CN105243478A - 一种基于浴盆失效曲线的水电机组劣化评估方法 - Google Patents

一种基于浴盆失效曲线的水电机组劣化评估方法 Download PDF

Info

Publication number
CN105243478A
CN105243478A CN201510626806.6A CN201510626806A CN105243478A CN 105243478 A CN105243478 A CN 105243478A CN 201510626806 A CN201510626806 A CN 201510626806A CN 105243478 A CN105243478 A CN 105243478A
Authority
CN
China
Prior art keywords
estimate
evaluation
index
deterioration
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510626806.6A
Other languages
English (en)
Other versions
CN105243478B (zh
Inventor
唐卫平
肖剑
寇攀高
田海平
黄波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Hunan Electric Power Co Ltd
State Grid Hunan Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Hunan Electric Power Co Ltd
State Grid Hunan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Hunan Electric Power Co Ltd, State Grid Hunan Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201510626806.6A priority Critical patent/CN105243478B/zh
Publication of CN105243478A publication Critical patent/CN105243478A/zh
Application granted granted Critical
Publication of CN105243478B publication Critical patent/CN105243478B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

本发明公开了一种基于浴盆失效曲线的水电机组劣化评估方法,该方法充分考虑机组从安装到最终超期服役的浴盆失效路径,采用三种不同的劣化模型对单个指标进行评价,使机组不同指标能够精确表征机组早期、中期和晚期的劣化程度。同时综合考虑家族缺陷,巡检记录等现场数据,对各个方面的指标进行变权重加权计算,最终得到机组综合劣化程度和评级,指导机组维修决策和超期服役运行,本发明能够有效评估水电机组的劣化程度,具有很好的经济效益和工程价值。

Description

一种基于浴盆失效曲线的水电机组劣化评估方法
技术领域
本发明涉及水电机组状态评价领域,具体涉及一种基于浴盆失效曲线的水电机组劣化评估方法。
背景技术
随着全球应对气候变化呼声的日益高涨以及能源短缺、能源供应安全形势的日趋严峻,水电作为可再生能源以其清洁、安全、永续的特点,在各国能源战略中的地位不断提高。然而随着水电机组运行过程中受冲蚀、磨损、交互应力等因素作用,各个部件的性能会随着服役时间的增加而逐渐退化。其设备性能的可靠性对电网的安全稳定起重要影响,如发生故障将可能导致机组进行停机检修,从而扰乱电厂的常规运行,造成严重经济损失,甚至发生电网解列等灾难性事故。
目前对水电机组性能劣化的表征方式和指标构建研究缺乏工程实践的适用性。一方面水电机组在安装、运行与超期服役期间,各类性能指标往往对于机组性能劣化的敏感度不一致。当前评估则采用简单的单一限值方法,不符合机组实际劣化情况。其次我国多采用根据在机组部件的关键点的振动测量结果来进行评价,没有包含机组的初始设计问题和渐变型缺陷变化等特征,不能全面反映水电机组综合劣化程度。最后,随着机组运行时间的推移,振动区的变化对机组性能起着至关重要的影响,综合分析振动区变化,是机组劣化分析评价的热点问题之一。
发明内容
针对上述问题,本发明目的是提供一种基于浴盆失效曲线的水电机组劣化评估方法,对于水电机组不同部件、各个时期可快速构建能够符合实际的多因素劣化评价,从而实现对水电机组高效、可靠的劣化评价和维修决策。
本发明的技术方案为:
一种基于浴盆失效曲线的水电机组劣化评估方法,包括以下步骤:
步骤一:构建劣化评价模型,包括常规数值型评价模型和振动区改变评价模型;
步骤二:通过自动采集和人工输入两种方式获取劣化评估所需的数据,包括各个指标的实时测值和振动摆度数据;
步骤三:将步骤二获取数据,代入步骤一中的劣化评价模型,计算得到各个指标的实时测值劣化评价值Lr和振动区改变劣化评价值Lt
步骤四:将步骤三计算得到的各部件的不同指标的实时测值劣化评价值Lr和振动区改变劣化评价值Lt,进行加权计算,得到各部件的综合劣化评价值Lb
步骤五:将步骤四计算得到的机组的不同部件的综合劣化评价值Lb,进行加权计算,得到机组的综合劣化评价值Ljz
所述步骤一包括以下步骤:
(A)构建常规数值型评价模型::
其中,Lr_e1为机组安装试运行阶段的劣化评价值,其计算方法为:
L r _ e 1 = { 0 V r ≥ V m a x 100 V r ≤ V min 100 × e - k 1 V r - V m i n V max - V m i n V m i n ≤ V r ≤ V m a x - - - ( 1 )
Lr_linear为机组正常运行阶段的劣化评价值,其计算方法为:
L r _ l i n e a r = { 0 V r ≥ V m a x 100 V r ≤ V m i n 100 × V m a x - V r V max - V min V min ≤ V r ≤ V m a x - - - ( 2 )
Lr_e2为机组老化服役阶段的劣化评价值,其计算方法为:
L r _ e 2 = { 0 r r ≥ V m a x 100 V r ≤ V min 100 × ( 1 - e - k 2 V max - V r V max - V min ) V min ≤ V r ≤ V m a x - - - ( 3 )
在(1)、(2)、(3)式中,Vr为指标的实时测值,Vmax为指标参数的极端值,在此测值下,该指标的劣化评价值(健康指标)为0;Vmin为指标的极优值,在此测值下,该指标的劣化评价值(健康指标)为100(最高分);Vmax和Vmin根据相关国家标准中的限值规定选取;式中k1、k2为劣化趋势因子,分别用于控制模型Lr_e1、模型Lr_e2中的退化速度;
三种不同的常规数值型评价模型Lr_e1、Lr_linear、Lr_e2构建原理为:三种模型分别对应浴盆曲线的早期、中期(浴盆曲线的底部区域)和晚期;Lr_e1模型针对早期安装试运行阶段的新机组,其特点为初期退化速度快,而在后期退化速度慢,对应浴盆早期。Lr_linear模型针对正常退化过程的机组,其特点为在整个寿命过程中退化速度均等,对应浴盆曲线的底部区域。而Lr_e2模型针对超期服役阶段的机组,其特点为初期退化速度慢,而在后期退化速度快,对应浴盆后期,该模型呈指数速度发展。Vmax和Vmin按照如《GB/T15468-2006水轮机基本技术条件》等国标内的相应限值选取。
(B)构建振动区改变劣化评价模型:
L t = W t _ w ( 1 - | ΔP r - Δ P Δ P | ) + W t _ c ( 1 - | P r _ a v e - P a v e P a v e | ) W t _ w + W t _ c
其中,Pmax和Pmin分别为设计振动区的最大最小值;Pr_max和Pr_min为实际振动区的最大最小值,△P=Pmax-Pmin,为设计振动区的宽度;△Pr=Pr_max-Pr_min,为实际振动区的宽度;为设计振动区的中心负荷;为实际振动区的中心负荷;Wj_w为振动区范围发生改变导致的劣化值对应权重;Wj_c为振动区发生偏移导致的劣化值对应权重。
构建原理为振动区范围扩大或缩小减分(以设计的振动区为满分);振动区范围平移减分(以设计的振动区为满分)。
所述步骤二中,通过自动采集方式获取的数据是指通过监控和监测系统自动测量获取的数据,包括机组摆度、振动、压力脉动、温度、效率和起停机降速时间;人工输入的数据包括人工测量、计算或者仿真获得的指标,以及除监控和监测系统之外的其它系统或者装置测量得到并通过人工输入接口输入录入的指标。
所述步骤三包括以下步骤:根据机组所处阶段,将步骤二获取的各个指标的实时测值,代入步骤一中相应的常规数值型评价模型,计算各个指标的实时测值劣化评价值Lr
将步骤二获取的振动摆度数据,代入步骤一中的振动区改变劣化评价模型,计算各个指标的振动区改变劣化评价值Lt
所述步骤四具体为:将步骤三计算得到的各部件不同指标的实时测值劣化评价值Lr和振动区改变劣化评价值Lt,进行加权计算,得到各部件的综合劣化评价值Lb;计算公式为:
L b = Σ k = 1 K ( L r k W r k + L t k W t k ) Σ k = 1 K ( W r k + W t k ) · 100 % - L f - L x
其中,K为参与部件综合劣化评价的指标个数,Lrk为步骤三计算得到的第k个指标的实时测值劣化评价值,Ltk为步骤三得到的第k个指标的振动区变化劣化评值,Wrk为第k个指标的实时测值劣化评价值对应的权重,Wtk为第k个指标的振动区变化劣化评价值对应的权重;Lf为该部件的家族劣化值;部件中由于设计、制造缺陷而导致的不可更改的先天缺陷,必然导致该部件的评价降低,在本发明中部件的先天缺陷由人工经验确定固定的家族劣化值Lf,在部件的综合评价中,减去Lf,即家族缺陷扣分;Lx为该部件巡检劣化值;根据人工巡检过程中发现的设备缺陷,由人工设定的巡检劣化值Lx。在部件的综合评价中,减去这个Lx,即巡检扣分。部件的家族劣化值和巡检劣化值通过专家人工分析同类家族设备的故障情况数据和巡检数据,进行人工评级从而得到相应评价值;以家族劣化值为例,将初始设计分为以下五级:优秀、良好、正常、有微小设计缺陷和有重大设计缺陷,分别对应的家族劣化值(家族缺陷扣分)Lf为0、5、10、15、20。
所述步骤五具体为:将步骤四计算得到的机组的不同部件的综合劣化评价值Lb,进行加权计算,得到机组的综合劣化评价值Ljz;计算公式为:
L j z = Σ n = 1 N ( L b n W b n ) Σ n = 1 N ( W b n ) · 100 %
其中,N为参与机组综合劣评价的部件个数,Lbn为步骤四计算得到的第n个部件的综合劣化评价值,Wbn为第n个部件的综合劣化评价值对应的权重。
参与机组综合劣化评价的部件名称、各部件的综合劣化评价值对应的权重、参与各部件综合劣化评价的指标名称、各指标的实时测值劣化评价值对应的权重和各指标的振动区变化劣化评价值对应的权重如下表:
上述的基于浴盆失效曲线的水电机组劣化评估方法,还包括步骤六:设定机组的综合劣化评价值Ljz的阈值为60和45,将机组的健康度划分为三个区间,分别为60以上、45以上60以下和45以下,分别记为A,B,C三个等级;判断步骤五得到的机组的综合劣化评价值Ljz所处等级,如果处于A等级则正常运行,如果处于B等级则需要加强巡视,如果在C等级则需要停机检修。
通常A等级的阈值按照机组长期运行累积的健康数据平均值可以计算得出,若无设计数值则可默认设定为60以上,而B、C等级则可以通过在健康数据平均值乘以一定修正系数得到,通常可以设定为45以上、45以下。
本发明对比现有技术有如下的有益效果:本发明状态评价方法是基于在线采集数据、振动区变化、家族先天性缺陷和人工巡检四方面进行评估,有效地利用了各个机组信息,克服了传统限值评价机组,评价指标不合理的问题,并且采用标准浴盆曲线信息,能够更加合理的描述机组在不同阶段的失效特征。最后通过人工指定各个评估参数的权重,可以得到合理准确的量化评价结果。
附图说明
图1水电机组暂态过程性能评估原理图
图2机组健康状态评价详细流程图
图3机组失效浴盆曲线示意图
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1和图2,本发明的一种基于浴盆失效曲线的水电机组劣化评估方法,包括以下步骤:
步骤一:构建劣化评价模型,包括常规数值型评价模型和振动区改变评价模型;
(A)构建常规数值型评价模型::
其中,Lr_e1为机组安装试运行阶段的劣化评价值,其计算方法为:
L r _ e 1 = { 0 V r ≥ V m a x 100 V r ≤ V min 100 × e - k 1 V r - V m i n V max - V m i n V m i n ≤ V r ≤ V m a x - - - ( 11 )
Lr_linear为机组正常运行阶段的劣化评价值,其计算方法为:
L r _ l i n e a r = { 0 V r ≥ V m a x 100 V r ≤ V m i n 100 × V m a x - V r V m a x - V m i n V min ≤ V r ≤ V m a x - - - ( 2 )
Lr_e2为机组老化服役阶段的劣化评价值,其计算方法为:
L r _ e 2 = { 0 V r ≥ V m a x 100 V r ≤ V min 100 × ( 1 - e - k 2 V max - V r V max - V min ) V min ≤ V r ≤ V m a x - - - ( 3 )
在(1)、(2)、(3)式中,Vr为指标的实时测值,Vmax为指标参数的极端值,在此测值下,该指标的劣化评价值(健康指标)为0;Vmin为指标的极优值,在此测值下,该指标的劣化评价值(健康指标)为100(最高分);Vmax和Vmin根据相关国家标准中的限值规定选取;式中k1、k2为劣化趋势因子,分别用于控制模型Lr_e1、模型Lr_e2中的退化速度;三种模型分别对应浴盆曲线的早期、中期(浴盆曲线的底部区域)和晚期,浴盆曲线的变化见图3;
(B)构建振动区改变劣化评价模型:
L t = W t _ w ( 1 - | ΔP r - Δ P Δ P | ) + W t _ c ( 1 - | P r _ a v e - P a v e P a v e | ) W t _ w + W t _ c
其中,其中,Pmax和Pmin分别为设计振动区的最大最小值;Pr_max和Pr_min为实际振动区的最大最小值,△P=Pmax-Pmin,为设计振动区的宽度;△Pr=Pr_max-Pr_min,为实际振动区的宽度;为设计振动区的中心负荷;为实际振动区的中心负荷;Wj_w为振动区范围发生改变导致的劣化值对应权重;Wj_c为振动区发生偏移导致的劣化值对应权重。
步骤二:通过自动采集和人工输入两种方式获取劣化评估所需的数据,包括各个指标的实时测值和振动摆度数据;通过自动采集方式获取的数据是指通过监控和监测系统自动测量获取的数据,包括机组摆度、振动、压力脉动、温度、效率和起停机降速时间;人工输入的数据包括人工测量、计算或者仿真获得的指标,以及除监控和监测系统之外的其它系统或者装置测量得到并通过人工输入接口输入录入的指标。
步骤三:根据机组所处阶段,将步骤二获取的各个指标的实时测值,代入步骤一中相应的常规数值型评价模型,计算各个指标的实时测值劣化评价值Lr
将步骤二获取的振动摆度数据,代入步骤一中的振动区改变劣化评价模型,计算各个指标的振动区改变劣化评价值Lt
步骤四:将步骤三计算得到的各部件不同指标的实时测值劣化评价值Lr和振动区改变劣化评价值Lt,进行加权计算,得到各部件的综合劣化评价值Lb;计算公式为:
L b = Σ k = 1 K ( L r k W r k + L t k W k ) Σ k = 1 K ( W r k + W k ) · 100 % - L f - L x
其中,K为参与部件综合劣化评价的指标个数,Lrk为步骤三计算得到的第k个指标的实时测值劣化评价值,Ltk为步骤三得到的第k个指标的振动区变化劣化评值,Wrk为第k个指标的实时测值劣化评价值对应的权重,Wtk为第k个指标的振动区变化劣化评价值对应的权重;Lf为该部件的家族劣化值;部件中由于设计、制造缺陷而导致的不可更改的先天缺陷,必然导致该部件的评价降低,在本发明中部件的先天缺陷由人工经验确定固定的家族劣化值Lf,在部件的综合评价中,减去Lf,即家族缺陷扣分;Lx为该部件巡检劣化值;根据人工巡检过程中发现的设备缺陷,由人工设定的巡检劣化值Lx。在部件的综合评价中,减去这个Lx,即巡检扣分。
步骤五:将步骤四计算得到的机组的不同部件的综合劣化评价值Lb,进行加权计算,得到机组的综合劣化评价值Ljz;计算公式为:
L j z = Σ n = 1 N ( L b n W b n ) Σ n = 1 N ( W b n ) · 100 %
其中,N为参与机组综合劣评价的部件个数,Lbn为步骤四计算得到的第n个部件的综合劣化评价值,Wbn为第n个部件的综合劣化评价值对应的权重。
进一步地,所述参与机组综合劣化评价的部件名称、各部件的综合劣化评价值对应的权重、参与各部件综合劣化评价的指标名称、各指标的实时测值劣化评价值对应的权重和各指标的振动区变化劣化评价值对应的权重按照下表进行设置:
其中参与机组综合劣化评价的部件个数、各部件的综合劣化评价值对应的权重、参与各部件综合劣化评价的指标个数、各指标的实时测值劣化评价值对应的权重和各指标的振动区变化劣化评价值对应的权重均可以进行调整,以更符合实际情况。
进一步地,设定机组的综合劣化评价值Ljz的阈值为60和45,将机组的健康度划分为三个区间,分别为60以上、45以上60以下和45以下,分别记为A,B,C三个等级;判断步骤五得到的机组的综合劣化评价值Ljz所处等级,如果处于A等级则正常运行,如果处于B等级则需要加强巡视,如果在C等级则需要停机检修;用以根据机组的综合劣化评价值Ljz进行检修决策。
本发明对比现有技术有如下的有益效果:本发明状态评价方法是基于在线采集数据、振动区变化、家族先天性缺陷和人工巡检四方面进行评估,有效地利用了各个机组信息,克服了传统限值评价机组,评价指标不合理的问题,并且采用标准浴盆曲线信息,能够更加合理的描述机组在不同阶段的失效特征。最后通过人工指定各个评估参数的权重,可以得到合理准确的量化评价结果。

Claims (7)

1.一种基于浴盆失效曲线的水电机组劣化评估方法,其特征在于,包括以下步骤:
步骤一:构建劣化评价模型,包括常规数值型评价模型和振动区改变评价模型;
步骤二:通过自动采集和人工输入两种方式获取劣化评估所需的数据,包括各个指标的实时测值和振动摆度数据;
步骤三:将步骤二获取数据,代入步骤一中的劣化评价模型,计算得到各个指标的实时测值劣化评价值Lr和振动区改变劣化评价值Lt
步骤四:将步骤三计算得到的各部件的不同指标的实时测值劣化评价值Lr和振动区改变劣化评价值Lt,进行加权计算,得到各部件的综合劣化评价值Lb
步骤五:将步骤四计算得到的机组的不同部件的综合劣化评价值Lb,进行加权计算,得到机组的综合劣化评价值Ljz
所述步骤一包括以下步骤:
(A)构建常规数值型评价模型::
其中,Lr_e1为机组安装试运行阶段的劣化评价值,其计算方法为:
L r _ e 1 = 0 V r ≥ V m a x 100 V r ≤ V min 100 × e - k 1 V r - V min V max - V min V m i n ≤ V r ≤ V m a x - - - ( 1 )
Lr_linear为机组正常运行阶段的劣化评价值,其计算方法为:
L r _ l i n e a r = 0 V r ≥ V m a x 100 V r ≤ V min 100 × V max - V r V max - V min V m i n ≤ V r ≤ V m a x - - - ( 2 )
Lr_e2为机组老化服役阶段的劣化评价值,其计算方法为:
L r _ e 2 = 0 V r ≥ V m a x 100 V r ≤ V min 100 × ( 1 - e - k 2 V max - V r V max - V min ) V m i n ≤ V r ≤ V m a x - - - ( 3 )
在(1)、(2)、(3)式中,Vr为指标的实时测值,Vmax为指标参数的极端值,在此测值下,该指标的劣化评价值为0;Vmin为指标的极优值,在此测值下,该指标的劣化评价值为100;其中Vmax和Vmin根据相关国家标准中的限值规定选取;式中k1、k2为劣化趋势因子,分别用于控制模型Lr_e1、模型Lr_e2中的退化速度;
(B)构建振动区改变劣化评价模型:
L t = W t _ w ( 1 - | ΔP r - Δ P Δ P | ) + W t _ c ( 1 - | P r _ a v e - P a v e P a v e | ) W t _ w + W t _ c
其中,Pmax和Pmin分别为设计振动区的最大最小值;Pr_max和Pr_min为实际振动区的最大最小值,△P=Pmax-Pmin,为设计振动区的宽度;△Pr=Pr_max-Pr_min,为实际振动区的宽度;为设计振动区的中心负荷;为实际振动区的中心负荷;Wj_w为振动区范围发生改变导致的劣化值对应权重;Wj_c为振动区发生偏移导致的劣化值对应权重。
2.根据权利要求1所述的基于浴盆失效曲线的水电机组劣化评估方法,其特征在于,所述步骤二中,通过自动采集方式获取的数据是指通过监控和监测系统自动测量获取的数据,包括机组摆度、振动、压力脉动、温度、效率和起停机降速时间;人工输入的数据包括人工测量、计算或者仿真获得的指标,以及除监控和监测系统之外的其它系统或者装置测量得到并通过人工输入接口输入录入的指标。
3.根据权利要求2所述的基于浴盆失效曲线的水电机组劣化评估方法,其特征在于,所述步骤三包括以下步骤:根据机组所处阶段,将步骤二获取的各个指标的实时测值,代入步骤一中相应的常规数值型评价模型,计算各个指标的实时测值劣化评价值Lr
将步骤二获取的振动摆度数据,代入步骤一中的振动区改变劣化评价模型,计算各个指标的振动区改变劣化评价值Lt
4.根据权利要求3所述的基于浴盆失效曲线的水电机组劣化评估方法,其特征在于,所述步骤四具体为:将步骤三计算得到的各部件不同指标的实时测值劣化评价值Lr和振动区改变劣化评价值Lt,进行加权计算,得到各部件的综合劣化评价值Lb;计算公式为:
L b = Σ k = 1 K ( L r k W r k + L t k W t k ) Σ k = 1 K ( W r k + W t k ) · 100 % - L f - L x
其中,K为参与部件综合劣化评价的指标个数,Lrk为步骤三计算得到的第k个指标的实时测值劣化评价值,Ltk为步骤三得到的第k个指标的振动区变化劣化评值,Wrk为第k个指标的实时测值劣化评价值对应的权重,Wtk为第k个指标的振动区变化劣化评价值对应的权重;Lf为该部件的家族劣化值,Lx为该部件巡检劣化值,两者的取值根据人工经验确定。
5.根据权利要求4所述的基于浴盆失效曲线的水电机组劣化评估方法,其特征在于,所述步骤五具体为:将步骤四计算得到的机组的不同部件的综合劣化评价值Lb,进行加权计算,得到机组的综合劣化评价值Ljz;计算公式为:
L j z = Σ n = 1 N ( L b n W b n ) Σ n = 1 N ( W b n ) · 100 %
其中,N为参与机组综合劣评价的部件个数,Lbn为步骤四计算得到的第n个部件的综合劣化评价值,Wbn为第n个部件的综合劣化评价值对应的权重。
6.根据权利要求5所述的基于浴盆失效曲线的水电机组劣化评估方法,其特征在于,参与机组综合劣化评价的部件名称、各部件的综合劣化评价值对应的权重、参与各部件综合劣化评价的指标名称、各指标的实时测值劣化评价值对应的权重和各指标的振动区变化劣化评价值对应的权重如下表:
7.根据权利要求1~6中任一项所述的基于浴盆失效曲线的水电机组劣化评估方法,其特征在于,还包括步骤六:设定机组的综合劣化评价值Ljz的阈值为60和45,将机组的健康度划分为三个区间,分别为60以上、45以上60以下和45以下,分别记为A,B,C三个等级;判断步骤五得到的机组的综合劣化评价值Ljz所处等级,如果处于A等级则正常运行,如果处于B等级则需要加强巡视,如果在C等级则需要停机检修。
CN201510626806.6A 2015-09-28 2015-09-28 一种基于浴盆失效曲线的水电机组劣化评估方法 Active CN105243478B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510626806.6A CN105243478B (zh) 2015-09-28 2015-09-28 一种基于浴盆失效曲线的水电机组劣化评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510626806.6A CN105243478B (zh) 2015-09-28 2015-09-28 一种基于浴盆失效曲线的水电机组劣化评估方法

Publications (2)

Publication Number Publication Date
CN105243478A true CN105243478A (zh) 2016-01-13
CN105243478B CN105243478B (zh) 2018-11-23

Family

ID=55041115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510626806.6A Active CN105243478B (zh) 2015-09-28 2015-09-28 一种基于浴盆失效曲线的水电机组劣化评估方法

Country Status (1)

Country Link
CN (1) CN105243478B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109032098A (zh) * 2018-08-28 2018-12-18 云南电网有限责任公司电力科学研究院 一种水电机组全工况单参数退化趋势分析方法
CN109473977A (zh) * 2018-11-26 2019-03-15 国网湖北省电力有限公司 一种计及风险的电力系统快速预防控制方法
CN112200451A (zh) * 2020-10-09 2021-01-08 华润电力技术研究院有限公司 空气预热器的检修周期计算方法和检修周期计算装置
CN112465136A (zh) * 2020-10-22 2021-03-09 国家电网有限公司 一种水电机组劣化预测方法和系统
CN115056266A (zh) * 2022-08-19 2022-09-16 南通云尖智能科技有限公司 基于plc的机械加工用机械臂智能故障检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102177A (ja) * 2002-09-17 2003-04-04 Hitachi Ltd 電力変換器の制御方法
JP4658089B2 (ja) * 2007-05-23 2011-03-23 三菱電機株式会社 発電機の運転計画策定装置、運転計画策定方法ならびに、その装置および方法を実行させるためのプログラム
CN103500425A (zh) * 2013-10-12 2014-01-08 国家电网公司 水电机组运行状态智能评价方法
CN203414278U (zh) * 2013-08-23 2014-01-29 中国水利水电科学研究院 一种水电机组振动异常状态实时检测系统
CN104463435A (zh) * 2014-11-20 2015-03-25 云南电网公司电力科学研究院 一种水电机组稳定运行区域在线分析与评价方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102177A (ja) * 2002-09-17 2003-04-04 Hitachi Ltd 電力変換器の制御方法
JP4658089B2 (ja) * 2007-05-23 2011-03-23 三菱電機株式会社 発電機の運転計画策定装置、運転計画策定方法ならびに、その装置および方法を実行させるためのプログラム
CN203414278U (zh) * 2013-08-23 2014-01-29 中国水利水电科学研究院 一种水电机组振动异常状态实时检测系统
CN103500425A (zh) * 2013-10-12 2014-01-08 国家电网公司 水电机组运行状态智能评价方法
CN104463435A (zh) * 2014-11-20 2015-03-25 云南电网公司电力科学研究院 一种水电机组稳定运行区域在线分析与评价方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109032098A (zh) * 2018-08-28 2018-12-18 云南电网有限责任公司电力科学研究院 一种水电机组全工况单参数退化趋势分析方法
CN109032098B (zh) * 2018-08-28 2021-04-09 云南电网有限责任公司电力科学研究院 一种水电机组全工况单参数退化趋势分析方法
CN109473977A (zh) * 2018-11-26 2019-03-15 国网湖北省电力有限公司 一种计及风险的电力系统快速预防控制方法
CN109473977B (zh) * 2018-11-26 2022-03-08 国网湖北省电力有限公司 一种计及风险的电力系统快速预防控制方法
CN112200451A (zh) * 2020-10-09 2021-01-08 华润电力技术研究院有限公司 空气预热器的检修周期计算方法和检修周期计算装置
CN112200451B (zh) * 2020-10-09 2024-05-14 深圳市出新知识产权管理有限公司 空气预热器的检修周期计算方法和检修周期计算装置
CN112465136A (zh) * 2020-10-22 2021-03-09 国家电网有限公司 一种水电机组劣化预测方法和系统
CN115056266A (zh) * 2022-08-19 2022-09-16 南通云尖智能科技有限公司 基于plc的机械加工用机械臂智能故障检测方法

Also Published As

Publication number Publication date
CN105243478B (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN105160489B (zh) 一种水电机组变权劣化评估系统及评估方法
CN106655159B (zh) 一种新能源电站一次调频能力测试系统及其测试方法
CN105243478A (zh) 一种基于浴盆失效曲线的水电机组劣化评估方法
TWI417746B (zh) 裝置的效能預測及故障檢測之方法
CN105866689B (zh) 电池组串运行状态的评估方法和装置
CN109740953A (zh) 一种风电机组的实时状态评估方法
CN104166788A (zh) 一种架空输电线路最佳经济寿命区间评估方法
CN105956785A (zh) 一种风力发电机组运行状态评判方法
CN103679282B (zh) 风电功率爬坡的预测方法
CN104952000A (zh) 基于马尔科夫链的风电机组运行状态模糊综合评价方法
CN104361236B (zh) 电力设备健康状态的评估方法
CN106355343A (zh) 一种配电网综合风险评估方法
CN106447205A (zh) 一种基于层次分析法的配电自动化终端状态评价方法
CN104700321A (zh) 一种输变电设备状态运行趋势分析方法
CN108629520B (zh) 一种微气象环境下的高压输电线路运行状态评估方法
CN102289731A (zh) 一种基于系统风险的输电设备状态检修方法
WO2020237847A1 (zh) 一种基于混合整数线性规划的配电网可靠性指标计算方法
CN106934142A (zh) 考虑多因素的变压器过负荷性能评价模型建模方法
CN108629491A (zh) 一种换流变检修质量综合评估方法
CN110080833A (zh) 一种改善机组调峰的汽轮机高调门调频能力的评估方法
CN106126901A (zh) 一种多维度信息融合的变压器可用状态在线评估方法
CN107292415A (zh) 一种智能表轮换时间的预测方法
CN102938024A (zh) 一种风电机组状态监测系统性能评估方法
Swierczynski et al. Lifetime investigations of a lithium iron phosphate (LFP) battery system connected to a wind turbine for forecast improvement and output power gradient reduction
CN105528742A (zh) 一种断路器失效概率评估方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant