CN105303164A - 用于检验和鉴别物理对象的系统、方法和计算机可访问介质 - Google Patents

用于检验和鉴别物理对象的系统、方法和计算机可访问介质 Download PDF

Info

Publication number
CN105303164A
CN105303164A CN201510614058.XA CN201510614058A CN105303164A CN 105303164 A CN105303164 A CN 105303164A CN 201510614058 A CN201510614058 A CN 201510614058A CN 105303164 A CN105303164 A CN 105303164A
Authority
CN
China
Prior art keywords
exemplary
micro
image
physical object
speckle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510614058.XA
Other languages
English (en)
Inventor
阿什列什·夏尔马
拉克希米纳拉亚南·苏布拉马尼安
埃里克·布雷韦尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New York University NYU
Original Assignee
New York University NYU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New York University NYU filed Critical New York University NYU
Publication of CN105303164A publication Critical patent/CN105303164A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/698Matching; Classification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/36Textiles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/80Recognising image objects characterised by unique random patterns
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon
    • G07D7/202Testing patterns thereon using pattern matching
    • G07D7/2033Matching unique patterns, i.e. patterns that are unique to each individual paper
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09CCIPHERING OR DECIPHERING APPARATUS FOR CRYPTOGRAPHIC OR OTHER PURPOSES INVOLVING THE NEED FOR SECRECY
    • G09C1/00Apparatus or methods whereby a given sequence of signs, e.g. an intelligible text, is transformed into an unintelligible sequence of signs by transposing the signs or groups of signs or by replacing them by others according to a predetermined system
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09CCIPHERING OR DECIPHERING APPARATUS FOR CRYPTOGRAPHIC OR OTHER PURPOSES INVOLVING THE NEED FOR SECRECY
    • G09C5/00Ciphering apparatus or methods not provided for in the preceding groups, e.g. involving the concealment or deformation of graphic data such as designs, written or printed messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3271Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response
    • H04L9/3278Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response using physically unclonable functions [PUF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/12Details relating to cryptographic hardware or logic circuitry

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Textile Engineering (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Image Analysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Storage Device Security (AREA)

Abstract

提供了用于检验和鉴别物理对象的系统、方法和计算机可访问介质。可以提供通过如下步骤来鉴别物理对象的非数字介质的示例性方法、程序、系统、方法和计算机可访问介质:接收至少一个有标记或无标记区域的视频的至少一个图像,并且将至少一个有标记或无标记区域的第一显微图像或视频与非数字介质有关的至少一个第二显微图像或视频进行比较,以确定第一显微图像或视频与第二显微图像或视频之间的相似性是否匹配或超过预定量。

Description

用于检验和鉴别物理对象的系统、方法和计算机可访问介质
本专利申请是国际申请日为2012年3月19日、国家申请号为201280020736.4、发明名称为“用于检验和鉴别物理对象的系统、方法和计算机可访问介质”的专利申请的分案申请。
相关申请的交叉引用
本申请涉及并要求于2011年3月17日提交的美国专利申请序列号61/453.916的优先权,其全部公开内容通过引用并入本文中。
技术领域
本公开内容涉及用于使用例如显微图像和视频来检验和鉴别物理对象的系统、方法和计算机可访问介质的示例性实施方案。
背景技术
纹理的识别和分类多年来一直是计算机图形学中的研究领域。CUReT数据库列出了超过60种的纹理样本,并且试图推断辐照度、光照方向,并且提供纹理的精确BRDF测量,根据精确地确定纹理的特性的目标,使得它们能够以更有效的方式真实地呈现纹理、识别纹理、以及对纹理分类。
已经存在有若干公开,已讨论对纹理的散射特性例如双向纹理函数、材料中的次表面散射和辐射传输的研究。一些工作研究了散射介质中的光传输,并且试图从照片来重构现场。已经实现来自显微镜的三维(“3D”)CT扫描的布、织物的体积透视图,并且使用基于凝胶的设备来执行显微镜3D结构透视图。使用扫描电子显微镜来研究在亚微米水平的材料的结构,并且实现了根据来自对象的镜面反射的细观结构的三维重构。近来,研究人员提出了使用纸的物理特性的低维表示形式来识别纸的一种技术。但是,它们的技术仅适用于纸而并没有扩展到其它材料。
在世界各地的几个国家中,假冒商品和文件是重大问题。假冒艺术品、纸、文件、服装、塑料卡(例如信用卡、借记卡、ID卡)和汽车零件的估计市场损失超过1,000亿美元。但是,上述公开没有描述例如在微观水平下来单独地识别纹理,也不是一种独特地识别每片或多片纹理的低成本的技术、系统和设备。
因此,本公开内容的目的中的至少一个目的是要解决这些缺点和问题中的至少一些。
发明内容
本公开内容的示例性实施方案涉及可以利用指纹识别机制和/或能够测量微观纹理——例如,当部分相干光落在对象上时,散射光在被投射到屏幕上时可产生明区和暗区,从而可以表示依赖于底层介质的结构的图案——的程序的系统、方法和计算机可访问介质。如此,根据本公开内容的某些示例性实施方案,能够例如基于纹理的物理特性来独特地识别每个纹理。
本公开内容的示例性实施方案可以包括根据本公开内容的示例性方法、程序、计算机可访问介质和系统,所述示例性方法、程序、计算机可访问介质和系统包括:接收物理对象的至少一部分的至少一个第一显微图像;接收物理对象的所述至少一部分的至少一个第二显微图像;以及将所述至少一个第一显微图像与所述至少一个第二显微图像相比较,以确定基于至少一个描述符(descriptor)的相似性量度是否在预定的范围或阈值内。
在某些示例性实施方案中,物理对象的类型可以是织物、塑料、纸、帆布、玻璃、金属、金属复合材料或合金中的至少一种。在某些示例性实施方案中,物理对象具有特定的表面粗糙度或光散射特性。在某些示例性实施方案中,物理对象具有轮廓或曲率。在某些示例性实施方案中,处理配置(arrangement)是附接至显微镜装置的手持式计算设备或手机的一部分。在某些示例性实施方案中,所述至少一个第一显微图像包括纹理散斑图案,或者是所述物理对象的区域的视频的一部分。
某些示例性实施方案还可以包括:使用对象不变的GaborPCA程序,将所述至少一个第一显微图像转换成第一低维表示形式并将所述至少一个第二显微图像转换成第二低维表示形式;以及通过比较第一低维表示形式与第二低维之间的特定度量距离是否在预定量范围内来确定相似性量度,其中所述预定量用数学函数确定。
某些示例性实施方案还可以包括:使用对象不变、尺度(scale)和旋转不变的梯度直方图特征检测器,将所述至少一个第一显微图像转换成第一数据并将所述至少一个第二显微图像转换成第二数据;以及通过确定第一数据和第二数据之间的特定度量距离是否在预定量范围内来确定相似性量度,其中所述预定量用数学函数确定。
在某些示例性实施方案中,所述至少一个第一显微图像是从标记区域提取的,并且其中所述标记区域是物理对象的内容。在某些示例性实施方案中,标记区域对应于用户或对象身份(identity)。在某些示例性实施方案中,所述至少一个第一显微图像是从界标附近的区域提取的,并且其中所述界标是所述物理对象的内容。在某些示例性实施方案中,所述至少一个第一显微图像是从无标记区域提取的。在某些示例性实施方案中,所述至少一部分是基于手动跟踪来选择的,或者是通过使用计算配置(computingarrangement)在参考坐标系中自动跟踪来选择的。
在某些示例性实施方案中,计算配置被设置在固定设备或手持式设备中。在某些示例性实施方案中,所述至少一个第一显微图像是当所述计算配置在预定义区域中移动时提取的,并且其中所述预定义区域是基于坐标参考系跟踪系统或手动操作来计算的。在某些示例性实施方案中,所述至少一个第一显微图像是以不接触所述物理对象表面的非侵入性方式提取的。在某些示例性实施方案中,计算配置具有特定配置,其中基于预定量来固定与计算配置配合的入射光源的角度和距离,其中基于预定量来固定与入射光源配合的捕获屏幕或镜头的角度和距离,并且其中所述预定量是基于数学函数的。
在某些示例性实施方案中,光源为提供多谱段(multispectral)电磁辐射的可见光、红外光、紫外光或它们的组合中之一。在某些示例性实施方案中,入射光源装置与偏振器配合。在某些示例性实施方案中,入射光源装置被设置在附接至显微镜的移动电话中,并且其中所述显微镜是手持式显微镜或手持式通用串行总线显微镜。在某些示例性实施方案中,入射光源装置被设置在附接至机器人臂(roboticarm)或计算机数值控制器的显微镜中。在某些示例性实施方案中,所述至少一个第一显微图像是从老化的、篡改的(tampered)、弄皱的或浸泡的所述物理对象接收的。
某些示例性实施方案还可以包括:从所述至少一个第一显微图像的所述至少一个描述符生成可以被印刷、被写入、被嵌入或被压印在物理对象上的低维表示形式;从所述至少一个第一显微图像的所述至少一个描述符生成低维表示形式;以及将所述低维表示形式与所述被印刷、被写入、被嵌入或被压印在物理对象上的低维表示形式进行比较,以校验相似性是否在预定量范围内,从而建立对物理对象的鉴别。
在某些示例性实施方案中,通过使用秘密密钥加密技术(secretkeycryptographytechnique)或公开秘钥加密技术(publickeycryptographytechnique)将物理对象鉴别为可信源。在某些示例性实施方案中,所述至少一个第一显微图像和所述至少一个描述符被存储在在线存储库中。在某些示例性实施方案中,从沿着物理对象表面的第一曲线提取一个或更多个显微图像,并且其中所述计算配置的移动被设置成沿着第二曲线,并且第二曲线类似于第一曲线,并且是使用数学函数或手动操作预先确定的。在某些示例性实施方案中,第二曲线是从数学函数或者从用户特定动作或信号(signature)导出的。
某些示例性实施方案还可以包括:通过计算配置提取包括所述至少一个第一显微图像在内的多个显微图像,其中所述多个显微图像从物理对象表面的基本上整个区域得到。在某些示例性实施方案中,基于所述至少一个第一显微图像的所述至少一个描述符的计算集(computedset)来匹配所述至少一个描述符。
某些示例性实施方案可以包括通过如下步骤来执行对物理对象的检验和鉴别:将计算配置指向预定区域,并且提取特定的显微图像;以及处理所述至少一个第一显微图像中的一个或更多个第一显微图像以计算所述至少一个描述符,以便于使用距离度量来将存储的描述符与所计算的至少一个描述符进行比较。
在某些示例性实施方案中,所述至少一个第一显微图像和所述至少一个第二显微图像每个均包括如下至少之一:静止图像和视频。在某些示例性实施方案中,所述至少一个描述符包括至少一个局部描述符或局部描述符。
在结合所附权利要求来阅读本公开内容的实施方案的以下详细描述时,本公开内容的这些和其它目的、特征和优点将变得明显。
附图说明
在考虑了结合所附的示例性附图和权利要求的以下详细描述时,本公开内容的上述的和其它示例性目的将会明显,其中贯穿全文,相同的附图标记指代相同的部件,并且其中:
图1为可以与本公开内容的某些示例性实施方案一起使用的附接至移动电话的手持式显微镜的示意图;
图2(a)和图2(b)为根据本公开内容的某些示例性实施方案的、其中底部使用用作参比标记的不褪色墨来标记的微观纹理图像的示意图;
图3(a)为示例性的微观纹理图像的匹配的示意图,其中暗线表示匹配描述符;
图3(b)为在斜率差的约80%可能不小于±的情况下的微观纹理的不匹配的示意图;
图4(a)为对关于帆布的大量的微观纹理的局部描述符程序的评估的图示示意图,其中x轴提供匹配点或描述符的数量,而y轴提供正确匹配百分比;
图4(b)为对关于纸的大量的微观纹理的局部描述符程序的评估的图示示意图;
图4(c)为对关于布的大量的微观纹理的局部描述符程序的评估的图示示意图;
图4(d)为对关于玻璃的大量的微观纹理的局部描述符程序的评估的图示示意图;
图4(e)为对关于金属的大量的微观纹理的局部描述符程序的评估的图示示意图;
第4(f)为对关于塑料的大量的微观纹理的局部描述符程序的评估的图示示意图;
图5为与被放大的示例性的16×16邻域一起的微观纹理图像的示意图;
图6为可以表示任何表面的3D截面的示例性立方体的示意图;
图7为亚麻布的分数汉明距离(FractionalHammingDistance)的示例性表的示意图;
图8为在不同水平上具有其本身不同情况的亚麻布散斑的分数汉明距离的示例性表的示意图;
图9(a)为在手机上拍摄的散斑图像的示意图;
图9(b)为在右侧所示的紧致码的QR码的示意图;
图10(a)至图10(t)为使用根据本公开内容的系统的示例性实施方案所捕获的散斑的示意图;
图11(a)至11(l)为不同材料的示例性分数汉明距离的图示示意图;
图12(a)至12(i)为在关于材料的散斑图像之间的示例性成对欧氏距离的图示示意图;
图13为根据本公开内容的某些示例性实施方案的具有两种运动程度的示意图:垂直(x,y)和水平(x,z)的示例性关节臂,其中在其左部处看到旋转头设置有合适的显微镜;
图14是根据本公开内容的方法的示例性实施方案的流程图;
图15是根据本公开内容的系统的示例性实施方案的框图;
图16为100等份的光学测微计等级放大的在400倍下的示例性Veho数码显微镜的视场的示意图,其中各个等份之间的距离为10微米并且各个划分标记的大小为3微米;
图17为在使用本公开内容的系统、方法和计算机可访问介质的示例性实施方案的某些实验中使用的Veho数字显微镜的示例性视图的示意图;
图18为配备有可以用于本公开内容的系统、方法和计算机可访问介质的示例性实施方案中的显微镜的示例性的四个自由度机械臂的示意图;
图19为将可以使用本公开内容的系统、方法和计算机可访问介质的示例性实施方案的显微镜安装至其头部的示例性的光栅扫描器的示意图。
在所有附图中,除非另有说明,使用相同的附图标记和字符来表示所示的实施方案的相同特征、元件、部件或部分。此外,虽然现在将参照附图详细描述主题发明,但是这因此结合说明性实施方案和所附权利要求来实现。旨在可以在不脱离本主题公开内容的真实范围和精神的情况下对所描述的实施方案作出改变和修改。
具体实施方案
现在将至少在一定程度上参照附图来描述可以通过根据本公开内容的系统、方法和计算机可访问介质的示例性实施方案来实施的方法学和程序的示例性实施方案。
示例性微观纹理
所捕获的示例性微观纹理图像可以是介质的基本物理特性和通过介质的光散射的函数。在微观水平下光散射可能是复杂的,因为其依赖于多种因素,例如介质的密度(例如,光密度)、均匀性(例如,各向同性或各向异性散射)、表面粗糙度、照射和照明方向(例如,入射光的方向)。
归因于各种因素,示例性微观纹理可以不同于普通宏观图像或照片,例如:
i)介质中的复杂的多散射产生介质散斑、阴影和/或相互反射中不存在的伪像;
ii)图像可以基于介质的反射或漫反射特性而变化;以及
iii)归因于纹理的微观尺寸(例如,约1微米至2微米),可能难以反复获得或记录相同的纹理。
纹理的CUReT数据库可以提供庞大的真实世界纹理集,但是这些可能处于宏观水平,并且它们的特性(例如,灰度级直方图)可能取决于照射和照明方向。处于宏观水平的纹理可以以某种形式以双向纹理函数(BTF)为特征,双向纹理函数可以提供一种确定和/或计算和模拟给定照射和照明方向的纹理的方法。逆光传输可以试图去除阴影、相互反射和其它对图像的屏蔽,并且基于镜面反射来重构细观结构。本公开内容的示例性实施方案可以在微观水平下分析、识别和比较特有的纹理,其中光可以经过多重散射,图像可以包含诸如阴影、散斑或相互反射等伪像。
提取示例性微观纹理
示例性纹理图案可能对照明方向敏感,所以可以要求光源在相同的位置以获得通过各试验的可重复的纹理图案。为了实现这一点,使用本公开内容的某些示例性实施方案,可以使用显微镜例如消费等级显微镜,例如具有400倍的放大倍率的示例性Veho发现手持式显微镜,其具有在固定位置中的内置LED,例如如图17所示。光源可以由以环状方式固定在显微镜镜头附近的8个等距LED组成。当光照射介质时,光可经历散射,并且散射光可以通过显微镜读出。由于纹理图像能够取决于光源的角度和方向,所以可以在进行任何试验或实验之前完成校准。图2(a)至图2(b)示出了沿固定取向提取图像的示例性的基于标记的方法。可以使用在图像的底部上看到的墨来作为提取图像的参比。400倍的显微镜的视场可以为约0.95毫米,所以使用本公开内容的某些示例性实施方案,可以使用物镜测微计等级来校准,例如如图16所示。所述等级可以包括例如在约1毫米的范围内的100等份,其可以给出约0.01mm或10微米的最小计数。(例如,每个等份可以为10微米)。假定显微镜CMOS或该示例性实施方案的原始图像分辨率为640个像素×480个像素,每个像素可以对应于约1.4微米。为了给出尺度的概念,人的红血球的大小为约6微米至8微米。当在这样的分辨率下操作时,校准可以是重要的,并且使用本公开内容的某些示例性实施方案,可以在执行任何实验之前使用测微计等级来将显微镜调焦至例如400倍。
使用本公开内容的某些示例性实施方案以将显微镜移动到特定位置,可以使用例如如图13所示的关节臂131。关节臂131可以包括附接至其头部的显微镜132。关节臂可以被调节到预定义的位置,并且可以放置在靠近介质的地方以从各个位置提取纹理。可以使用标记笔来预定义该提取位置。这些标记可以是重要的,因为根据某些示例性实施方案,可以在微观水平进行操作,关节臂的位置的轻微移位可以在不同的位置定位显微镜。因此,基于本公开内容的某些示例性实施方案,可以利用基于标记的方法以获得正确的位置。可以使用在图像的底部上看到的墨作为参比以提取图像。一旦位置被固定,显微镜可以保持在例如400倍,并且可以提取图像。关节臂131可以允许示例性实施方案来不仅从平坦表面/水平表面,而且也可以是从3D(三维)表面例如雕塑、陶瓷、古玩等提取图像,至少部分地归因于其旋转头。
在其它示例性实施方案中,可以将例如如图18所示的例如4自由度机械臂133与安装至其旋转头的显微镜132一起使用,以从各种对象扫描并读取微观纹理。该示例性机械臂可以有标记或无标记进行操作以读取表面的区域,并且坐标系可以基于固定的或相对的参考系技术,该参考系技术可以类似于坐标测量机制。
根据某些示例性实施方案,可以利用如图19所示的光栅扫描器134来线性地读取对象的表面上的微观纹理以例如识别纹理散斑图案。安装至光栅扫描器134的头部的示例性显微镜131,例如如图19所示的CNC路由器或雕刻机,可以用于读取材料的表面的显微图像。类似于机械臂133,使用本公开内容的某些示例性实施方案,可以需要或不需要任何标记来实施以扫描期望的区域,因为CNC机器的可重复性和精确度可以将其本身精确地定位在表面的预定区域中。
在本公开内容的另一个示例性实施方案中,可以包括用于以移动方式提取微观纹理的移动设备和移动设备附件。例如,根据一个示例性实施方案,可以包括附接至显微镜例如具有100倍的较低放大倍率的PC-微显微镜的手机。显微镜可以将其本身附接至定制的塑料框架,该塑料框架可以附接至手机相机的背面,使得显微镜目镜被对准至例如如图1所示的手机相机。纹理图像提取的过程可以与关节臂版本相同,但是图像的提取可能比关节臂方法需要更多时间,因为在不具有固定装置(例如关节臂)的情况下移动并聚焦到特定位置可能花费更长时间。
根据本公开内容的另一个示例性实施方案,可以使用任何数量的照明技术。例如,使用本公开内容的某些示例性实施方案,可以基于前向照明、或源(例如光源)和镜头处于同一平面的照明来提取纹理。还可以基于透射照明来评估来自其它材料例如纸的纹理,例如当光穿过结构并且(光)源和镜头处于不同平面中时。根据使用本公开内容的某些示例性实施方案,可以以例如如下方式来提取各种示例性材料的纹理。对于帆布、纸、塑料、金属和不同类型的布,使用本公开内容的某些示例性实施方案,可以使用标记来放大和聚焦到特定点上。对于玻璃,可以使用制造商的标志,因为该标志可以被蚀刻,其可以同时用作提取纹理的标记和位置。可替代地,本文中所描述的示例性实施方案可以用于其它的示例性材料,或者可以结合本公开内容的实施方案使用其它方法来独特地识别示例性材料。
示例性局部描述符和匹配
根据本公开内容的示例性实施方案的局部描述符程序可以是尺度不变特征变换程序的固定尺度、固定取向版本。可以使用例如高斯模糊函数来平滑微观纹理图像,其中模糊因子σ=跨越5个连续图像。可以在这些图像之间执行高斯差分(DoG),并且使用本公开内容的某些示例性实施方案,则可以获得4DoG图像。没有必要计算纹理的尺度空间表示,因为在某些示例性实施方案中,可以每次使用相同的显微镜配置(例如,分辨率、放大率等)来提取纹理。一旦获得DoG图像,可以通过求出极大值/极小值(例如,通过比较与关于4DoG图像的每个像素邻近的8个像素)来检测到关键点。
可以识别初始关键点,并且可以去除低对比度的关键点和不良的局部关键点。一旦庞大关键点集被确定,就可以确定围绕关键点附近的梯度取向的直方图。与在某些示例性实施方案中可以计算主取向的SIFT(尺度不变特征变换)不同,可以跳过该步骤并且可以直接计算关键点周围的取向梯度的直方图。该示例性方法的基本原理包括以下内容。在纹理的初始记录期间,可以(例如基于标记)确定用于提取纹理的特定取向。一旦关于特定纹理的取向被固定,该信息可以被用于随后的试验。因此,可以不需要计算关键点的主取向。可以关于关键点周围的16乘16(16×16)区域计算梯度的直方图,每个直方图可以由8bin组成,并且128个直方图值为描述符的向量。
示例性图像匹配:给定两个微观纹理图像,确定两个微观纹理是否对应于相同表面的整个匹配过程可以涉及特定步骤。匹配描述符:根据某些示例性实施方案,可以确定和/或计算用于每个图像的描述符的列表,并且详尽地比较两个图像的描述符以确定匹配描述符。例如,如果描述符之间的欧氏距离在阈值t内,则两个描述符可以被定义为匹配。假定D1=d1、d2…dn是一个图像的描述符的集合,而假定D2=δ1、δ2…δn是另一个图像的描述符的集合(例如,假定每个图像具有相同数量的描述符)。为了匹配D1和D2,可以确定每对描述符di、δj之间的欧氏距离,然后,如果每对之间的欧氏距离小于固定的阈值t,则描述符可以被匹配。
斜率匹配:使用本公开内容的某些示例性实施方案,可以计算两个相应匹配描述符的斜率和各对匹配描述符之间的斜率差。如果例如斜率差的80%在阈值p内,则纹理图像可以被认为是匹配的,否则其可以被定义为不匹配。假定K=(k1、k2…kn)是n个匹配描述符的所有斜率的集合,其中每个ki为两个匹配描述符的斜率。根据本公开内容的某些示例性实施方案,可以计算所有斜率的差Diff=(k1-k2)、(k1-k3)…(kn-1-kn),并且校验Diff的最小百分比(例如80%)是否小于±p,其中p为阈值。如果Diff的最小百分比(例如80%)小于±p,则根据本公开内容的某些示例性实施方案,可以认为图像被匹配,否则其可以被认为不匹配。参照图3(a)中所示的示例,线可以对应于匹配描述符对。这些示例性线的斜率的80%在±p范围内,因此它们是匹配的。在图3(b)中,斜率差的小于80%位于±p范围内,因此它们不匹配。
在某些示例性实施方案中,基于斜率检测的纹理匹配可以进行操作,因为:i)在某些示例性实施方案中,可以预先获知硬件设备(例如,显微镜、关节臂)的设置,这可以使得某些示例性实施方案确定可能已经发生的变换的类型;ii)某些示例性实施方案获得初始图像作为参比,同时提取当前图像。由于该示例性信息,根据本公开内容的这些示例性实施方案,可以对设备进行调节以在正确的位置和取向中记录图像。基于描述符的位置结合斜率检测的描述符之间的最近的相邻对应关系可以导致稳健方法以匹配两个微观纹理。该技术还可以在非理想条件下例如当介质经过篡改时有用。
示例性评估
使用本公开内容的某些示例性实施方案,可以评估例如来自从帆布、纸和布至玻璃、塑料、木材和金属的材料的2500种不同类型的微观纹理。可以在如下四个示例性条件下评估帆布、纸和布:理想(ideal)、浸泡、弄皱、老化。可以在如下四个示例性条件下评估玻璃、塑料、木材和金属:理想、浸泡、刻划、老化。使用本公开内容的某些示例性实施方案,可以检查50种不同类型的帆布。对于每种帆布,使用本公开内容的某些示例性实施方案,可以提取15个纹理,该15个纹理可以总计高达750个纹理图像。对于纸,使用本公开内容的某些示例性实施方案,可以检查例如4种类型的纸,并且从每种纸提取例如200个纹理,总计高达800个纹理图像。使用本公开内容的某些示例性实施方案,可以检查15种不同的布料,并且提取450个纹理图像。使用本公开内容的某些示例性实施方案,可以检查三种类型的金属,并且从每种类型提取50个图像,从而总计高达150个图像。同样地,在本公开内容的某些示例性实施方案中,可以检查三种类型的塑性材料,并且提取150个图像。使用本公开内容的某些示例性实施方案,可以检查两种类型的玻璃材料(例如,每种类型5个),并且从它们提取100个图像。最后,使用本公开内容的某些示例性实施方案,可以检查七种类型的木材,并且从它们提取100个微观纹理。在以上概述的示例性检查中的每个检查中,使用本公开内容的某些示例性实施方案,可以提取两个图像(例如,具有相同的表面)。这些示范性检查的总数总计高达2500个不同的微观纹理,在每次试验中使用两个图像。该结果示出在图4(a)至图4(f)中。
示例性匹配准则可以基于例如如上所述的斜率匹配技术。如果在所有关键点的集合中关键点与另一关键点的欧氏距离是至少t,则该关键点可以被认为匹配。使用本公开内容的上述的示例性实施方案,在示例性评估中可以使用t=0.8。如果被匹配的关键点的斜率差的最小百分比(例如80%)在p范围内,则图像可以被认为匹配(例如,正确匹配)。此处,取p=±0.2。对于评估,可以将每个纹理图像与数据集中的所有其它纹理图像进行比较。可以在50个至100个匹配关键点的范围内执行斜率检测匹配。然后,可以利用相应的匹配关键点值来将整个数据集中的正确匹配百分比制成表并且进行绘制。
为了模拟非理想条件例如弄皱、浸泡、刻划和老化,使用本公开内容的某些示例性实施方案,可以利用材料进行以下实验。对于纸,纹理附近的区域可以被涂污,这可以改变例如约10%的微观纹理图案。对于塑料卡,可以应用真实世界条件,例如通过多次触摸微观纹理区域。示例性微观纹理图案的变化可以为约5%至8%。对于帆布和织物,可以模拟在真实世界设置中如何处理织物,例如伸展纹理被提取的区域、将其折叠等。这改变了例如约10%至12%的原始纹理。对于玻璃表面,可以将水灌注在其上,和/或可以清洗该区域,并且可以从制造商的标志提取微观纹理图案。纹理图案可以改变例如约5%。对于木制表面,微观纹理图案附近的区域可以被涂污。微观纹理图案的变化可以为约10%。对于金属和合金,该材料可以在真实世界设置中进行处理,然后提取纹理。纹理的变化可以为例如约5%至10%。在一个示例性实施方案中,使用手机组合件,额外的100个纹理图像可以来自两个不同的显微镜和500个纹理。
使用本公开内容的某些示例性实施方案,可以考虑50种不同类型的平纹编织、中等纹理和精细纹理的棉布和亚麻帆布。来自ArtFixTM的9种帆布、来自ClaessensTM的13种帆布、来自CarvaggioTM的28种帆布。这些示例性帆布可以被艺术家主要用于油、丙烯酸类和其它乳化类型的绘画。对于每种类型的帆布,提取15个图像,总计高达750个纹理图像。对于浸泡,对于例如50个上述匹配关键点的匹配百分比可能降低。这可能归因于帆布的纤维特性;在浸泡之后,一些纤维可以从它们的原始位置转移。对于弄皱,匹配百分比可以呈线性地降低,但是例如与浸泡比较,严重程度可能较小。可能难以在微观水平下弄皱帆布。在弄皱示例性帆布之后,帆布可以伸展/回到其早期形式。对于老化,匹配百分比的降低可以接近理想。来自这些示例性实验和示例性实施方案的结果示出在图4(a)中。
在示例性分析中,本公开内容的示例性实施方案考虑四类纸:(a)A4尺寸的打印纸;(b)薄的笔记本样式纸(指定的笔记本);(c)厚的打印纸海报样式纸;(d)棕色装订纸。使用本公开内容的某些示例性实施方案,可以评估例如800张这些种类的纸。在理想条件下,匹配百分比可以为100个至80个关键点,那么匹配百分比可以稍微降低。在浸泡条件下,弄皱和老化可以在结果上有少许变化。当示例性纸区域被弄皱时,如果该区域损坏读数被取出的纸表面,然后在接下来的试验中的读数可能失效。因此,在弄皱条件下,示例性匹配百分比结果可能较低。在某些示例性实施方案中,浸泡没有改变纸区域的结构,但是观察到照明变化。对于示例性老化测试,示例性纸在自然日照中保持约一个月,并且没有观察到纸结构的变化。示例性结果示出在图4(b)中。
示例性实施方案和示例性评估可以包括不同类型的织物,例如羊毛、尼龙、聚酯纤维、粗斜纹布、棉布、毛巾布、丙烯酸类和各种混合物例如如约49%尼龙和51%金属、87%尼龙和13%氨纶、35%羊毛和65%人造丝。在理想条件下,使用本公开内容的某些示例性实施方案,对于50个关键点可以获得例如接近100%或者甚至100%的结果,但是在这之后,对于100个关键点,示例性结果可以迅速降低低于80%。布型材料可以承受最低浸泡,其可以是基于纤维材料的典型特性。对于50个关键点,匹配百分比可以为80,但是对于100个关键点其在例如小于40处结束。在弄皱条件下,对于50个关键点,匹配百分比可以为约90,而对于100个关键点,匹配百分比可以降低到低于50。在示例性老化条件下,变化可以最小。对于50个关键点,匹配百分比可以为约95,而对于100个关键点,匹配百分比可以降低到低于70。示例性结果示出在图4(c)中。
示例性实施方案和示例性评估可以包括两种类型的例如消费等级的玻璃材料。两者都可以是具有蚀刻在玻璃中的制造商的标志的玻璃杯。示例性评估可以包括每种类型(例如,总共10种)的5块玻璃,并且可以从每块玻璃提取10个读数,从而总计高达100个纹理图像,这些标志可以用作从特定区域提取纹理图案的参比点。对于50个关键点,匹配百分比可以为100,而对于100个关键点,匹配百分比可以降低到约90。在浸泡和刻划条件下,匹配百分比可以开始于100,而对于100个关键点,匹配百分比降低约85。示例性结果示出在图4(d)中。
示例性实施方案和示例性评估可以包括三种类型的金属:刷金属,钢和铝复合材料。示例性评估可以从它们提取例如150个微观纹理。在示例性的理想和老化情况下,可以存在有小的变化。对于在两种条件下的50个至70个关键点,匹配百分比可以为100,而对于100个关键点,匹配百分比可以降低到约90。在浸泡和刻划条件下,对于50个关键点,匹配百分比可以为约100,而对于100个关键点,匹配百分比可以减少到约75至80。示例性结果示出在图4(e)中。
示例性实施方案和示例性评估可以包括例如三种类型的塑料卡:两个PVC卡和一个细粒度的塑料外壳表面。使用本公开内容的某些示例性实施方案,可以从它们提取例如150个纹理图像。示例性的塑料卡的表面粗糙度可以在非理想条件下通过试验以一致方式散射光。在理想、浸泡和老化条件下可以存在有小的变化。在示例性刻划条件下,对于50个关键点,匹配百分比可以开始于100,但是对于100个关键点,匹配百分比可以减少约75。示例性结果示出在图4(f)中。
示例性实施方案和示例性评估还可以包括例如七种不同类型的木材,例如枫木、橡木、香柏木、松木、红木、柚木、杉木,从而提取100个纹理图像。在理想、老化、刻划条件下的值是相似的。在浸泡条件下,看到降低较严重。50个关键点的匹配百分比为约80,而100个关键点的匹配百分比降低到约60。
示例性熵分析
量化微观纹理的熵可以是复杂的问题,尤其是因为本公开内容的某些示例性实施方案,与可以表示每个微观纹理的N维空间的大小比较,可以具有有限的数据集。
使用本公开内容的某些示例性实施方案,可以包括示例性分析策略,该示例性分析策略可以包括以下内容。使用本公开内容的某些示例性实施方案,可以考虑可以表示128维向量的每个关键点描述符,并且计算每个关键点的熵的下界。接下来,从微观纹理提取的关键点可以在显微图像水平被充分地间隔开,根据本公开内容的某些示例性实施方案,可以将每个关键点描述符看作是独立的。每个关键点也可以与微观纹理中的特定位置相关联,使得即使关于两个不同的微观纹理图像(例如,具有不同的表面)的两个示例性关键点匹配,它们的位置也可以不匹配。因此,使用本公开内容的某些示例性实施方案,可以通过对关键点的各个熵求和来计算纹理的熵。
可以存在有可以使该示例性的关键点的熵的计算具有挑战性的三个示例性方面。首先,相同微观纹理的多个读数可能会产生略微变化的128维向量,这在熵的计算中可以根据需要予以考虑。其次,使用本公开内容的某些示例性实施方案,在例如128维空间中有可能缺少足够的数据点来表征关键点的熵。此外,在示例性的128维空间内,示例性实施方案可能不会具有对维度间的相互关系的清楚理解。
为了解决第一个问题,使用本公开内容的某些示例性实施方案,可以使用量化步骤/程序,其中每个128维的关键点可以被转换成量化的128维向量,其中相同表面的多个微观纹理读数可以映射到相同向量。为了解决第二个问题,使用本公开内容的某些示例性实施方案,可以将每个关键点细划分成16个8维向量(例如,对应于4×4的正方形表示),其中每个8维向量可以对应于纹理读数内的较小区域。为了解决第三个问题,根据本公开内容的某些示例性实施方案,可以将它们本身限制在关键点的四个角落,并且计算四个角落的联合熵,以表明对应于四个角落的8维向量具有它们之间的最小相关性。该示例性程序可以包括许多单个的示例性步骤/子程序,所述许多单个的示例性步骤/子程序包括以下讨论的示例性步骤/子程序。
示例性量化
例如,相同表面的多个纹理读数可以略微变化。示例性匹配程序可以使用欧氏距离t来确定两个关键点是否匹配。针对每个维度,该匹配算法的固定版本可以设置为的边界。另外,由于对于熵计算而言128维空间可能太大,使用本公开内容的某些示例性实施方案,可以将它们本身限制到对应于关键点的每个4×4区域的8维向量。例如,令vi为8维向量。使用本公开内容的某些示例性实施方案,可以量化向量vi
q i = v i / t 128 ,
并且将该值四舍五入到最接近的整数。
示例性的量化向量的熵
一旦在某些示例性实施方案中提供量化向量q,可以计算该量化向量的熵。对于8维向量,该量化向量的状态空间可以为例如s8,其中s可以是所有qi上的最大量化值。作为示例性数据集的一部分,可以存在有例如约2500个图像,每个图像具有至少1000个关键点,其可以总计高达2,000万个8维向量。使用本公开内容的某些示例性实施方案,可以计算关于该数据集的向量qi的概率,并且如下来计算其熵:8维向量qi的概率可以由下式给出:
Pi(qi)=F(qi)/ΣF(q1,q2,...,qn)
其中F(qi)是qi的频率,ΣF(q1,q2,...,qn)是所有qi的频率的和。那么qi的熵可以如下来计算:
H i = - Σ i = 1 s 8 P i log 2 ( P i )
示例性局部描述符程序可以从局部区域提取特有的特征。这样的示例性程序可以使用关键点周围的16×16邻域来计算直方图梯度。这些示例性的16×16区域中的每个4×4区域可以对应于8维向量。当计算梯度直方图时,可以使用相邻像素来计算梯度和取向。由于该计算,相邻的4×4区域可以彼此依赖,这表示相邻区域的8维向量可以被高度相关。使用本公开内容的某些示例性实施方案,可以考虑与例如如图5所示的四个角落的4×4区域相对应的8维向量。图5示出了与局部的16×16邻域重叠的以及示例性的16×16邻域被放大的示例性微观纹理图像,以示出四个示例性角落的4×4区域,该4×4区域的8维向量可以用于熵计算。这些向量应当呈现出它们之间的最小相关性。示例性角落的4×4区域可以对应于例如处于物理水平的6×6微米区域,在四个区域中的每个区域之间具有例如11微米的最小间隔。这些示例性区域可以在微米水平空间上分离。因此,通过假定区域在物理水平是不相关的,使用本公开内容的某些示例性实施方案,可以呈现出角落8维向量的非常低的相关性,因此,根据本公开内容的某些示例性实施方案可以计算这些角落向量的熵,并且给出关键点的熵的下界。16×16区域的部分区域也可以在空间上彼此分离。在微观水平下,这些空间上分离的16×16区域可以是物理上分离的区域。另外,局部描述符算法可以是固定尺度、固定取向的算法,因此可以不存在尺度或主取向之间的相关性。为了计算图像的熵,使用本公开内容的某些示例性实施方案,可以添加各个空间上分离的关键点的熵。
示例性熵计算/确定
为了计算或以其他方式确定单个示例性关键点的熵的下界,根据本公开内容的某些示例性实施方案,可以考虑4×4区域的四个角落的8维向量。示例性数据集可以包括2500个图像,每个图像具有至少1000个关键点描述符,其总计高达2,000万个8维向量。使用本公开内容的某些示例性实施方案,可以从如下获得量化的78空间:
q i = v i t 128
其中t=0.8;该t可以是用于算法中的最近邻匹配步骤的阈值。
对于量化的78空间,结果可以包括以下方面。第一4×4的8维向量(1)的熵可以为8.73,第四4×4的8维向量(4)的熵可以为8.83,(13)的熵可以为8.73,(16)的熵可以为8.82。接下来,根据本公开内容的某些示例性实施方案,可以计算16维向量(1,4)、(1,13)、(1,16)、(4,13)、(4,16)、(13,16)的联合熵,并且校验它们的组合熵是否可以是每个8维向量的各个熵的和。对于量化的716空间,其结果可以包括以下方面。(1,4)的熵可以为15.7255,(1,3)的熵可以为15.7163,(1,16)的熵可以为15.7848,(4,13)的熵可以为15.8004,(4,16)的熵可以为15.3001,(13,16)的熵可以为15.7216。
这些示例性结果表明,四个角落的8维向量中的每一个可以具有它们之间的最小相关性;例如,联合熵可以几乎等于各个熵的和。虽然可以存在有足够的数据点来计算在78空间内的熵,但是可能不存在足够的数据点来精确地计算在716空间内的联合熵。这表明,关键点的关于四个角落的8维向量呈现出最小相关性。使用本公开内容的某些示例性实施方案,可以将关键点的关于四个角落的熵近似地估计到至少30位(例如,与(1,4)和(13,16)的联合熵的和是可比较的)。因此,可以从单个关键点提取的最小熵可以为30位。假定每个图像的50个在空间上分离的描述符,本公开内容的某些示例性实施方案,可以计算微观纹理图像的熵为约30×50=1500位。这可以是熵值的下界的近似计算,以主要说明微观纹理的熵可以显着地高以保证它们作为用于指纹识别不同的物理表面的候选选择。
示例性应用:物理指纹识别的有效性包括可以被鉴别的任何物理表面的事实。一些示例性应用可以在艺术产业、金融业、高档服装行业、医药行业和汽车零部件,仅举几个示例性应用。
示例性微观纹理可以在多个位置从示例性的帆布(例如,画的背面)提取,并且作为帆布的指纹的描述符可以存储在数据库中。该指纹可以与艺术家的信息、绘画信息和其它示例性事务数据相结合或联合,以在将来鉴别艺术品。
微观纹理可以从银行支票提取,并且描述符/指纹可以存储在中央服务器中。当用户或客户例如向出纳员提出需求时,可以根据需求立刻鉴别银行支票。示例性用户可以使用示例性便携式手机显微镜组合件来读取微观纹理,计算指纹并校验该指纹是否与支票上的指纹匹配。如果该指纹与支票上的指纹匹配,则该校验不被复制或复印。该机制可以适用于任何类型的纸文件。同样地,可以对纸币采指纹。给定预定义的区域,使用本公开内容的某些示例性实施方案,可以从该区域提取微观纹理并将其存储。对用户的设备或电话使用示例性指纹识别应用的用户可以通过例如在预定义的区域提取纹理图案来检验纸币的真伪,并且计算指纹。可以将该指纹与数据库中的指纹进行比较以鉴别纸币的真伪。
在全世界范围内损失数十亿美元的冒牌服装可以是另一个应用。可以从服装材料在特定位置(例如,制造商的标志)处提取微观纹理,然后将微观纹理传递到零售店。具有手机显微镜组合件的任何人都可以鉴别该块织物。
伪造信用卡、借记卡、ID卡或任何形式的塑料卡现在可以通过本文所述的示例性实施方案进行鉴别。药物开发(制药)行业也可以使用示例性实施方案来识别假冒药品。使用本公开内容的某些示例性实施方案,可以鉴别药物瓶、塑料容器以及可以用于制药和医药领域的其它材料,从而减少假冒。在许多区域中,在汽车零部件领域中可能会存在庞大的假冒市场。本公开内容的示例性实施方案可以用于鉴别每一个备用零部件,并且可以在校验购买零部件之前在汽车店中鉴别零部件的真伪。
图9(a)和图9(b)示出了散斑图像、其紧致码、菜单选项和紧致码的相应二维QR条形码表示的实施的示例性快照。可以使用手机上的任何标准的条形码扫描仪应用来扫描示例性二维QR码以显示紧致码。可以将该紧致码与在读取散斑之后所算出的候选紧致码进行比较来进行匹配。使用本公开内容的某些示例性实施方案,可以用于:(a)产生新的散斑图像的条形码表示;(b)将新的散斑图案与散斑图案的数据库进行比较;和/或(c)分别读取新的散斑图案和条形码,并且进行比较来看它们是否匹配。
通过对散斑应用Gabor变换并且将Gabor变换的复杂部分取阈值为零,可以获得二值图像。当使用分数汉明距离来比较一对散斑图案时,,如果FHD接近0,则散斑是相似的,或者如果FHD接近0.5,则散斑不同。
对散斑图像应用Gabor变换包括:在每个水平处增加频率(f)乘以尺度因子s,其中水平包括不同的取向。例如,可以在Gabor滤波器组中选择水平5取向6图像,作为塑料中的散斑的二值图像。根据本公开内容的某些示例性实施方案可以对塑料的同一区域执行重复试验,提取散斑,应用Gabor变换并且在滤波器组中选择水平5取向6图像,因为如果对该二值图像执行FHD,则该值应当接近0,其中二值图像来自不同的试验。如果散斑来自同一区域,则它们的FHD应当接近0。
由于材料的基础结构的变化,关于材料的散斑可以发生变化。例如,从服装提取散斑并获得正确的Gabor二值图像可能不是微不足道的。例如,可能在处理面料其间发生轻微的纤维破裂,因此提取的每个散斑不仅可以包括散斑,而且包括模糊的伪(spurious)纤维。将影响降到最低的一种方式可以使用库存计算机视觉算法(stockcomputervisionalgorithm),以去除模糊的像素。但是,如果在计算手机上的指纹时,与台式电脑比较,其可以具有有限的处理能力。解决这样的问题的一种方法可以是改变每种材料的尺度s,并且校验特定水平和取向的一对相同的散斑的FHD是否接近于0。通过增加尺度s,可以包含轻微的变化和错误(例如,伪纤维)。
例如,在亚麻布(例如,图10(f))中所提取的散斑在其内部可以具有伪纤维。为了排除这样的缺点,使用本公开内容的某些示例性实施方案,可以将尺度增加1个因子,计算Gabor图像,并且将该Gabor图像与原始的Gabor图像(例如,水平5取向6,不改变尺度)进行比较。图7和图8示出了改变s对FHD的示例性效应。作为每次示例性评估,对于诸如两种材料即亚麻布和粗斜纹布等材料,可能需要改变Gabor尺度。
例如,图7示出了在不同水平上具有其本身不同情况的亚麻布散斑的分数汉明距离的示例性表,其中每个情况均可以是新的相同散斑图案测量。即使在水平5处,这两个情况可能不匹配,因为这些值接近0.5。图8提供了在不同水平上具有其本身不同情况的亚麻布散斑的分数汉明距离的示例性表。每个情况可以包括例如新的相同散斑图案测量,并且Gabor变换的尺度可以改变(例如,增加)。在水平5处,如所示出的,FHD是匹配的,因为它们接近于0。
其他示例性散斑可以示出在图10(a)至图10(t)中,图10(a)至图10(t)是使用示例性系统所捕获的散斑的示例性说明,如下:图10(a)-纸,图10(b)-半透明的PVC塑料卡,图10(c)-不透明的PVC塑料卡,图10(d)棉布,图10(e)-聚酯纤维,图10(f)-亚麻布,图10(g)-人造丝,图10(h)-49%尼龙、51%金属,图10(i)-丙烯酸类,图10(j)-87%尼龙、13%氨纶,图10(k)-尼龙,图10(l)-羊毛,图10(m)-35%羊毛、65%人造丝,图10(n)-黄麻,图10(o)-粗斜纹布,图10(p)-毛巾布,图10(q)-木材,图10(r)-第一类型玻璃,图10(s)-第二类型玻璃,以及图10(t)-97.5%锌、2.5%铜。
示例性统计特性
可以通过呈现关于22种材料的Gabor位的分数汉明距离(FHD)的直方图来示出散斑的独特性。图11(a)至图11(i)示出了其中FHD提供散斑图案的Gabor位的相应分布的图,并且示出了被比较的每一对是独特的。例如,通过利用Gabor变换比较大量的散斑并统计地估算它们的随机性来示出散斑的独特性。可以通过比较关于材料的大量的经Gabor变换的散斑的逐位平均来作出对散斑的熵的经验估计,例如如图11(j)至图11(k)所示的。图11(j)至图11(k)示出了如下示例性图:图11(a)-半透明的PVC塑料卡的FHD;图11(b)-不透明的PVC塑料卡的FHD;图11(c)-毛纺材料的FHD;图11(d)-尼龙材料的FHD;图11(e)-聚酯材料的FHD;图11(f)-粗斜纹布材料的FHD;图11(g)-棉布材料的FHD;图11(h)-毛巾布材料的FHD;图11(i)-第一类型玻璃的FHD;图11(j)-4950个不同纸散斑位与100个相同纸散斑位的分数汉明距离;图11(k)-在关于材料的200个散斑图像的Gabor位序列中被设置的位的概率;图11(l)-经Gabor变换的纸散斑的特征值的成对的欧氏距离。
图12(a)至图12(i)示出了关于材料的散斑图像之间的成对的欧氏距离的示例性图,包括:图12(a)-半透明PVC塑料卡;图12(b)-不透明的PVC塑料卡;图12(c)-毛纺材料;图12(d)-尼龙材料;图12(e)-聚酯材料的FHD;图12(f)-粗斜纹布材料;图12(g)-棉布材料;图12(h)-毛巾布材料;图12(i)-第一类型玻璃。
根据本公开内容的另一个示例性实施方案,在示例性分析中可以考虑某些示例性种类的纸,包括:例如,(a)A4大小的打印纸;(b)薄的笔记本样式的纸;(c)厚的打印海报样式的纸;(d)褐色的装订纸。例如,对于每种类型的纸,可以生成25个散斑。在每种类型中,可以从25种不同纸中的同一区域取出散斑。可以对100个散斑图像应用Gabor变换,并且可以提取它们的位序列。FHD的均值μ可以为0.4869,而标准偏差σ可以为0.0055。对于“相似”散斑或来自同一区域的散斑的100个Gabor位序列的FHD可以具有平均值=0.158,标准偏差=0.0534。相同散斑与不同散斑之间可以存在明确的划分,并且可以示出:不同散斑的FHD的分布可以位于0.5附近而相同散斑的分布可以位于0附近。
对于相同散斑,FHD分布应当优选地为零,因为这些散斑图案是相同的。但是,由于散斑的提取可能比较敏感,FHD不一定为零。利用相同的取向和照明条件提取的散斑图案可能永远不会产生相同的Gabor位序列,这是由于散斑对物理环境的微小变化的灵敏度。
在塑料条件下,根据某些示例性实施方案,例如,可以从20个半透明PVC塑料卡提取例如约20个散斑(从每个卡提取一个),并且对它们应用Gabor变换以获得Gabor位。可以在第二次试验中从PVC塑料卡提取相同或相似数量的散斑。使用FHD,可以比较从同一区域提取的散斑(例如,相同的散斑),并且可以比较从不同区域提取的散斑对(例如,不同的散斑)。对于相同散斑的平均值μ和标准偏差σ可以分别为0.1004和0.0541,这可以表明同一区域的散斑匹配,对于不同散斑的μ和σ可以分别为0.4755和0.0142,这表明不同散斑的FHD不匹配。同样地,评估不透明的PVC塑料卡,结果表明经Gabor变换的散斑的FHD在统计学上是独特的。该示例性结果示出在图11(a)和图11(b)中。
可以评估不同类型的织物例如羊毛、尼龙、聚酯纤维、粗斜纹布、棉布、丙烯酸类、尼龙和金属的混合物、以及其它。可以进行试验,并且在每次试验中,可以从30种不同的织物中的每种织物中提取20个散斑(例如,每种材料提取20个散斑,其中每个散斑可以来自相同织物的不同情况)。可以从这些材料中的每种材料中的同一区域提取散斑图案。可以应用Gabor变换,并且获得Gabor位。在第二次试验中(例如,具有两次试验),可以从每种材料的同一区域提取散斑图案。使用FHD,可以将相同的散斑(例如,从一种材料中的同一区域提取的散斑)与不同的散斑(例如,从不同材料中的同一区域提取的散斑)进行比较。羊毛、尼龙、聚酯纤维、粗斜纹布和棉布的示例性结果分别示出在图11(c)至11(h)的示例性图中。
在示例性评估中,通过示例性实施方案评估至少两种类型的消费等级玻璃材料。两者均可以是在玻璃中蚀刻有制造商的标志的玻璃杯。这些标志可以用作参比点,以从特定区域提取散斑图案。对于第一种类型的玻璃,可以进行两次试验,在每次试验中,从20种不同的玻璃材料提取20个散斑(每种材料提取一个散斑)。该示例性结果示出在图11(i)中的图表中。
使用本公开内容的某些示例性实施方案,可以评估胶合板(例如,橡木磨光)桌。可以进行两次试验,并且在每次试验中,可以从木桌中的20个区域提取20个散斑。FHD的μ和σ值示出了关于该材料的散斑可以是独特的。
另一个示例性评估可以包括从人体皮肤上的20个不同的区域提取20个散斑。至少两次试验表示来自人体皮肤的散斑的FHD的μ和σ值,并且从图来看明显的是,从人体皮肤中提取的散斑在统计学上是独特的。
使用本公开内容的某些示例性实施方案,可以评估指纹的统计特性,并且显示关于22种材料的相同和不同散斑对之间的欧氏距离的直方图。例如,可以在理想的和非理想的设置中评估所有的材料。匹配准则可以包括:如果一对指纹之间的欧氏距离小于某一阈值,则散斑可以被视为类似的,否则它们可以被视为不同的。
从图11(a)至图11(l)的示例性图来看明显的是,在相同指纹与不同指纹之间可以存在明确的划分。这表明该指纹对于物理的表面是独特的,并且可以使用本公开内容的示例性实施方案来鉴别它们。优选地,阈值可以设定为约2.5;如果任何一对指纹的欧氏距离小于或等于2.5,则其可以为匹配,否则其可以被视为不匹配。但是,在非理想条件下,相同指纹的欧氏距离可以移动2.5以上。因此,保守的阈值可以被设置为4以识别相同指纹。该阈值针对材料在理想和非理想条件下均可以保持良好。
示例性非理想条件
使用本公开内容的某些示例性实施方案,示例性程序也可以被应用于非理想设置中来校验散斑指纹的稳健性。对于纸,散斑附近的区域可以被涂污,这可以改变约10%的散斑图案。可以在塑料卡处于示例性的真实世界的条件下例如通过多次接触散斑区域来处理塑料卡。散斑图案的变化可以为约5%至8%。对于织物,可以通过拉伸散斑被提取的区域来模拟处理,试图将其折叠等。这可以将原始散斑改变约10%至12%。对于玻璃表面,可以将水浇注在其上,可以清洗该区域,并且可以从制造商的标志提取散斑图案。散斑图案被改变约5%。对于木制表面,散斑附近的区域可以被涂污。散斑图案的变化可以为约10%。对于皮肤,可以用水洗手(例如,指关节),然后干燥,提取散斑。散斑的变化可以为约5%至10%。对于金属和合金,可以在真实世界设置中处理该材料(如硬币),然后可以提取散斑。则散斑的变化可以为约5%至10%。
示例性物理表面重构问题
给定散斑图案和光源,可以提供有对手(adversary)重构-产生相同或类似的散斑图案以创建伪造的物理表面。为了理解和限定重构给定散斑的物理表面中所涉及的硬度,可以开发多重光散射的组合模型,然后基于一定的假定证明重构给定散斑图案的物理表面的问题是#P-hard来近似。
散斑图案可以是例如入射在粗糙的物理结构上的相干光源或部分相干光源的多重散射效应的二维表示(如图6中所示)。图6示出了可以表示任何表面的三维截面的示例性立方体,其中源可以指的是部分相干光源、右侧的散斑图案、以及在示例性立方体内部的深色(例如黑色)边,所述边表示可以入射在任意形状的粒子/对象上的边。当物理结构尺寸远大于物理结构内部的散射波的平均路径长度时,物理结构可以被定义为是密集的。出于实用目的,可以基于结构内的散射粒子的数量来使密度可视化。
因此,例如令D为由多重光散射(相干或部分相干)通过密集的物理结构的效应而导致产生的散斑图案。给定散斑图案D和输入光源的特性,可以有效地重构(准确地或近似地)物理结构以及多重散射的物理现象,以产生相同的散斑图案的D'=D或者近似的散斑图案D≈D'(||D-D'||2=O(ε),其中ε>0是小的任意常数)。
该问题限定基本上概括了如下威胁模型(threatmodel):在威胁模型中,对手被给定散斑图案D和输入光源,并且需要重构与散斑图案D近似地匹配的物理表面。在该问题限定中可以作出两个基本假定:
·对手不具有关于物理对象的微观结构的任何信息。对手不能访问对手试图重构的物理表面。
·对手可以执行任何其它物理表面的多个读数以获得表面的散斑。但是,这样做将不会为他提供关于重构原始物理表面的任何信息。
基于假定,对手可以优选地模拟多重散射效应来重构对象,以产生相同的散斑图案。对手可以构造随机表面,并且希望其产生相同的散斑,但是这显然不是最优策略。接下来,可以对散射设置一些背景,并且基于这样的背景,可以描述根据本公开内容的另一个示例性实施方案的多重散射的示例性组合模型。
示例性散射理论
Foldy-Lax方程可以用于提供每个粒子上的光的散射效应的离散特征。在本节中,提供了Foldy-Lax方程的基础,并且接下来描述了基于利用Foldy-Lax方程的模型的图以表征多重散射效应,
Foldy-Lax方程:在一个点处的总电场由下式给出:
E i n c ( r , t ) + Σ i = 1 N E i s c a ( r , t ) .
可以通过数值上求解Foldy-Lax方程来计算散射波的局部和。如果示例性介质包含非均质的任意位置的对象,则随着集群部件和它们的结构的数量逐渐增加,解决方案可能逐渐变得病态。因此,可以作出某些近似来提供更易处理的可以求解的分析方程。Foldy-Lax方程的远场版本可以被改写为(其中N为介质中的粒子的总数量):
Bri0=G(r1)Ai(ri,s),Brij=G(ri)A(ri,Bij,Bij0=G(Rij)Aj(Rij,s),
Bijl=G(Rij)Aj(Rij,Rjl),
其中 G ( r ) = e i k r r .
由此看来,可以确定散射扩展的量级。
方程的第一项可以是入射场,第二项可以是所有单散射贡献的和,第三项可以是所有双散射贡献的和。因此,在观察点r处的总场可以包括入射场以及单散射和多重散射贡献,总场可以分为两组。第一组可以包括对应于自回避散射路径的所有贡献;而第二组可以包括对应于多于一次通过对象/粒子的路径的所有贡献。从这些方程,可以创建被已知的梯形图以进一步近似散射表达式,并且最终获得可以用于各种模型的辐射传输方程(RTE),以预测从星际尘埃到医学成像中的人体组织性能的物理现象。
根据本公开内容的示例性实施方案,建立在散射理论的分析构思上的多重光散射的组合模型可以如下。对于每个粒子的构造,例如可以存在散射图G(V,E),使得其代表对象内的入射光的散射。令G(V,E)为图,其中边权重W代表两个顶点(u,v)∈V之间的部分散射电场的辐照度(或强度)。辐照度I可以被限定为
ϵ 0 r c 2 | E | 2
其中E为电磁场向量,ε0为真空介电常数,r为介质的折射率,c为光在真空中的速度。因此,每个边权重
W i = ϵ 0 r c 2 | E s c a | 2
其中Esca为两个粒子(或顶点)之间的散射电场。它可以直观地认为是两个顶点或粒子之间的强度值。顶点是不具有特定结构(形状、大小、形态)的非均匀粒子,其中每个u∈V与每个v∈V是独立的。所述边对部分散射光强度进行建模,并且由于光碰撞顶点或粒子,可能发生进一步散射(例如,多重散射)。该散射可以发生直到一束或更多束光束或光行进到介质外部为止。可以在3维空间中表示该介质,并且所产生的介质以外的辐照度模式可以是实值数值的二维矩阵每一项可以代表在该点的总辐照度。遵循Foldy-Lax远场方程,使得可以对各个部分散射求和,在某点Dij处的总电场可以是边权重的和,其中m为跨越顶点V'∈V的边的数量。接下来,将在形式上限定该示例性模型。
示例性限定1:对于每个粒子的构造,可以存在散射图G(V,E)。令G(V,E)为具有以下特性的图:(i)边权重W为实值的正数,使得其中Esca为顶点u,v∈V之间的部分散射场;ii)顶点V为具有任意形状的不均匀粒子;iii)D为散斑图案,散射效应之后的结果数据的二维矩阵,其中每一项E(或Dij)表示在该点处的总辐照度E∈D:其中m为跨越Vl顶点的边的数量。
可以对该示例性模型作出若干假定以帮助对计算杂性问题进行分析。这些假定可以被描述为如下:a)正如图G(V,E)影响散斑图案D,可以假定在某点处的辐照度Dij在G中受子图影响。可以存在子图(G中的多个子图)的不相交集合,该不相交集合影响某点处的辐照度在该示例性模型中,这可以被排除考虑。b)被表示为两个顶点之间的辐照度的边权重W可以被表示为实值数值。这可能会被保持作为二元运算符或作为振幅散射矩阵S,当将此表示为数值可以更易于分析计算复杂度问题。将W改变成二元值将不会改变示例性结果,仍然遵循Foldy-Lax方程以计算单个点处的辐照度
示例性模型可以引入BoundedOracle,其中在多项式时间中确定被边的某些部分遍历的顶点的数量。该Oracle在如下意义上变得实际:给定某点处的辐照度和其他物理参数,对手在理论上可以对影响该特定的粒子的数量放置边界。
示例性限定2(Boundedoracle):如果n为粒子的数量,为D中的某个点f处的辐射度,则在多项式时间中的Boundedoracle对被m条边遍历的顶点k的数量给出了边界,使得其中q是一个正整数。
示例性定理1:令n为任意分布在(均匀或非均质)介质中的粒子/对象的总数量,并且令D为在多重散射之后的结果二维散斑图案(或辐射矩阵),并且为在D中的点(i,j)处的辐照度。可以提供示例性图G(V,E),该示例性图G(V,E)是由于通过n个粒子的多重散射的效应的存在的图。令Wi为边权重,其被限定为两个粒子(或顶点)之间的部分散射电场的辐照度,并且由给出(其中Esca为散射电场,ε0为真空介电常数,r为介质的折射率,c为光在真空中的速度)。
计算(或求出)影响或生成并且满足(其中m为跨越Vl顶点的边的数量)的导出子图是#P-hard,并且几乎不可能近似,除非NP=RP。
这可以表示,给定散斑图案,在物理结构内重构多个光散射路径,或者表面近似为#P-hard,(在标准的复杂性理论假定下),因为将会需要解决#Dks问题,#Dks问题降低到被近似为#P-hard的#CLIQUE问题。
示例性模型是一般性的,并且还可以涉及各种用于计算散射效应的计算模型。在示例性定理1中,假定了没有特定的粒子结构(例如,形状、容积等)。然而,在示例性的T矩阵方法中,作为计算非球形粒子的散射效应的通用方法之一,转移矩阵可以是独立的入射场和散射场,并且仅依赖于散射粒子的尺寸、方向和折射率。因此,可以一次计算出粒子的T矩阵,然后其可以被用于计算该粒子的所有可能方向的散射效应。
选择Foldy-Lax方程来模拟散斑图案,而不是其它光散射模型(例如,双向表面散射反射分布函数、辐射传输、逆光传输、T矩阵),因为不能作出近似,比如忽略Foldy-Lax方程中的一些项或者限制散射体的数量来模拟处于微观水平的散斑图案;较小的表面变化可以显著地改变处于显微粒度的散斑图案。该分析仅代表特定的攻击案例,其中分析仅给出散斑图案的重构物理表面的能力。
物理指纹识别的特征在于如下事实:任何物理表面可以以完全离线的方式进行鉴别,因为表面的紧致码可以被压印在同一平面上,以使其可自行检验。具有散斑的银行支票可以以离线的方式进行鉴别,而不需要任何数据连接。银行还可以使用其私钥标记指纹。用户可以使用便携式手机显微镜组合件来读取散斑,计算指纹并校验该指纹是否与支票上的指纹匹配。如果该指纹与支票上的指纹相匹配,则该校验不复制或复印。如果该文件包含对应于紧致码的额外特征,用户还可以利用银行的公开秘钥来校验银行是否确实标记指纹。该机制可以适用于任何类型的纸文件,例如纸币。为了将本公开内容的示例性实施方案应用于服装,制造商可以利用在织物上的指纹粘着散斑,标记指纹并将衣服载运给零售商。具有手机显微镜组合件的任何人均可以使用本公开内容的示例性实施方案以完全离线的方式鉴别一块布。现在可以离线以便携方式鉴别伪造信用卡、借记卡、身份证或任何形式的塑料卡。使用本公开内容的某些示例性实施方案,可以鉴别药物瓶、塑料容器以及制药和医药领域中所用的其它材料,从而减少假冒。使用本公开内容的某些示例性实施方案,可以鉴别汽车零部件。如果制造商在每个零部件中嵌入散斑指纹,则在汽车用品店购买零部件时可以鉴别部件的真伪。
指纹的紧凑性使得其可以将指纹写在对象上。该特性可以在初步的网点银行正在加速的发展中区域非常有用。店主作为银行的代理人,并且可以通过标记区域、读取散斑、计算指纹并将指纹写在一张纸上来向客户提供安全的收据。此刻该纸是可自行检验的,并且其可以以离线的方式进行鉴别。存在有各种方式,其中根据本公开内容的某些示例性实施方案,示例性系统、方法和计算机可访问介质可以被用于小额金融,因为其可以给予以完全离线的方式鉴别物理表面的能力。示例性系统、方法和计算机可访问介质也可以与安全草图一起使用以提供用于各种材料的在线鉴别。
特定的示例性实施方案
图14示出了根据用于鉴别非数字介质例如物理对象或物理对象的一部分的示例性方法的流程图。在810处,最初例如可以捕获/接收非数字介质的图像,例如物理对象表面的有标记或无标记部分。在820处,一旦该图像被接收,可以存储第一显微图像或视频,并且可以使用对象不变梯度直方图算法或例如Gabor变换与主部件分析程序的组合来计算局部/全局描述符。
随后,为了检验物理对象的真伪,在830处可以选择预定区域并且处理设备读取。可以接收关于物理对象的可以由显微镜例如USB显微镜或任何其它显微镜来捕获的图像或视频。显微镜可以是手持式设备,例如集成有显微镜的移动电话,或者集成有显微镜的数码相机。
在840处,可以存储第二显微图像或视频,并且可以通过使用主部件分析程序采用局部/全局描述符算法和Gabor变换来计算低维表示形式。优选地使用不变GaborPCA程序来生成图像的低维表示形式,但是可以使用其它程序例如降低图像数据的维度的任何程序来生成图像的低维表示形式。
然后,可以在850处将第一显微图像或视频与第二显微图像或视频进行比较。可以通过使用对象不变梯度直方图程序或者例如Gabor变换与主部件分析程序的组合所计算的局部/全局描述符来进行该比较。
在860处,如果第一散斑图案与第二散斑图案之间的相似性等于或超过预定量,则物理对象或非数字介质可以被确定成是可靠的。如果第一散斑图案与第二散斑图案之间的相似性小于预定量,则物理对象不是可靠的。
图15示出了根据本公开内容的系统的示例性实施方案的框图。该系统可以离线。该系统可以包括:使用存储在设备的存储器中的预定数据的断开连接的鉴别。该断开连接的鉴别可以检测到纸的使用期限,并且可以独立于任何集中式鉴别系统。在该示例性系统中,可以提供具有处理器130的计算机100,处理器130可以被配置成或被编程成执行以上描述的技术的示例性实施方案的示例性步骤和/或程序。例如,可以定位文件的非数字介质110,使得图像捕获设备120能够捕获非数字介质110的标记部分的图像。非数字介质110可以是需要检验其真伪的纸。图像捕获设备可以是显微镜例如USB显微镜或集成有显微镜的移动电话,并且通过标准USB端口连接至计算机100。图像捕获设备也可以是数码相机,该数码相机可以集成有显微镜。非数字介质110的图像可以被图像捕获设备120提供到计算机100作为数据,这些数据可以被传送到处理器130和/或存储装置140。
根据本公开内容的一个示例性实施方案,可以将数据存储在存储装置140(例如,硬盘驱动器;存储器设备如RAM、ROM、记忆棒、软盘驱动器等)。存储装置140可以具有存储在其中的以检验非文件的各种非数字介质的真伪的各种散斑图案。处理器130可以访问存储装置140,以执行计算机程序或指令集(存储在存储装置630上或者存储在存储装置630中),处理器130根据本公开内容的示例性实施方案来执行程序。
因此,例如当处理器130执行这样的指令和/或计算机程序时,处理器130可以被配置成或被编程成执行如本文以上描述的根据本公开内容的程序的示例性实施方案。例如,处理器130可以从图像捕获设备120和/或存储装置140接收图像。其可以从图像提取第一散斑图案。可以将该散斑图案与存储在存储装置140中的与非数字介质有关的第二散斑图案进行比较,以确定第一散斑图案与第二散斑图案之间的相似性是否等于或超过预定量。根据是否超过该预定阈值,处理器能够确定文件的非数字介质110是否可靠。
也可以提供显示器150用于图15中的示例性系统。存储装置140和显示器150可以被提供在计算机100内或者计算机100的外部。由处理器130接收的信息和由处理器130确定的信息、以及存储在存储装置140上的信息可以以用户可读格式显示在显示器150中。例如,显示器150可以显示文件的非数字介质110是否可靠。
以上仅仅说明了本公开内容的原理。鉴于本文中的教示,对所描述的实施方案的各种修改和更改对于本领域技术人员将是明显的。因此,将会理解到,本领域技术人员将能够设计出虽然本文中没有明确示出或描述的但是体现了本公开内容的原理的许多系统、装置和方法,因此,这些系统、装置和方法在本公开内容的精神和范围内。此外,在某种程度上,以上现有技术知识还没有通过引用明确地并入本文中,其全部内容明确地并入本文中。以上所引用的所有公开其全部内容通过引用并入本文中。
发明构思
本发明提供了以下发明构思:
1.一种用于检验和鉴别物理对象的至少一部分的方法,包括:
接收所述物理对象的至少一部分的至少一个第一显微图像;
接收所述物理对象的所述至少一部分的至少一个第二显微图像;以及
通过计算配置将所述至少一个第一显微图像与所述至少一个第二显微图像相比较,以确定基于至少一个描述符的相似性量度是否在预定的范围或阈值内。
2.根据发明构思1所述的方法,其中所述物理对象的类型是织物、塑料、纸、帆布、玻璃、金属、金属复合材料或合金中的至少一种。
3.根据发明构思1所述的方法,其中所述物理对象具有特定的表面粗糙度或光散射特性。
4.根据发明构思1所述的方法,其中所述物理对象具有轮廓或曲率。
5.根据发明构思1所述的方法,其中所述计算配置是附接至显微镜装置的手持式计算设备或手机的一部分。
6.根据发明构思1所述的方法,其中所述至少一个第一显微图像包括纹理散斑图案,或者是所述物理对象的区域的视频的一部分。
7.根据发明构思1所述的方法,还包括:
使用对象不变的GaborPCA程序,将所述至少一个第一显微图像转换成第一低维表示形式并将所述至少一个第二显微图像转换成第二低维表示形式;以及
通过比较所述第一低维表示形式与所述第二低维表示形式之间的特定度量距离是否在预定量范围内来确定所述相似性量度,其中所述预定量用数学函数确定。
8.根据发明构思1所述的方法,还包括:
使用对象不变、尺度和旋转不变的梯度直方图特征检测器,将所述至少一个第一显微图像转换成第一数据并将所述至少一个第二显微图像转换成第二数据;以及
通过确定所述第一数据与所述第二数据之间的特定度量距离是否在预定量范围内来确定所述相似性量度,其中所述预定量用数学函数确定。
9.根据发明构思1所述的方法,其中所述至少一个第一显微图像是从标记区域提取的,并且其中所述标记区域是所述物理对象的内容。
10.根据发明构思8所述的方法,其中所述标记区域对应于用户或对象身份。
11.根据发明构思1所述的方法,其中所述至少一个第一显微图像是从界标附近的区域提取的,并且其中所述界标是所述物理对象的内容。
12.根据发明构思1所述的方法,其中所述至少一个第一显微图像是从无标记区域提取的。
13.根据发明构思1所述的方法,其中所述至少一部分是基于手动跟踪来选择的,或者是通过使用所述计算配置在参考坐标系中自动跟踪来选择的。
14.根据发明构思13所述的方法,其中所述计算配置被设置在固定设备或手持式设备中。
15.根据发明构思1所述的方法,其中所述至少一个第一显微图像是当所述计算配置在预定义区域中移动时提取的,并且其中所述预定义区域是基于坐标参考系跟踪系统或手动操作来计算的。
16.根据发明构思1所述的方法,其中所述至少一个第一显微图像是以不接触所述物理对象表面的非侵入性方式提取的。
17.根据发明构思1所述的方法,其中所述计算配置具有特定配置,其中基于预定量来固定与所述计算配置配合的入射光源的角度和距离,其中基于预定量来固定与所述入射光源配合的捕获屏幕或镜头的角度和距离,并且其中所述预定量是基于数学函数的。
18.根据发明构思17所述的方法,其中所述光源为提供多谱段电磁辐射的可见光、红外光、紫外光或它们的组合中之一。
19.根据发明构思1所述的方法,其中所述入射光源装置与偏振器配合。
20.根据发明构思1所述的方法,其中所述入射光源装置被设置在附接至显微镜的移动电话中,并且其中所述显微镜是手持式显微镜或手持式通用串行总线显微镜。
21.根据发明构思1所述的方法,其中所述入射光源装置被设置在附接至机器人臂或计算机数值控制器的显微镜中。
22.根据发明构思1所述的方法,其中所述至少一个第一显微图像是从老化的、篡改的、弄皱的或浸泡的所述物理对象接收的。
23.根据发明构思1所述的方法,还包括:
从所述至少一个第一显微图像的所述至少一个描述符生成能够被印刷、被写入、被嵌入或被压印在所述物理对象上的低维表示形式;
从所述至少一个第一显微图像的所述至少一个描述符生成低维表示形式;以及
将所述低维表示形式与所述被印刷、被写入、被嵌入或被压印在所述物理对象上的低维表示形式进行比较,以校验所述相似性是否在预定量范围内,从而建立对所述物理对象的鉴别。
24.根据发明构思1所述的方法,其中通过使用秘密密钥加密技术或公开秘钥加密技术将所述物理对象鉴别为可信源。
25.根据发明构思1所述的方法,其中所述至少一个第一显微图像和所述至少一个描述符被存储在在线存储库中。
26.根据发明构思1所述的方法,其中沿着所述物理对象的表面从第一曲线提取一个或更多个显微图像,并且其中所述计算配置的移动被设置成沿着第二曲线,并且所述第二曲线类似于所述第一曲线并且是使用数学函数或手动操作预先确定的。
27.根据发明构思26所述的方法,其中所述第二曲线是从数学函数或者从用户特定动作或信号导出的。
28.根据发明构思1所述的方法,还包括:
使用所述计算配置,提取包括所述至少一个第一显微图像在内的多个显微图像,其中所述多个显微图像从所述物理对象表面的基本上整个区域得到。
29.根据发明构思1所述的方法,还包括:基于所述至少一个第一显微图像的所述至少一个描述符的计算集来匹配所述至少一个描述符。
30.根据发明构思1所述的方法,还包括通过如下步骤来执行对所述物理对象的鉴别和检验:
将所述计算配置指向预定区域,并且提取特定的显微图像;以及
处理所述至少一个第一显微图像中的一个或更多个第一显微图像以计算所述至少一个描述符,以便于使用距离度量来将存储的描述符与所计算的至少一个描述符进行比较。
31.根据发明构思1所述的方法,其中所述至少一个第一显微图像和所述至少一个第二显微图像每个均包括如下至少之一:静止图像和视频。
32.根据发明构思1所述的方法,其中所述至少一个描述符包括至少一个局部描述符或局部描述符。
33.一种其上存储有计算机可执行指令的非暂态计算机可访问介质,所述计算机可执行指令用于检验和鉴别物理对象的一部分,当处理配置执行所述计算机可执行指令时,所述介质使所述处理配置被配置成执行包括以下步骤的程序:
接收所述物理对象的至少一部分的至少一个第一显微图像;
接收所述物理对象的所述至少一部分的至少一个第二显微图像;以及
将所述至少一个第一显微图像与所述至少一个第二显微图像相比较,以确定基于至少一个描述符的相似性量度是否在预定的范围或阈值内。
34.根据发明构思33所述的计算机可访问介质,其中所述物理对象的类型是织物、塑料、纸、帆布、玻璃、金属、金属复合材料或合金中的至少一种。
35.根据发明构思33所述的计算机可访问介质,其中所述物理对象具有特定的表面粗糙度或光散射特性。
36.根据发明构思33所述的计算机可访问介质,其中所述物理对象具有轮廓或曲率。
37.根据发明构思33所述的计算机可访问介质,其中所述处理配置是附接至显微镜装置的手持式计算设备或手机的一部分。
38.根据发明构思33所述的计算机可访问介质,其中所述至少一个第一显微图像包括纹理散斑图案,或者是所述物理对象的区域的视频的一部分。
39.根据发明构思33所述的计算机可访问介质,还包括:
使用对象不变的GaborPCA程序,将所述至少一个第一显微图像转换成第一低维表示形式并将所述至少一个第二显微图像转换成第二低维表示形式;以及
通过比较所述第一低维表示形式与所述第二低维之间的特定度量距离是否在预定量范围内来确定所述相似性量度,其中所述预定量用数学函数确定。
40.根据发明构思33所述的计算机可访问介质,还包括:
使用对象不变、尺度和旋转不变的梯度直方图特征检测器,将所述至少一个第一显微图像转换成第一数据并将所述至少一个第二显微图像转换成第二数据;以及
通过确定所述第一数据与所述第二数据之间的特定度量距离是否在预定量范围内来确定所述相似性量度,其中所述预定量用数学函数确定。
41.根据发明构思33所述的计算机可访问介质,其中所述至少一个第一显微图像是从标记区域提取的,并且其中所述标记区域是所述物理对象的内容。
42.根据发明构思40所述的计算机可访问介质,其中所述标记区域对应于用户或对象身份。
43.根据发明构思33所述的计算机可访问介质,其中所述至少一个第一显微图像是从界标附近的区域提取的,并且其中所述界标是所述物理对象的内容。
44.根据发明构思33所述的计算机可访问介质,其中所述至少一个第一显微图像是从无标记区域提取的。
45.根据发明构思33所述的计算机可访问介质,其中所述至少一部分是基于手动跟踪来选择的,或者是通过使用所述处理配置在参考坐标系中自动跟踪来选择的。
46.根据发明构思45所述的计算机可访问介质,其中所述处理配置被设置在固定设备或手持式设备中。
47.根据发明构思33所述的计算机可访问介质,其中所述至少一个第一显微图像是当所述处理配置在预定义区域中移动时提取的,并且其中所述预定义区域是基于坐标参考系跟踪系统或手动操作来计算的。
48.根据发明构思33所述的计算机可访问介质,其中所述至少一个第一显微图像是以不接触所述物理对象表面的非侵入性方式提取的。
49.根据发明构思33所述的计算机可访问介质,其中所述处理配置具有特定配置,其中基于预定量来固定与所述处理配置配合的入射光源的角度和距离,其中基于预定量来固定与所述入射光源配合的捕获屏幕或镜头的角度和距离,并且其中所述预定量是基于数学函数的。
50.根据发明构思49所述的计算机可访问介质,其中所述光源为提供多谱段电磁辐射的可见光、红外光、紫外光或它们的组合中之一。
51.根据发明构思33所述的计算机可访问介质,其中所述入射光源装置与偏振器配合。
52.根据发明构思33所述的计算机可访问介质,其中所述入射光源装置被设置在附接至显微镜的移动电话中,并且其中所述显微镜是手持式显微镜或手持式通用串行总线显微镜。
53.根据发明构思33所述的计算机可访问介质,其中所述入射光源装置被设置在附接至机器人臂或计算机数值控制器的显微镜中。
54.根据发明构思33所述的计算机可访问介质,其中所述至少一个第一显微图像是从老化的、篡改的、弄皱的或浸泡的所述物理对象接收的。
55.根据发明构思33所述的计算机可访问介质,还包括:
从所述至少一个第一显微图像的所述至少一个描述符生成能够被印刷、被写入、被嵌入或被压印在所述物理对象上的低维表示形式;
从所述至少一个第一显微图像的所述至少一个描述符生成低维表示形式;以及
将所述低维表示形式与所述被印刷、被写入、被嵌入或被压印在所述物理对象上的低维表示形式进行比较,以校验所述相似性是否在预定量范围内,从而建立对所述物理对象的鉴别。
56.根据发明构思33所述的计算机可访问介质,其中通过使用秘密密钥加密技术或公开秘钥加密技术将所述物理对象鉴别为可信源。
57.根据发明构思33所述的计算机可访问介质,其中所述至少一个第一显微图像和所述至少一个描述符被存储在在线存储库中。
58.根据发明构思33所述的计算机可访问介质,其中沿着所述物理对象的表面从第一曲线提取一个或更多个显微图像,并且其中所述处理配置的移动被设置成沿着第二曲线,并且所述第二曲线类似于所述第一曲线并且是使用数学函数或手动操作预先确定的。
59.根据发明构思58所述的计算机可访问介质,其中所述第二曲线是从数学函数或者从用户特定动作或信号导出的。
60.根据发明构思33所述的计算机可访问介质,还包括:
使用所述处理配置,提取包括所述至少一个第一显微图像在内的多个显微图像,其中所述多个显微图像是从所述物理对象表面的基本上整个区域得到的。
61.根据发明构思33所述的计算机可访问介质,还包括:基于所述至少一个第一显微图像的所述至少一个描述符的计算集来匹配所述至少一个描述符。
62.根据发明构思33所述的计算机可访问介质,还包括通过如下步骤来执行对所述物理对象的鉴别和检验:
将所述处理配置指向预定区域,并且提取特定的显微图像;以及
处理所述至少一个第一显微图像中的一个或更多个第一显微图像以计算所述至少一个描述符,以便于使用距离度量来将存储的描述符与所计算的至少一个描述符进行比较。
63.根据发明构思33所述的计算机可访问介质,其中所述至少一个第一显微图像和所述至少一个第二显微图像每个均包括如下至少之一:静止图像和视频。
64.根据发明构思33所述的计算机可访问介质,其中所述至少一个描述符包括至少一个局部描述符或局部描述符。
65.一种用于检验和鉴别物理对象的一部分的系统,包括:
被配置成执行如下程序的计算配置:
接收所述物理对象的至少一部分的至少一个第一显微图像;
接收所述物理对象的所述至少一部分的至少一个第二显微图像;以及
将所述至少一个第一显微图像与所述至少一个第二显微图像相比较,以确定基于至少一个描述符的相似性量度是否在预定的范围或阈值内。
66.根据发明构思65所述的系统,其中所述物理对象的类型是织物、塑料、纸、帆布、玻璃、金属、金属复合材料或合金中的至少一种。
67.根据发明构思65所述的系统,其中所述物理对象具有特定的表面粗糙度或光散射特性。
68.根据发明构思65所述的系统,其中所述物理对象具有轮廓或曲率。
69.根据发明构思65所述的系统,其中所述计算配置是附接至显微镜装置的手持式计算设备或手机的一部分。
70.根据发明构思65所述的系统,其中所述至少一个第一显微图像包括纹理散斑图案,或者是所述物理对象的区域的视频的一部分。
71.根据发明构思65所述的系统,其中所述计算配置还被配置成执行:
使用对象不变的GaborPCA程序,将所述至少一个第一显微图像转换成第一低维表示形式并将所述至少一个第二显微图像转换成第二低维表示形式;以及
通过比较所述第一低维表示形式与所述第二低维表示形式之间的特定度量距离是否在预定量范围内来确定所述相似性量度,其中所述预定量用数学函数确定。
72.根据发明构思65所述的系统,其中所述计算配置还被配置成执行:
使用对象不变、尺度和旋转不变的梯度直方图特征检测器,将所述至少一个第一显微图像转换成第一数据并将所述至少一个第二显微图像转换成第二数据;以及
通过确定所述第一数据与所述第二数据之间的特定度量距离是否在预定量范围内来确定所述相似性量度,其中所述预定量用数学函数确定。
73.根据发明构思65所述的系统,其中所述至少一个第一显微图像是从标记区域提取的,并且其中所述标记区域是所述物理对象的内容。
74.根据发明构思72所述的系统,其中所述标记区域对应于用户或对象身份。
75.根据发明构思65所述的系统,其中所述至少一个第一显微图像是从界标附近的区域提取的,并且其中所述界标是所述物理对象的内容。
76.根据发明构思65所述的系统,其中所述至少一个第一显微图像是从无标记区域提取的。
77.根据发明构思65所述的系统,其中所述至少一部分是基于手动跟踪来选择的,或者是通过使用所述计算配置在参考坐标系中自动跟踪来选择的。
78.根据发明构思77所述的系统,其中所述处理配置被设置在固定设备或手持式设备中。
79.根据发明构思65所述的系统,其中所述至少一个第一显微图像是当所述计算配置在预定义区域中移动时提取的,并且其中所述预定义区域是基于坐标参考系跟踪系统或手动操作来计算的。
80.根据发明构思65所述的系统,其中所述至少一个第一显微图像是以不接触所述物理对象表面的非侵入性方式提取的。
81.根据发明构思65所述的系统,其中所述计算配置具有特定配置,其中基于预定量来固定与所述计算配置配合的入射光源的角度和距离,其中基于预定量来固定与所述入射光源配合的捕获屏幕或镜头的角度和距离,并且其中所述预定量是基于数学函数的。
82.根据发明构思81所述的系统,其中所述光源为提供多谱段电磁辐射的可见光、红外光、紫外光或它们的组合中之一。
83.根据发明构思65所述的系统,其中所述入射光源装置与偏振器配合。
84.根据发明构思65所述的系统,其中所述入射光源装置被设置在附接至显微镜的移动电话中,并且其中所述显微镜是手持式显微镜或手持式通用串行总线显微镜。
85.根据发明构思65所述的系统,其中所述入射光源装置被设置在附接至机器人臂或计算机数值控制器的显微镜中。
86.根据发明构思65所述的系统,其中所述至少一个第一显微图像是从老化的、篡改的、弄皱的或浸泡的所述物理对象接收的。
87.根据发明构思65所述的系统,其中所述计算配置还被配置成执行:
从所述至少一个第一显微图像的所述至少一个描述符生成能够被印刷、被写入、被嵌入或被压印在所述物理对象上的低维表示形式;
从所述至少一个第一显微图像的所述至少一个描述符生成低维表示形式;以及
将所述低维表示形式与所述被印刷、被写入、被嵌入或被压印在所述物理对象上的低维表示形式进行比较,以校验所述相似性是否在预定量范围内,从而建立对所述物理对象的鉴别。
88.根据发明构思65所述的系统,其中通过使用秘密密钥加密技术或公开秘钥加密技术将所述物理对象鉴别为可信源。
89.根据发明构思65所述的系统,其中所述至少一个第一显微图像和所述至少一个描述符被存储在在线存储库中。
90.根据发明构思65所述的系统,其中沿着所述物理对象的表面从第一曲线提取一个或更多个显微图像,并且其中所述计算配置的移动被设置成沿着第二曲线,并且所述第二曲线类似于所述第一曲线并且是使用数学函数或手动操作预先确定的。
91.根据发明构思58所述的方法,其中所述第二曲线是从数学函数或者从用户特定动作或信号导出的。
92.根据发明构思65所述的系统,其中所述计算配置还被配置成执行:
提取包括所述至少一个第一显微图像在内的多个显微图像,其中所述多个显微图像物理对象从所述物理对象表面的基本上整个区域得到。
93.根据发明构思65所述的系统,其中所述计算配置还被配置成执行:
基于所述至少一个第一显微图像的所述至少一个描述符的计算集来匹配所述至少一个描述符。
94.根据发明构思65所述的系统,其中所述计算配置还被配置成通过如下步骤来执行对所述物理对象的鉴别和检验:
将所述计算配置指向预定区域,并且提取特定的显微图像;以及
处理所述至少一个第一显微图像中的一个或更多个第一显微图像以计算所述至少一个描述符,以便于使用距离度量来将存储的描述符与所计算的至少一个描述符进行比较。
95.根据发明构思65所述的系统,其中所述至少一个第一显微图像和所述至少一个第二显微图像每个均包括如下至少之一:静止图像和视频。
96.根据发明构思65所述的系统,其中所述至少一个描述符包括至少一个局部描述符或局部描述符。

Claims (10)

1.一种用于检验和鉴别物理对象的至少一部分的方法,包括:
接收所述物理对象的至少一部分的至少一个第一显微图像;
接收所述物理对象的所述至少一部分的至少一个第二显微图像;以及
通过计算配置将所述至少一个第一显微图像与所述至少一个第二显微图像相比较,以确定基于至少一个描述符的相似性量度是否在预定的范围或阈值内。
2.根据权利要求1所述的方法,其中所述物理对象的类型是织物、塑料、纸、帆布、玻璃、金属、金属复合材料或合金中的至少一种。
3.根据权利要求1所述的方法,其中所述物理对象具有特定的表面粗糙度或光散射特性。
4.根据权利要求1所述的方法,其中所述物理对象具有轮廓或曲率。
5.根据权利要求1所述的方法,其中所述计算配置是附接至显微镜装置的手持式计算设备或手机的一部分。
6.根据权利要求1所述的方法,其中所述至少一个第一显微图像包括纹理散斑图案,或者是所述物理对象的区域的视频的一部分。
7.根据权利要求1所述的方法,还包括:
使用对象不变的GaborPCA程序,将所述至少一个第一显微图像转换成第一低维表示形式并将所述至少一个第二显微图像转换成第二低维表示形式;以及
通过比较所述第一低维表示形式与所述第二低维表示形式之间的特定度量距离是否在预定量范围内来确定所述相似性量度,其中所述预定量用数学函数确定。
8.根据权利要求1所述的方法,还包括:
使用对象不变、尺度和旋转不变的梯度直方图特征检测器,将所述至少一个第一显微图像转换成第一数据并将所述至少一个第二显微图像转换成第二数据;以及
通过确定所述第一数据与所述第二数据之间的特定度量距离是否在预定量范围内来确定所述相似性量度,其中所述预定量用数学函数确定。
9.根据权利要求1所述的方法,其中所述至少一个第一显微图像是从标记区域提取的,并且其中所述标记区域是所述物理对象的内容。
10.根据权利要求8所述的方法,其中所述标记区域对应于用户或对象身份。
CN201510614058.XA 2011-03-17 2012-03-19 用于检验和鉴别物理对象的系统、方法和计算机可访问介质 Pending CN105303164A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161453916P 2011-03-17 2011-03-17
US61/453,916 2011-03-17
CN201280020736.4A CN103502811B (zh) 2011-03-17 2012-03-19 用于检验和鉴别物理对象的设备和方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201280020736.4A Division CN103502811B (zh) 2011-03-17 2012-03-19 用于检验和鉴别物理对象的设备和方法

Publications (1)

Publication Number Publication Date
CN105303164A true CN105303164A (zh) 2016-02-03

Family

ID=46831388

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201280020736.4A Active CN103502811B (zh) 2011-03-17 2012-03-19 用于检验和鉴别物理对象的设备和方法
CN201510614058.XA Pending CN105303164A (zh) 2011-03-17 2012-03-19 用于检验和鉴别物理对象的系统、方法和计算机可访问介质

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201280020736.4A Active CN103502811B (zh) 2011-03-17 2012-03-19 用于检验和鉴别物理对象的设备和方法

Country Status (6)

Country Link
US (1) US11210495B2 (zh)
EP (2) EP2686676A4 (zh)
JP (1) JP6161543B2 (zh)
KR (1) KR102055231B1 (zh)
CN (2) CN103502811B (zh)
WO (1) WO2012126008A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879774A (zh) * 2020-08-03 2020-11-03 广州皓醒湾科技有限公司 刷头磨圆率测试方法、装置和电子设备

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6161543B2 (ja) * 2011-03-17 2017-07-12 ニュー・ヨーク・ユニヴァーシティー 物理的オブジェクトの認証と検証のためのシステム、方法及びコンピュータアクセス可能媒体
US9036916B2 (en) * 2012-09-27 2015-05-19 Apple Inc. Unique part identifiers
EP2975575B1 (en) * 2013-03-12 2020-06-24 Nec Corporation Identification method, identification system, identification device and program
WO2014163014A1 (ja) * 2013-04-04 2014-10-09 日本電気株式会社 識別システム、識別方法、照合装置及びプログラム
US9760771B2 (en) 2013-04-04 2017-09-12 Nec Corporation Identification method, identification system, matching device, and program
JP6478995B2 (ja) * 2013-07-19 2019-03-06 ニューヨーク ユニバーシティ 微視的テクスチャを用いて物理的対象を認証するためのシステム、方法及びコンピュータアクセス可能媒体
EP2921989A1 (en) 2014-03-17 2015-09-23 Université de Genève Method for object recognition and/or verification on portable devices
US9680816B2 (en) 2014-10-14 2017-06-13 Cisco Technology, Inc. Attesting authenticity of infrastructure modules
IL240872A (en) 2015-08-27 2016-11-30 Elbit Systems Land & C4I Ltd A method and system for discovering object authenticity
US10102407B2 (en) * 2015-09-21 2018-10-16 Robert Bosch Gmbh Method for generating a unique package identifier based on physical properties of a package
KR102452126B1 (ko) * 2015-10-16 2022-10-07 한국전자통신연구원 산란체를 이용한 암호화 통신 장치 및 그 방법
US10824858B2 (en) * 2016-03-14 2020-11-03 Nec Corporation Object management device
IL245932A (en) 2016-05-30 2017-10-31 Elbit Systems Land & C4I Ltd System and methods for determining the authenticity of an object that includes a reference image acquisition and a user unit
KR101971272B1 (ko) 2016-06-02 2019-08-27 주식회사 더웨이브톡 패턴 구조물 검사 장치 및 검사 방법
US20190056642A1 (en) * 2017-08-18 2019-02-21 Elliot Weinthal Microscope ocular lens camera adaptor
CN107507090A (zh) * 2017-08-23 2017-12-22 重庆艺邦动力科技有限公司 艺术品在线担保交易方法及实现该方法的存储设备和移动终端
CA3108140A1 (en) * 2018-07-31 2020-02-06 Avery Dennison Corporation Systems and methods to prevent counterfeiting
PT111116B (pt) * 2018-08-31 2023-02-28 Univ De Coimbra Método para a intensificação do nível de segurança de um objeto por meio de um desenho determinístico, objeto com nível de segurança intensificado e o método, aparelho computacional, programas de computador, meios de leitura e aparato adaptados para a preparação do objeto
CN111325719A (zh) * 2020-02-02 2020-06-23 南京工业大学 基于零部件表面图像匹配的工件防伪方法
WO2021234190A1 (es) * 2020-05-22 2021-11-25 Desilico S.L. Generación de un mapa de propiedades de un material a partir de un modelo informático del material, basado en un conjunto de imágenes a microescala
CN114239771B (zh) * 2021-11-22 2023-05-16 北京印刷学院 一种本体绑定多重防伪标识图像的纺织品防伪方法
EP4276782A1 (en) * 2022-05-09 2023-11-15 Klöckner Pentaplast Europe GmbH & Co. KG Product authentication using manually applied marks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050127187A1 (en) * 2003-12-16 2005-06-16 Pitney Bowes Inc. Fragile water mark printed with two component inks and process
CN1898680A (zh) * 2003-10-23 2007-01-17 流明Iq有限公司 关于指纹自动识别系统的识别、提取和三维分析策略的系统和方法
CN101057448A (zh) * 2004-11-16 2007-10-17 皇家飞利浦电子股份有限公司 安全地计算相似性度量
WO2009149408A2 (en) * 2008-06-05 2009-12-10 New York University Method, system, and computer-accessible medium for authentication of paper using a speckle pattern

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3636513A (en) * 1969-10-17 1972-01-18 Westinghouse Electric Corp Preprocessing method and apparatus for pattern recognition
US4634148A (en) * 1981-06-24 1987-01-06 Greene Edwin B Negotiable instrument
US5193854A (en) * 1992-02-28 1993-03-16 Babn Technologies Inc. Tamper-resistant article and method of authenticating the same
US5325167A (en) * 1992-05-11 1994-06-28 Canon Research Center America, Inc. Record document authentication by microscopic grain structure and method
US20020009208A1 (en) * 1995-08-09 2002-01-24 Adnan Alattar Authentication of physical and electronic media objects using digital watermarks
US5966205A (en) * 1997-07-01 1999-10-12 Lj Laboratories, Llc Method and apparatus for detecting and preventing counterfeiting
US6819775B2 (en) * 1996-07-05 2004-11-16 ECOLE POLYTECHNIQUE FéDéRALE DE LAUSANNE Authentication of documents and valuable articles by using moire intensity profiles
US6068895A (en) * 1997-08-27 2000-05-30 Nippon Dom Co., Ltd. Woven security label
US6107244A (en) * 1997-10-15 2000-08-22 Nashua Corporation Verification methods employing thermally--imageable substrates
JP3927326B2 (ja) * 1998-09-11 2007-06-06 中央電子株式会社 レーザ反射光のスペックルパターンを利用した人又は物品のロット管理方法
US6192150B1 (en) * 1998-11-16 2001-02-20 National University Of Singapore Invariant texture matching method for image retrieval
US6155604A (en) * 1999-05-27 2000-12-05 Greene; Jonathan D Coatings and ink designs for negotiable instruments
DE19961514A1 (de) * 1999-12-20 2001-06-21 Siemens Ag Anordnung zur Reduzierung der Stimulierten Brillouin-Streuung in einer Lichtwellenleiterfaser
US6473165B1 (en) * 2000-01-21 2002-10-29 Flex Products, Inc. Automated verification systems and methods for use with optical interference devices
US6741738B2 (en) * 2000-03-13 2004-05-25 Tms, Inc. Method of optical mark recognition
US7162035B1 (en) * 2000-05-24 2007-01-09 Tracer Detection Technology Corp. Authentication method and system
US7089420B1 (en) * 2000-05-24 2006-08-08 Tracer Detection Technology Corp. Authentication method and system
AU785178B2 (en) 2000-09-15 2006-10-12 Trustcopy Pte Ltd. Optical watermark
US8510138B2 (en) * 2009-03-06 2013-08-13 Ticketmaster Llc Networked barcode verification system
JP4483296B2 (ja) 2003-03-13 2010-06-16 富士ゼロックス株式会社 被記録媒体識別装置、及び記録装置
EP2131315A3 (en) * 2004-03-12 2011-01-26 Ingenia Technology Limited Authenticity verification by large scale illumination
FR2870376B1 (fr) * 2004-05-11 2006-09-22 Yann Boutant Procede de reconnaissance de supports fibreux, ainsi que les applications d'un tel procede dans le domaine informatique notamment
JP4532982B2 (ja) * 2004-05-14 2010-08-25 キヤノン株式会社 配置情報推定方法および情報処理装置
US20060147095A1 (en) * 2005-01-03 2006-07-06 Usher David B Method and system for automatically capturing an image of a retina
RU2417448C2 (ru) * 2005-07-27 2011-04-27 Инджениа Холдингс Лимитед Верификация аутентичности
US20070041628A1 (en) * 2005-08-17 2007-02-22 Xerox Corporation Detection of document security marks using run profiles
JP4682343B2 (ja) * 2006-02-16 2011-05-11 旭精工株式会社 トークン画像取得装置及びトークン画像取得装置を備えるメダル選別装置
US9404858B2 (en) 2007-03-22 2016-08-02 Byk-Gardner Gmbh Method and apparatus for determination of surface properties of coatings by determining contrast of an evaluated image
EP1990212A1 (en) * 2007-05-07 2008-11-12 CSEM Centre Suisse d'Electronique et de Microtechnique SA Recherche et Développement Unique security device for the identification or authentication of valuable goods, fabrication process and method for securing valuable goods using such a unique security device
WO2009105040A1 (en) * 2008-02-19 2009-08-27 Bilcare Technologies Singapore Pte. Ltd. A reading device for identifying a tag or an object adapted to be identified, related methods and systems
US8705873B2 (en) * 2008-03-20 2014-04-22 Universite De Geneve Secure item identification and authentication system and method based on unclonable features
US7995196B1 (en) * 2008-04-23 2011-08-09 Tracer Detection Technology Corp. Authentication method and system
US9729326B2 (en) * 2008-04-25 2017-08-08 Feng Lin Document certification and authentication system
JP4968595B2 (ja) 2008-07-23 2012-07-04 株式会社ニコン 細胞の状態判別手法及び細胞観察の画像処理装置
US8929657B2 (en) * 2008-08-22 2015-01-06 KyongHee Yi System and method for indexing object in image
US8189925B2 (en) * 2009-06-04 2012-05-29 Microsoft Corporation Geocoding by image matching
WO2011052036A1 (ja) * 2009-10-27 2011-05-05 富士通株式会社 生体情報処理装置、生体情報処理方法及び生体情報処理用コンピュータプログラム
TWI424376B (zh) * 2010-08-25 2014-01-21 Ind Tech Res Inst 影像處理方法及其系統
US8494553B2 (en) * 2011-01-11 2013-07-23 Qualcomm Incorporated Position determination using horizontal angles
EP2495687B1 (en) * 2011-03-02 2018-12-05 Precise Biometrics AB Method of matching, biometric matching apparatus, and computer program
JP6161543B2 (ja) * 2011-03-17 2017-07-12 ニュー・ヨーク・ユニヴァーシティー 物理的オブジェクトの認証と検証のためのシステム、方法及びコンピュータアクセス可能媒体
US20120253810A1 (en) * 2011-03-29 2012-10-04 Sutton Timothy S Computer program, method, and system for voice authentication of a user to access a secure resource
US20130004059A1 (en) * 2011-07-01 2013-01-03 Amir Said Aligning stereoscopic images
US9530171B2 (en) * 2011-08-24 2016-12-27 Hewlett-Packard Development Company, L.P. Forensic authentication system and method
US9245204B2 (en) * 2012-01-02 2016-01-26 Telecom Italia S.P.A. Method and system for comparing images
CN103714077B (zh) * 2012-09-29 2017-10-20 日电(中国)有限公司 物体检索的方法、检索校验的方法及装置
US10198865B2 (en) * 2014-07-10 2019-02-05 Seiko Epson Corporation HMD calibration with direct geometric modeling
WO2016042039A1 (en) * 2014-09-16 2016-03-24 Foundation For Research And Technology - Hellas (Forth) Gesture recognition apparatuses, methods and systems for human-machine interaction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898680A (zh) * 2003-10-23 2007-01-17 流明Iq有限公司 关于指纹自动识别系统的识别、提取和三维分析策略的系统和方法
US20050127187A1 (en) * 2003-12-16 2005-06-16 Pitney Bowes Inc. Fragile water mark printed with two component inks and process
CN101057448A (zh) * 2004-11-16 2007-10-17 皇家飞利浦电子股份有限公司 安全地计算相似性度量
WO2009149408A2 (en) * 2008-06-05 2009-12-10 New York University Method, system, and computer-accessible medium for authentication of paper using a speckle pattern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASHLESH SHARMA等: "Secure Rural Supply Chain Management Using Low Cost Paper Watermarking", 《NSDR"08》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879774A (zh) * 2020-08-03 2020-11-03 广州皓醒湾科技有限公司 刷头磨圆率测试方法、装置和电子设备
CN111879774B (zh) * 2020-08-03 2023-07-21 广州星际悦动股份有限公司 刷头磨圆率测试方法、装置和电子设备

Also Published As

Publication number Publication date
EP2686676A2 (en) 2014-01-22
WO2012126008A3 (en) 2012-11-08
US20140205153A1 (en) 2014-07-24
KR102055231B1 (ko) 2019-12-12
EP2686676A4 (en) 2015-04-01
EP4152278A1 (en) 2023-03-22
JP6161543B2 (ja) 2017-07-12
US11210495B2 (en) 2021-12-28
JP2014511993A (ja) 2014-05-19
KR20140018296A (ko) 2014-02-12
WO2012126008A2 (en) 2012-09-20
CN103502811B (zh) 2015-11-25
CN103502811A (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
CN103502811B (zh) 用于检验和鉴别物理对象的设备和方法
Hui et al. Reflectance capture using univariate sampling of brdfs
Toderici et al. Bidirectional relighting for 3D-aided 2D face recognition
Lobay et al. Shape from texture without boundaries
Kumar Contactless 3D fingerprint identification
Chatterjee et al. Ear biometrics recognition using laser biospeckled fringe projection profilometry
Zhang et al. KDD: A kernel density based descriptor for 3D point clouds
Libert et al. Guidance for evaluating contactless fingerprint acquisition devices
US20160070980A1 (en) Method and device for contactless biometrics identification
Bhilare et al. A study on vulnerability and presentation attack detection in palmprint verification system
Zheng et al. Visual texture perception with feature learning models and deep architectures
Hirshberg et al. Evaluating the automated alignment of 3D human body scans
Yang et al. Efficient local representations for three-dimensional palmprint recognition
Zhou et al. Image feature based quality assessment of speckle patterns for digital image correlation measurement
Merchant et al. Object measurement
Liu et al. Enhanced geometric reflection models for paper surface based authentication
Cheng et al. 3D face recognition based on kinect depth data
Rajeev et al. Method for modeling post-mortem biometric 3D fingerprints
Kakadiaris et al. Face recognition using 3D images
Luo et al. A novel objective fabric pilling evaluation method based on the photometric stereo algorithm
Yaman et al. Performance evaluation of similarity measures for dense multimodal stereovision
Dana et al. Surface detail in computer models
Bai et al. Person identification by using 3D palmprint data
Wang et al. Shape complexity from image similarity
Zhang et al. 3D Information in Palmprint

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160203

WD01 Invention patent application deemed withdrawn after publication