CN105269654A - 碳化硅反射镜的3d打印制备方法 - Google Patents

碳化硅反射镜的3d打印制备方法 Download PDF

Info

Publication number
CN105269654A
CN105269654A CN201510663267.3A CN201510663267A CN105269654A CN 105269654 A CN105269654 A CN 105269654A CN 201510663267 A CN201510663267 A CN 201510663267A CN 105269654 A CN105269654 A CN 105269654A
Authority
CN
China
Prior art keywords
silicon carbide
powder
printing
printing preparation
mirror according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510663267.3A
Other languages
English (en)
Inventor
邬国平
李妙妙
谢方民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Vulcan Mechanical Seals Manufacturing Co Ltd
Original Assignee
Ningbo Vulcan Mechanical Seals Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Vulcan Mechanical Seals Manufacturing Co Ltd filed Critical Ningbo Vulcan Mechanical Seals Manufacturing Co Ltd
Priority to CN201510663267.3A priority Critical patent/CN105269654A/zh
Publication of CN105269654A publication Critical patent/CN105269654A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)

Abstract

本发明公开一种碳化硅反射镜的3D打印制备方法,包括以下步骤:(1)构建碳化硅反射镜的三维模型的STL格式文件;(2)对STL格式文件进行分层处理,导入制造程序中;(3)将原料粉末、固化剂、增塑剂、分散剂、消泡剂加入到去离子水中混合均匀制备成塑性泥料、练泥;(4)将练泥后的塑性泥料加入到3D打印机的料筒中,打印制得碳化硅反射镜坯体;(5)干燥、脱蜡、烧结、机加工及平面抛光处理制得碳化硅反射镜;本发明解决轻量化复杂结构碳化硅反射镜制备困难的问题,适合制备任何复杂结构形状的碳化硅反射镜,可实现近净尺寸的成型。

Description

碳化硅反射镜的3D打印制备方法
技术领域
本发明属于光学技术领域,确切地说是涉及一种碳化硅反射镜的3D打印制备方法。
背景技术
空间反射镜作为折射式或折反射式空间光学系统的核心部件,主要应用于气象预报、资源考察、天文观察、太空探索、军事侦察、预警、强激光及光电跟踪等,具有极其重要的经济、国防、军事价值。空间反射镜的工作环境具有超低温、温差大、辐射高等特点,因此航天领域对其工作的可靠性稳定性要求很高。
目前可以作为空间反射镜的制备材料有金属铝、金属铍、金属镍、单(多)晶硅、各种光学玻璃、复合材料和碳化硅等。其中光学玻璃具有接近0的热膨胀系数,良好的反射能力和可抛光性等,但密度较大,刚度差,热扩散能力较低,限制了其在空间中的应用。金属铝价格便宜、重量轻、反射镜的成本低、制备周期短,但其热性能差,难以适应太空环境。镍抛光性好,但密度大,低温热性能较差。铍具有十分优异的比刚度、热性能,可抛光性,但问题在于其毒性以及由此带来的昂贵价格。碳化硅材料具有较高的比刚度、导热系数和热稳定性,因此相对于其他反射镜材料,在镜体的轻量化及减小热变形方面具有明显的优势;致密的碳化硅材料具有较小的热膨胀系数,在较大温差条件下,抗热震性极佳,在较大温度范围内使用,镜面面形变化较小,使用寿命较长,加之碳化硅材料具有较好的光学加工特性及优异光学性能,各航天大国均将其列为空间光学遥感器的首选优质反射镜材料之一。
大型空间光学遥感器的光学系统多为折射式或折反射式结构,增大主反射镜口径是空间光学系统提高分辨率的主要途径之一。随着主反射镜尺寸的增加,镜坯自重也越来越大,而镜体支撑结构的质量也随之增大,导致发射载荷急剧增加,发射成本也越来越高。因而,除了采用比刚度高的新型材料,实现镜坯轻量化结构也是必要的,轻量化的前提则是保证镜体具有足够的刚度。反射镜的轻量化结构可以分为两大类,包括外形结构,如背面平板型、单拱形、弯月面型、双面凹型等;加强筋结构,如三角形、正方形、六边形、扇形、圆形、异性蜂窝等。轻量化结构带来诸多优点的同时,也导致镜坯形状的复杂化,尤其是结构刚度更高的半开放式结构。对于高硬耐磨的碳化硅陶瓷反射镜,加工难度、同期和成本非常高,因而这是制备大口径反射镜要解决的核心问题之一。
目前轻量化反射镜坯的成型工艺主要有:注射成型、凝胶注模成型、压力成型等。注射成型是将碳化硅/树脂基复合粉料加入模具中,在适当的压力和温度下完成固化,得到毛坯。最后进行热解、机械加工,得到反射镜的轻量化结构。该方法存在素坯均匀性差、毛坯脱脂过程易产生缺陷、轻量化结构获得困难、直接成型难度大、素坯中存在较大的应力、不易制备大尺寸的陶瓷件等缺陷。凝胶注模成型是通过高分子单体和交联剂的聚合形成空间三维网状分子链,按照模具形状原位固定浆料中悬浮的碳化硅颗粒,得到轻量化碳化硅坯体。该工艺得到的素坯内部均匀、素坯抗弯强度高,但存在坯体中气孔不易消除、不易脱模等缺陷。压力成型是将造粒粉压制成镜坯,然后按要求对镜坯进行机械加工,完成整块镜坯的外形尺寸及轻量化结构加工,最后进行烧结。该方法均匀化程度高、弹性模量和抗弯强度较高、抛光性能好,但存在对设备要求高、只能实现镜坯整体的全开放式轻量化结构,不能适应轻量化复杂结构的要求等缺点。
发明内容
本发明所要解决的技术问题是,克服以上现有技术的缺点:提供一种解决轻量化复杂结构碳化硅反射镜制备困难的问题,适合制备任何复杂结构形状的碳化硅反射镜,提高碳化硅反射镜的轻量化率,无需模具、素坯无需后续机械加工、工艺简单、周期短、成本低、可实现近净尺寸的成型的碳化硅反射镜的3D打印制备方法。
本发明的技术解决方案如下:一种碳化硅反射镜的3D打印制备方法,包括以下步骤:
(1)构建碳化硅反射镜的三维模型,将三维模型数据转换为STL格式文件;
(2)用3D打印机的分层软件对STL格式文件进行分层处理,然后将分层数据导入制造程序中;
(3)将原料粉末、固化剂、增塑剂、分散剂、消泡剂加入到去离子水中混合均匀制备成塑性泥料;将塑性泥料置于真空练泥机中进行练泥;
(4)将练泥后的塑性泥料加入到3D打印机的料筒中,将料筒温度加热到50~250℃,保温5~30min;3D打印机的喷头在制造程序的控制下,根据步骤(2)中的分层数据挤出塑性泥料形成挤出丝并打印出截面薄层,所述挤出丝中的固化剂在固化温度下开始固化,形成截面薄层的实体,通过层层打印堆积,制得碳化硅反射镜坯体;
(5)将碳化硅反射镜坯体在固化温度下固化10~60min后,置于烘箱中于40~120℃干燥10~120min;
(6)将干燥后的碳化硅反射镜坯体进行脱蜡、烧结、机加工及平面抛光处理制得碳化硅反射镜。
步骤(3)中所述的塑性泥料组成为:原料粉末的含量为70~95wt%;固化剂含量为0.1~20wt%;分散剂的含量为0.1~10wt%;消泡剂的含量为0.1~10wt%;增塑剂的含量为0.1~10wt%;余量为去离子水。
作为优化,所述的原料粉末为碳化硅粉、碳化硼粉和碳粉的混合粉,混合粉中各组分含量为碳化硅粉90wt%~98wt%,碳化硼粉0.1wt%~5wt%,碳粉1wt%~9wt%。
作为进一步优化,所述的原料粉末也可以为碳化硅粉与碳粉的混合粉,其中,碳化硅粉的质量百分比占60wt%~85wt%。
所述碳粉为石墨粉、炭黑、石油焦、焦炭、树脂碳、游离碳中的一种或多种。
所述碳化硅粉的平均粒径为0.3~100μm。
所述原料粉末的平均粒径为0.5~100μm。
所述的固化剂为水溶性溶胶、有机单体和交联剂的混合物、热塑性材料。
所述水溶性溶胶如硅溶胶、海藻酸钠、明胶、琼脂糖;所述有机单体和交联剂的混合物如丙烯酰胺和亚甲基双丙烯酰胺;热塑性材料如石蜡以及聚乙烯、聚丙烯、聚丁烯、聚苯乙烯等热塑性树脂。
所述喷头的喷孔直径为30μm~5mm,料筒加热温度为30~250℃,挤出后固化温度为-30℃~120℃,塑性泥料挤出速度为0.01~500mm/s,挤出丝与丝之间的间距为0.01~10mm,层高为1μm~10mm;打印时所述喷头移动速度为1~1500mm/s。
所述的分散剂为氨水、四甲基氢氧化铵、柠檬酸盐、聚丙烯酸盐、六磷偏酸钠、聚醚酰亚胺、阿拉伯树胶、三聚磷酸钠、聚乙二醇、水玻璃、三乙醇胺、聚羧酸铵盐、聚乙烯亚胺中的一种或几种。
所述的消泡剂为正辛醇、正丁醇、磷酸三丁酯、烷基硅油、乙二醇中的一种。
所述的增塑剂为聚乙二醇、丙三醇中的一种。
本发明的有益效果是:本发明首次将3D打印技术应用于轻量化反射镜坯体的制备,该方法不受轻量化反射镜坯体的形状和尺寸的限制,可以快速制备出精度高、相对密度高的坯体。无需模具,无需后续机械加工,结合塑性泥料以及具体工艺为轻量化反射镜坯体的制备提供了新的工艺方法,大大降低了轻量化反射镜坯体的生产周期、成本和难度,适用于无压或有压烧结,实现了轻量化反射镜坯体的快速无模制造,为轻量化反射镜坯体的成型提供了一种新的制备方法。
具体实施方式
下面用具体实施例对本发明做进一步详细说明,但本发明不仅局限于以下具体实施例。
实施例一
一种碳化硅反射镜的3D打印制备方法,包括以下步骤:
(1)三维模型的建立。用Pro/E或AutoCAD软件构造轻量化碳化硅反射镜的三维模型,并将三维模型数据转换为STL格式文件;
(2)采用3D打印机的分层软件将三维模型进行分层处理,分层后的数据导入3D打印机的制造程序中;
(3)设置3D打印机的打印参数:喷孔直径为0.5mm,料筒挤出速度为0.1mm/s,打印单层的层高为0.4mm,挤出丝与挤出丝之间的间距为0.45mm,打印速度即打印时所述喷头移动速度为100mm/s。
(4)将15g琼脂糖溶解到100g去离子水中,取500g粒径为0.5μm的α-SiC粉、10g石墨粉、5g碳化硼粉、15g磷酸三丁酯、15gPEG400,3g聚丙烯酸铵,搅拌混合得到塑性泥料;
(5)将塑性泥料在真空练泥机中进行练泥,使泥料混合均匀并除气;
(6)将练泥后的泥料置于3D打印机的料筒中,开始加热料筒,设置料筒加热温度为50℃;保温20min后步进机开始挤出塑性泥料,3D打印机的喷头在制造程序的控制下,挤出塑性泥料形成挤出丝并打印出截面薄层,并在室温下固化,进行快速成型,通过层层打印堆积,制得碳化硅反射镜坯体;
(7)将固化成型的碳化硅反射镜坯体在60℃下干燥30min,然后在120℃下干燥2h;
(8)将干燥后的碳化硅反射镜坯体进行脱蜡。脱蜡温度曲线为:从室温升温至160℃保温1h,然后升温至600℃保温1h,接着升温至850℃保温2h;
(9)将脱蜡后的碳化硅反射镜坯体包埋在Si粒中,在真空下进行反应烧结;烧结温度为1650℃,保温时间2h,烧结密度达到3.08g/cm3以上,弯曲强度达到350~400MPa。
(10)对烧结得到的碳化硅反射镜坯体进行机加工及平面抛光处理。
实施例二
本实施例与实施例一不同的是,步骤(3)中喷头孔径为0.4mm,料筒挤出速度即塑性泥料的挤出速度为0.08mm/s,层高为0.3mm,挤出丝与挤出丝之间的间距为0.35mm;喷头打印速度为80mm/s,步骤(4)中采用的固化剂为海藻酸钠,在步骤(9)中烧结温度为1550℃,保温时间为2h,烧结密度达到3.08g/cm3以上,弯曲强度达到350~400MPa。
实施例三
本实施例与实施例一不同的是,步骤(3)中喷头孔径为0.2mm,料筒挤出速度为0.06mm/s,层高为0.15mm,挤出丝与挤出丝之间的填充间距为0.1mm;喷头打印速度为80mm/s,步骤(4)中去离子水中为120g,石墨粉为25g,采用的固化剂为丙烯酰胺和亚甲基双丙烯酰胺,烧结密度达到3.08g/cm3以上,弯曲强度达到350~400MPa。
实施例四
本实施例与实施例一不同的是,在步骤(4)中采用的成分是7g石蜡,100g去离子水,350g粒径为0.5μm的α-SiC粉,2g碳化硼粉,3g四甲基氢氧化铵,2g磷酸三丁酯,2g聚乙二醇搅拌混合得到塑性泥料;步骤(9)中坯体在真空气氛下于2100℃烧结2h,烧结密度达到3.14g/cm3以上,弯曲强度达到400~450MPa。
以上仅是本发明的特征实施范例,对本发明保护范围不构成任何限制。凡采用同等交换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。

Claims (10)

1.一种碳化硅反射镜的3D打印制备方法,其特征在于:包括以下步骤:
(1)构建碳化硅反射镜的三维模型,将三维模型数据转换为STL格式文件;
(2)用3D打印机的分层软件对STL格式文件进行分层处理,然后将分层数据导入制造程序中;
(3)将原料粉末、固化剂、增塑剂、分散剂、消泡剂加入到去离子水中混合均匀制备成塑性泥料;将塑性泥料置于真空练泥机中进行练泥;
(4)将练泥后的塑性泥料加入到3D打印机的料筒中,将料筒温度加热到50~250℃,保温5~30min;3D打印机的喷头在制造程序的控制下,根据步骤(2)中的分层数据挤出塑性泥料形成挤出丝并打印出截面薄层,所述挤出丝中的固化剂在固化温度下开始固化,形成截面薄层的实体,通过层层打印堆积,制得碳化硅反射镜坯体;
(5)将碳化硅反射镜坯体在固化温度下固化10~60min后,置于烘箱中于40~120℃干燥10~120min;
(6)将干燥后的碳化硅反射镜坯体进行脱蜡、烧结、机加工及平面抛光处理制得碳化硅反射镜。
2.根据权利要求1所述的碳化硅反射镜的3D打印制备方法,其特征在于:步骤(3)中所述的塑性泥料组成为:原料粉末的含量为70~95wt%;固化剂含量为0.1~20wt%;分散剂的含量为0.1~10wt%;消泡剂的含量为0.1~10wt%;增塑剂的含量为0.1~10wt%;余量为去离子水。
3.根据权利要求2所述的碳化硅反射镜的3D打印制备方法,其特征在于:所述的原料粉末为碳化硅粉、碳化硼粉和碳粉的混合粉,混合粉中各组分含量为碳化硅粉90wt%~98wt%,碳化硼粉0.1wt%~5wt%,碳粉1wt%~9wt%。
4.根据权利要求2所述的碳化硅反射镜的3D打印制备方法,其特征在于:所述的原料粉末为碳化硅粉与碳粉的混合粉,其中,碳化硅粉的质量百分比占60wt%~85wt%。
5.根据权利要求3或4所述的碳化硅反射镜的3D打印制备方法,其特征在于:所述碳粉为石墨粉、炭黑、石油焦、焦炭、树脂碳、游离碳中的一种或多种。
6.根据权利要求3或4所述的碳化硅反射镜的3D打印制备方法,其特征在于:所述碳化硅粉的平均粒径为0.3~100μm,所述原料粉末的平均粒径为0.5~100μm。
7.根据权利要求2所述的碳化硅反射镜的3D打印制备方法,其特征在于:所述的固化剂为水溶性溶胶、有机单体和交联剂的混合物、热塑性材料。
8.根据权利要求1所述的碳化硅反射镜的3D打印制备方法,其特征在于:所述喷头的喷孔直径为30μm~5mm,料筒加热温度为30~250℃,挤出后固化温度为-30℃~120℃,塑性泥料挤出速度为0.01~500mm/s,挤出丝与丝之间的间距为0.01~10mm,层高为1μm~10mm,打印时所述喷头移动速度为1~1500mm/s。
9.根据权利要求2所述的碳化硅反射镜的3D打印制备方法,其特征在于:所述的分散剂为氨水、四甲基氢氧化铵、柠檬酸盐、聚丙烯酸盐、六磷偏酸钠、聚醚酰亚胺、阿拉伯树胶、三聚磷酸钠、聚乙二醇、水玻璃、三乙醇胺、聚羧酸铵盐、聚乙烯亚胺中的一种或几种。
10.根据权利要求2所述的碳化硅反射镜的3D打印制备方法,其特征在于:所述的增塑剂为聚乙二醇、丙三醇中的一种。
CN201510663267.3A 2015-10-15 2015-10-15 碳化硅反射镜的3d打印制备方法 Pending CN105269654A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510663267.3A CN105269654A (zh) 2015-10-15 2015-10-15 碳化硅反射镜的3d打印制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510663267.3A CN105269654A (zh) 2015-10-15 2015-10-15 碳化硅反射镜的3d打印制备方法

Publications (1)

Publication Number Publication Date
CN105269654A true CN105269654A (zh) 2016-01-27

Family

ID=55139933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510663267.3A Pending CN105269654A (zh) 2015-10-15 2015-10-15 碳化硅反射镜的3d打印制备方法

Country Status (1)

Country Link
CN (1) CN105269654A (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105965887A (zh) * 2016-05-03 2016-09-28 广东智维立体成型科技有限公司 基于选择性抑制烧结技术的3d模型支撑结构算法实现方法
CN106046808A (zh) * 2016-06-06 2016-10-26 芜湖启泽信息技术有限公司 一种3d打印泥
CN106083059A (zh) * 2016-06-15 2016-11-09 武汉理工大学 基于激光3d打印技术的复杂结构碳化硅陶瓷零件制造方法
CN106316440A (zh) * 2016-08-19 2017-01-11 华中科技大学 一种基于激光选区烧结的复杂结构多孔陶瓷的制备方法
CN106431357A (zh) * 2016-08-31 2017-02-22 淄博高新技术产业开发区先进陶瓷研究院 用于3d打印成型的陶瓷膏体、膏体的制备方法及其应用
CN107098717A (zh) * 2017-04-07 2017-08-29 武汉理工大学 一种过滤用多孔陶瓷的三维打印成型制备方法
CN108318952A (zh) * 2017-09-04 2018-07-24 哈尔滨工业大学 基于3D打印和金刚石切削加工的SiC光学反射镜的制造工艺
CN108394903A (zh) * 2018-04-23 2018-08-14 刘焕新 一种纳米级碳化硅微粉的制备方法
CN109534845A (zh) * 2018-12-26 2019-03-29 华侨大学 一种多孔陶瓷砂轮及其制备方法
CN110922190A (zh) * 2019-12-12 2020-03-27 北京理工大学 一种碳化硅陶瓷空间反射镜的数字光处理增材制造方法
CN111112614A (zh) * 2019-12-30 2020-05-08 上海微电子装备(集团)股份有限公司 一种光学金属镜的制作方法及光学金属镜
CN111452356A (zh) * 2020-03-30 2020-07-28 林位勤 压敏胶膜3d打印成型的方法
CN112776384A (zh) * 2020-11-30 2021-05-11 中国科学院上海高等研究院 一种内部冷却光学反射镜及其制备方法
CN112904466A (zh) * 2020-12-29 2021-06-04 中国科学院长春光学精密机械与物理研究所 利用3d打印技术制备碳纤维反射镜的方法
RU2753304C2 (ru) * 2016-07-14 2021-08-13 Фосеко Интернэшнл Лимитед Керамические изделия и способы их производства
EP4000928A1 (en) * 2020-11-18 2022-05-25 3M Innovative Properties Company Ink composition for 3d printing, process for making a ceramic green body by 3d printing, and process for making a sintered ceramic component part

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101315436A (zh) * 2007-06-01 2008-12-03 哈尔滨工业大学 超大尺寸碳化硅空间反射镜坯体的制造方法
CN103692654A (zh) * 2014-01-10 2014-04-02 中国科学院长春光学精密机械与物理研究所 立体打印技术制作三维周期结构超材料的方法
CN103817767A (zh) * 2014-03-14 2014-05-28 邓湘凌 应用3d打印技术的陶瓷产品制作方法
CN104149337A (zh) * 2014-07-02 2014-11-19 中国电子科技集团公司第五十五研究所 一种用于三维打印的光固化材料及其应用方法
US20150027239A1 (en) * 2013-07-23 2015-01-29 Lamplight Games System and method for 3d printer material management
CN104526838A (zh) * 2014-12-30 2015-04-22 宁波伏尔肯机械密封件制造有限公司 陶瓷3d打印成型的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101315436A (zh) * 2007-06-01 2008-12-03 哈尔滨工业大学 超大尺寸碳化硅空间反射镜坯体的制造方法
US20150027239A1 (en) * 2013-07-23 2015-01-29 Lamplight Games System and method for 3d printer material management
CN103692654A (zh) * 2014-01-10 2014-04-02 中国科学院长春光学精密机械与物理研究所 立体打印技术制作三维周期结构超材料的方法
CN103817767A (zh) * 2014-03-14 2014-05-28 邓湘凌 应用3d打印技术的陶瓷产品制作方法
CN104149337A (zh) * 2014-07-02 2014-11-19 中国电子科技集团公司第五十五研究所 一种用于三维打印的光固化材料及其应用方法
CN104526838A (zh) * 2014-12-30 2015-04-22 宁波伏尔肯机械密封件制造有限公司 陶瓷3d打印成型的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨恩泉: "3D打印技术对航空制造业发展的影响", 《航空科学技术》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105965887A (zh) * 2016-05-03 2016-09-28 广东智维立体成型科技有限公司 基于选择性抑制烧结技术的3d模型支撑结构算法实现方法
CN106046808A (zh) * 2016-06-06 2016-10-26 芜湖启泽信息技术有限公司 一种3d打印泥
CN106083059A (zh) * 2016-06-15 2016-11-09 武汉理工大学 基于激光3d打印技术的复杂结构碳化硅陶瓷零件制造方法
RU2753304C2 (ru) * 2016-07-14 2021-08-13 Фосеко Интернэшнл Лимитед Керамические изделия и способы их производства
US12071379B2 (en) 2016-07-14 2024-08-27 Foseco International Limited Ceramic objects and methods for manufacturing the same
CN106316440B (zh) * 2016-08-19 2020-01-14 华中科技大学 一种基于激光选区烧结的复杂结构多孔陶瓷的制备方法
CN106316440A (zh) * 2016-08-19 2017-01-11 华中科技大学 一种基于激光选区烧结的复杂结构多孔陶瓷的制备方法
CN106431357A (zh) * 2016-08-31 2017-02-22 淄博高新技术产业开发区先进陶瓷研究院 用于3d打印成型的陶瓷膏体、膏体的制备方法及其应用
CN107098717A (zh) * 2017-04-07 2017-08-29 武汉理工大学 一种过滤用多孔陶瓷的三维打印成型制备方法
CN108318952A (zh) * 2017-09-04 2018-07-24 哈尔滨工业大学 基于3D打印和金刚石切削加工的SiC光学反射镜的制造工艺
CN108318952B (zh) * 2017-09-04 2020-04-24 哈尔滨工业大学 基于3D打印和金刚石切削加工的SiC光学反射镜的制造工艺
CN108394903A (zh) * 2018-04-23 2018-08-14 刘焕新 一种纳米级碳化硅微粉的制备方法
CN109534845A (zh) * 2018-12-26 2019-03-29 华侨大学 一种多孔陶瓷砂轮及其制备方法
CN110922190A (zh) * 2019-12-12 2020-03-27 北京理工大学 一种碳化硅陶瓷空间反射镜的数字光处理增材制造方法
CN110922190B (zh) * 2019-12-12 2021-10-19 北京理工大学 一种碳化硅陶瓷空间反射镜的数字光处理增材制造方法
CN111112614A (zh) * 2019-12-30 2020-05-08 上海微电子装备(集团)股份有限公司 一种光学金属镜的制作方法及光学金属镜
CN111452356A (zh) * 2020-03-30 2020-07-28 林位勤 压敏胶膜3d打印成型的方法
EP4000928A1 (en) * 2020-11-18 2022-05-25 3M Innovative Properties Company Ink composition for 3d printing, process for making a ceramic green body by 3d printing, and process for making a sintered ceramic component part
WO2022107038A1 (en) * 2020-11-18 2022-05-27 3M Innovative Properties Company Ink composition for 3d printing, process for making a ceramic green body by 3d printing, and process for making a sintered ceramic component part
CN112776384A (zh) * 2020-11-30 2021-05-11 中国科学院上海高等研究院 一种内部冷却光学反射镜及其制备方法
CN112904466A (zh) * 2020-12-29 2021-06-04 中国科学院长春光学精密机械与物理研究所 利用3d打印技术制备碳纤维反射镜的方法
CN112904466B (zh) * 2020-12-29 2022-06-07 中国科学院长春光学精密机械与物理研究所 利用3d打印技术制备碳纤维反射镜的方法

Similar Documents

Publication Publication Date Title
CN105269654A (zh) 碳化硅反射镜的3d打印制备方法
CN104526838B (zh) 陶瓷3d打印成型的方法
CN106278201B (zh) 一种直接成型3d陶瓷打印用瘠性陶瓷粉体浆料及其制备方法和应用
CN106242507B (zh) 一种直接成型3d陶瓷打印用粘土泥料及其制备方法和应用
CN106278335B (zh) 一种纤维定向增韧陶瓷基复合材料涡轮叶片的制造方法
CN103113124B (zh) 一种纤维增韧SiC陶瓷基复合材料三维构件的制备方法
CN100482614C (zh) 利用胶态成型工艺制备轻质、高强度陶瓷材料的方法
CN101837427B (zh) 激光烧结砂及其制备方法和砂芯及其制备方法
CN103273662B (zh) 低热膨胀碳纤维增强树脂基复合材料模具的制备方法
CN108033802A (zh) 基于凝胶注模3d打印的纤维增强陶瓷异型件成型方法
CN106495699A (zh) 一种SLS技术与PIP技术相结合制备高强度耐高温SiC陶瓷导弹头外壳的方法
CN103817767A (zh) 应用3d打印技术的陶瓷产品制作方法
Tang et al. Layered extrusion forming—a simple and green method for additive manufacturing ceramic core
CN105618678A (zh) 一种环保精铸模壳的制备方法
CN108069706A (zh) 一种基于3d打印技术的纤维增强陶瓷薄壁件的成型方法
CN109482886A (zh) 一种3d打印陶瓷与纤维复合增强铝基材料的制备方法
CN110950651A (zh) 一种基于墨水直书写3d打印技术制备多级多孔陶瓷的方法
CN101665609A (zh) 树脂基复合材料用水溶性模具材料及制作水溶性模具方法
CN107790624A (zh) 一种利用3dp打印技术制备消失模的方法
CN101913878A (zh) 一种制备碳化硅颗粒增强氮化硅复相陶瓷零件的方法
CN110560668A (zh) 陶瓷空心球/金属基复合泡沫材料的重力铸造方法及设备
CN108083812A (zh) 一种复杂结构陶瓷基零件的增材制作方法
CN105619572A (zh) 一种陶瓷材料的3d打印成型方法
CN104658917B (zh) 一种含高体积分数SiC的金属基复合电子封装件的制备方法
CN104496479A (zh) 一种碳化硅陶瓷制品及其无模成型方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160127

RJ01 Rejection of invention patent application after publication