备方法
CN105576020B (zh) * 2016-02-26 2018-06-19 大连理工大学 具有纵向栅极结构的常关型hemt器件及其制备方法
CN107170810A (zh) * 2017-05-24 2017-09-15 电子科技大学 一种逆阻型氮化镓器件
CN107170810B (zh) * 2017-05-24 2020-03-31 电子科技大学 一种逆阻型氮化镓器件
CN111354777A (zh) * 2018-12-24 2020-06-30 东南大学 一种低导通电阻的异质结半导体器件
CN113394285A (zh) * 2021-06-28 2021-09-14 电子科技大学 一种具有ESD栅极防护的p-GaN HEMT器件

Similar Documents

Publication Publication Date Title
CN105140270B (zh) 一种增强型hemt器件
US10304931B2 (en) Polarization-doped enhancement mode HEMT
JP6999197B2 (ja) 複合バリア層構造に基づくiii族窒化物エンハンスメント型hemt及びその製造方法
CN102881716A (zh) 一种场致隧穿增强型hemt器件
CN102386223B (zh) GaN高阈值电压增强型MOSHFET器件及制备方法
CN105118859A (zh) 一种隧穿增强型hemt器件
CN109004017B (zh) 具有极化结纵向泄漏电流阻挡层结构的hemt器件及其制备方法
CN102945859A (zh) 一种GaN异质结HEMT器件
CN102856373B (zh) 高电子迁移率晶体管
CN102280494A (zh) 常关型场控沟道GaN异质结二极管
CN102856374B (zh) 一种GaN增强型MIS-HFET器件及其制备方法
CN102082176A (zh) GaN增强型MISFET器件及其制备方法
CN107482059A (zh) 一种GaN异质结纵向逆导场效应管
CN104393040A (zh) 一种具有荷电介质的hemt器件
CN103872145A (zh) 一种GaN异质结功率二极管
CN105304707A (zh) 一种增强型hemt器件
CN107623032A (zh) 一种新型的GaN异质结场效应晶体管
CN105576020A (zh) 具有纵向栅极结构的常关型hemt器件及其制备方法
CN111370470B (zh) 氮化镓mis栅控混合沟道功率场效应晶体管及其制造方法
WO2021237901A1 (zh) Iii族氮化物凹槽栅常关型p沟道hemt器件及其制作方法
CN111081763B (zh) 一种场板下方具有蜂窝凹槽势垒层结构的常关型hemt器件及其制备方法
CN107393954B (zh) 一种GaN异质结纵向场效应管
CN102709322B (zh) 高阈值电压氮化镓增强型晶体管结构及制备方法
CN205177852U (zh) 基于硅衬底的hemt器件
CN107527952B (zh) 一种Nano-Fin栅结构的混合阳极二极管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160203