CN105233340B - 医用聚乳酸熔融纺纤维多孔有序支架的制备方法 - Google Patents

医用聚乳酸熔融纺纤维多孔有序支架的制备方法 Download PDF

Info

Publication number
CN105233340B
CN105233340B CN201510689127.3A CN201510689127A CN105233340B CN 105233340 B CN105233340 B CN 105233340B CN 201510689127 A CN201510689127 A CN 201510689127A CN 105233340 B CN105233340 B CN 105233340B
Authority
CN
China
Prior art keywords
holder
polylactic acid
orderly
fiber
tetrahydrofuran solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510689127.3A
Other languages
English (en)
Other versions
CN105233340A (zh
Inventor
高长有
冯建永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201510689127.3A priority Critical patent/CN105233340B/zh
Publication of CN105233340A publication Critical patent/CN105233340A/zh
Application granted granted Critical
Publication of CN105233340B publication Critical patent/CN105233340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

本发明公开的医用高分子熔融纺纤维有序支架制备方法,步骤如下:将聚乳酸切片依次经过纺丝和绕纱工艺制成平行排列的纤维集合体;将松散且平行排列的聚乳酸纤维集合体采用溶剂粘结法形成稳定的结构;再真空烘干。本发明方法制备的医用高分子熔融纺纤维有序支架,具有较小的厚度、较好的孔径和有序度,可以应用在骨组织工程等方面。

Description

医用聚乳酸熔融纺纤维多孔有序支架的制备方法
技术领域
本发明涉及医用聚乳酸熔融纺纤维有序支架的制备方法,尤其是采用溶剂粘结制备医用聚乳酸熔融纺纤维多孔有序支架的方法。
背景技术
一个理想的生物材料在满足实际的临床应用时,需要满足四个方面的性能要求:(1)良好的生物相容性和降解性,可以通过植入细胞的蛋白质合成和分泌对支架进行更换。(2)材料应该具有良好的临床应用性,并且可以减少炎症和免疫反应,从而可以避免组织损伤。(3)降解产物必须是无毒的。(4)材料的制备、净化和加工必须具有便捷性和可扩展性。根据这四个性能要求,可以应用于组织工程支架的生物材料有天然高分子和合成高分子两类。其中天然高分子主要有胶原、透明质酸、丝素蛋白、海藻酸、壳聚糖等。合成高分子主要有聚乙烯醇(PVA)、聚丙烯酸(PAA)、聚乙二醇(PEG)、聚乳酸(PLA)、聚乙醇酸(PGA)、聚(乳酸-乙醇酸)(PLGA)、聚己内酯(PCL)等。
可以熔融纺丝的主要是合成高分子及其共聚物,其中PLA是熔融纺丝可以顺利实现的高聚物之一。合成高分子可以模仿一些天然细胞外基质(ECM)的属性,比如促进细胞粘附的似肝素高分子、有利于细胞迁移和组织重构的蛋白水解属性,并且可以控制ECM的合成(Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL. Smooth muscle cell growthin photopolymerized hydrogels with cell adhesive and proteolyticallydegradable domains: synthetic ECM analogs for tissue engineering.Biomaterials. 2001;22:3045-51)。
纤维粘结法(Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R.Preparation of Poly(Glycolic Acid) Bonded Fiber Structures for CellAttachment and Transplantation. J Biomed Mater Res. 1993;27:183-9)支架制备方法的本质是通过溶剂对纤维进行粘结,因此,可以将其称之为溶剂粘结法,并且其制备的是无序支架。在前人文献中,Mooney (Mooney DT, Mazzoni CL, Breuer C, McNamara K,Hern D, Vacanti JP, et al. Stabilized polyglycolic acid fibre based tubes fortissue engineering. Biomaterials. 1996;17:115-24)也是利用溶剂粘结法制备PGA管状无序支架。通过分析Mikos (Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP,Langer R. Preparation of Poly(Glycolic Acid) Bonded Fiber Structures for CellAttachment and Transplantation. J Biomed Mater Res. 1993;27:183-9)和Mooney(Mooney DT, Mazzoni CL, Breuer C, McNamara K, Hern D, Vacanti JP, et al.Stabilized polyglycolic acid fibre based tubes for tissue engineering.Biomaterials. 1996;17:115-24)介绍的溶剂粘结法制备支架可以发现,这两种方法均是对无序排列的PGA纤网进行粘结,并且制备的支架是无序支架。与无序支架相比,有序支架能显著诱导细胞排列方向和细胞生长Choi et al.( Choi JS, Lee SJ, Christ GJ,Atala A, Yoo JJ. The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-alignedskeletal muscle myotubes. Biomaterials. 2008;29:2899-906.)。利用无序排列的纤维做成支架时,支架的机械性能较差,并且在替代高度有序组织时,容易使组织受到二次损伤([Newman AP, Anderson DR, Daniels AU, Dales MC. Mechanics of the HealedMeniscus in a Canine Model. Am J Sport Med. 1989;17:164-75.);(BeredjiklianPK, Favata M, Cartmell JS, Flanagan CL, Crombleholme TM, Soslowsky LJ.Regenerative versus reparative healing in tendon: A study of biomechanicaland histological properties in fetal sheep. Ann Biomed Eng. 2003;31:1143-52.)。
通过支架表面的拓扑形貌可以实现对细胞迁移、粘附和增殖的调控,比如梯度支架(Oh SH, Park IK, Kim JM, Lee JH. In vitro and in vivo characteristics ofPCL scaffolds with pore size gradient fabricated by a centrifugation method.Biomaterials. 2007;28:1664-71),沟槽支架(Kang E, Choi YY, Chae SK, Moon JH,Chang JY, Lee SH. Microfluidic Spinning of Flat Alginate Fibers with Groovesfor Cell‐Aligning Scaffolds. Adv Mater. 2012;24:4271-7),条纹支架(Tsuruma A,Tanaka M, Yamamoto S, Fukushima N, Yabu H, Shimomura M. Topographical controlof neurite extension on stripe-patterned polymer films. Colloids and SurfacesA: Physicochemical and Engineering Aspects. 2006;284:470-4)和有序支架(或称为取向支架)(Xu C, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradablenanofibrous structure: a potential scaffold for blood vessel engineering.Biomaterials. 2004;25:877-86)。其中有序支架与ECM中蛋白质和多糖复杂的化学和物理交联网络的取向结构类似,可以指导细胞在空间的生长方向,并且对细胞行为,比如迁移、粘附、增殖进行调控(Xu C, Inai R, Kotaki M, Ramakrishna S. Alignedbiodegradable nanofibrous structure: a potential scaffold for blood vesselengineering. Biomaterials. 2004;25:877-86)。并且有序支架可以控制和引导细胞的方向,其中一些天然的组织细胞是有序排列的,这种细胞的取向对组织功能具有重要作用。因此,通过控制组织工程中细胞的取向可以模拟细胞的自然环境(Ma ZW, Kotaki M, InaiR, Ramakrishna S. Potential of nanofiber matrix as tissue-engineeringscaffolds. Tissue Eng. 2005;11:101-9)。当前,有序支架在组织工程的应用主要集中在血管工程(Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradablenanotibrous structure: a potential scaffold for blood vessel engineering.Biomaterials. 2004;25:877-86)、神经组织工程的细胞载体(Yang F, Murugan R, WangS, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid)aligned fibers and their potential in neural tissue engineering.Biomaterials. 2005;26:2603-10)、韧带基材(Lee CH, Shin HJ, Cho IH, Kang YM, KimIA, Park KD, et al. Nanofiber alignment and direction of mechanical strainaffect the ECM production of human ACL fibroblast. Biomaterials. 2005;26:1261-70)、药物装载和释放(Chew SY, Wen J, Yim EKF, Leong KW. Sustained releaseof proteins from electrospun biodegradable fibers. Biomacromolecules. 2005;6:2017-24)、神经再生(Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrospun poly(epsilon-caprolactone)/gelatinnanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29:4532-9)、植入式功能性肌肉(Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ. Theinfluence of electrospun aligned poly(epsilon-caprolactone)/collagennanofiber meshes on the formation of self-aligned skeletal muscle myotubes.Biomaterials. 2008;29:2899-906)、修复膝盖损伤和骨关节炎患者(Baker BM, MauckRL. The effect of nanofiber alignment on the maturation of engineeredmeniscus constructs. Biomaterials. 2007;28:1967-77)和骨组织工程(Jose MV,Thomas V, Dean DR, Nyairo E. Fabrication and characterization of alignednanofibrous PLGA/Collagen blends as bone tissue scaffolds. Polymer. 2009;50:3778-85)等方面。
目前,制备有序支架的方法主要集中在静电纺丝技术。新加坡国立大学的Xu (XuCY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanotibrousstructure: a potential scaffold for blood vessel engineering. Biomaterials.2004;25:877-86)利用直径为20cm,转速为11 m/s的旋转磁盘接收器制备静电纺P(LLA-CL)纳米纤维有序支架。华盛顿大学的Li (Li D, Wang YL, Xia YN. Electrospinning ofpolymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett.2003;3:1167-71)利用两块导电硅条(也可以是别的导电体,比如,金属、高度掺杂硅或铝箔)作为接收装置制备有序排列的纳米纤维。阿克隆大学的(Katta P, Alessandro M,Ramsier RD, Chase GG. Continuous electrospinning of aligned polymernanofibers onto a wire drum collector. Nano Lett. 2004;4:2215-8)利用旋转线鼓作为接收器(直径为12.7 cm,转速为1 rpm)制备有序排列的锦纶-6纳米纤维。美国维克森林大学再生医学研究所的(Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ. Theinfluence of electrospun aligned poly(epsilon-caprolactone)/collagennanofiber meshes on the formation of self-aligned skeletal muscle myotubes.Biomaterials. 2008;29:2899-906)利用旋转的不锈钢板接收有序纳米纤维。美国国家航空航天局兰利研究中心的Carnell (Carnell LS, Siochi EJ, Holloway NM, StephensRM, Rhim C, Niklason LE, et al. Aligned mats from electrospun single fibers.Macromolecules. 2008;41:5345-9)利用静电纺丝技术来制备层状有序支架。此外,还有其它制备有序支架的方法,主要为单向热拉伸法(Zong XH, Ran SF, Fang DF, Hsiao BS,Chu B. Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) non-woven membranes via post-draw treatments. Polymer.2003;44:4959-67)和熔融沉积法(Zein I, Hutmacher DW, Tan KC, Teoh SH. Fuseddeposition modeling of novel scaffold architectures for tissue engineeringapplications. Biomaterials. 2002;23:1169-85)。纽约州立大学石溪分校的Zong (ZongXH, Ran SF, Fang DF, Hsiao BS, Chu B. Control of structure, morphology andproperty in electrospun poly (glycolide-co-lactide) non-woven membranes viapost-draw treatments. Polymer. 2003;44:4959-67)首先将poly(glycolide-co-lactide)制备成无序静电纺纳米纤维膜,再利用带有加热装置的4400 Instron电子拉伸机对其沿长度方向拉伸,可以得到有序排列的纳米纤维。新加坡国立大学的Zein (Zein I,Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffoldarchitectures for tissue engineering applications. Biomaterials. 2002;23:1169-85)首先利用熔融纺丝技术制备直径为1.70+0.08 mm的Poly(ε-caprolactone)纤维,然后将有序排列纤维利用计算机技术来控制挤压和沉积得到蜂窝状多孔有序支架。而国内对有序支架的研究较少,虽然利用静电纺丝技术制备有序支架具有一定优势(成本低、简单易行),但是纤维之间的粘合效果较差,并且国内没有规模化制备静电纺纳米纤维的宽幅设备,无法满足实际应用的要求,当前的研究仅在实验阶段。单向热拉伸方法在拉伸过程中很容易造成纤维的断裂,并且拉力的不均匀性会引起支架表面的不平整。熔融沉积法是借助计算机辅助技术来实现纤维的有序排列,操作过程比较复杂,成本较高。
文献中利用PLLA纤维制备有序支架的方法主要为打结法和脉冲热封机热压法。比如康涅狄格大学骨科手术中心的Laurencin (Freeman JW, Woods MD, Cromer DA,Wright LD, Laurencin CT. Tissue Engineering of the Anterior CruciateLigament: The Viscoelastic Behavior and Cell Viability of a Novel Braid-TwistScaffold. J Biomat Sci-Polym E. 2009;20:1709-28)将直径为0.295 ± 0.044 mm的PLLA纤维束(单根纤维直径为12±0.6 µm)切断为130 mm的短纤维束,然后将短纤维束通过打结的方法制备有序支架,其中打结长度最少为70mm。克莱姆森大学生物工程系的Lu (LuQJ, Simionescu A, Vyavahare N. Novel capillary channel fiber scaffolds forguided tissue engineering. Acta Biomater. 2005;1:607-14)首先利用熔融纺丝技术制备PLA纤维,然后将PLA纤维束修剪成纤维平行有序排列的条带,利用脉冲热封机将平行排列的纤维束热压成有序支架,该有序支架的尺寸为1cm×1cm,厚度为1mm。利用纤维打结法和脉冲热封机热压法在制备有序支架过程中,很难控制有序支架中纤维的根数和形成较大尺寸的支架。
发明内容
本发明的目的是针对现有技术存在的不足,提供一种医用聚乳酸熔融纺纤维多孔有序支架的制备方法。
本发明的医用聚乳酸熔融纺纤维多孔有序支架的制备方法,采用的是溶剂粘结法,具体包括如下步骤:
1) 将分子量为170000-200000的聚乳酸切片采用熔融纺丝法制备成直径为10-15µm的聚乳酸熔融纺纤维;
2)取步骤1)制备的聚乳酸纤维,用缕纱测长仪在周长为999-1001mm,宽度为3-4cm的纱框,以1-300 r/min的转速和100cN的初始张力,对纤维进行平行绕制,得到聚乳酸有序纤维束;
3)采用以下a)~e)中任一方法,将步骤2) 制备的整体聚乳酸有序纤维束粘合成稳定结构:
a) 搅拌下,将聚(乳酸-乙醇酸)或聚乙醇酸溶解在四氢呋喃溶液中,配制体积浓度为5%的聚(乳酸-乙醇酸)/四氢呋喃溶液或5%的聚乙醇酸/四氢呋喃;将配制的聚(乳酸-乙醇酸)/四氢呋喃溶液或聚乙醇酸/四氢呋喃溶液均匀刷涂在聚乳酸有序纤维束的正反面各两次,然后将其放在通风橱中,使四氢呋喃完全挥发,于30-60℃下真空干燥;
b) 搅拌下,将聚己内酯溶解在四氢呋喃溶液中,分别配制体积浓度为10%、5%、2.5%或1.7%的聚己内酯/四氢呋喃溶液;将体积浓度为10%、5%、2.5%或1.7%的聚己内酯/四氢呋喃溶液均匀刷涂在聚乳酸有序纤维束的正反面各两次,然后将其放在通风橱中,使四氢呋喃完全挥发,于30-60℃下真空干燥;
c)搅拌下,将聚己内酯溶解在四氢呋喃溶液中,配制体积浓度为5%的聚己内酯/四氢呋喃溶液,将该聚己内酯/四氢呋喃溶液均匀刷涂在聚乳酸有序纤维束的正反面各两次,然后将其放在通风橱中,使四氢呋喃完全挥发,再将聚乳酸有序支架浸没在四氢呋喃溶液中1-10s,取出支架,将其放在通风橱中,再次让四氢呋喃完全挥发,于30-60℃下真空干燥;
d)搅拌下,将聚己内酯溶解在四氢呋喃溶液中,配制体积浓度为5%的聚己内酯/四氢呋喃溶液,将该聚己内酯/四氢呋喃溶液均匀刷涂在聚乳酸有序纤维束的正反面各两次,然后将其放在通风橱中,使四氢呋喃完全挥发,再将聚乳酸有序支架浸没在四氢呋喃溶液中2s,取出支架,在60℃下烘干,放在液氮中淬火5min后于30-60℃下真空干燥;
e)搅拌下,将聚己内酯溶解在四氢呋喃溶液中,配制体积浓度为5%的聚己内酯/四氢呋喃溶液,将该聚己内酯/四氢呋喃溶液均匀刷涂在聚乳酸有序纤维束的正反面各两次,然后将其放在通风橱中,使四氢呋喃完全挥发,在60℃下烘干,放入液氮中淬火5min后,放到通风橱中去除冷凝水蒸气,浸没在四氢呋喃溶液中2s,再在30-60℃下真空干燥。
本发明的有益效果在于:
本发明方法工艺简单,以溶剂粘结法制备的医用聚乳酸熔融纺纤维多孔有序支架具有较小的厚度、较好的孔径和有序度,该有序支架可以应用在骨组织工程领域。
附图说明
图1是实施例1制备的PLGA粘结PLA纤维多孔有序支架表面的扫描电镜照片。
图2是实施例1制备的PLGA粘结PLA纤维多孔有序支架横截面的扫描电镜照片。
图3是实施例2制备的PGA粘结PLA纤维多孔有序支架表面的扫描电镜照片。
图4是实施例2制备的PGA粘结PLA纤维多孔有序支架横截面的扫描电镜照片。
图5是实施例3制备的PCL粘结PLA纤维多孔有序支架表面的扫描电镜照片。
图6是实施例3制备的PCL粘结PLA纤维多孔有序支架横截面的扫描电镜照片。
图7是实施例4制备的PLA纤维多孔有序支架表面的扫描电镜照片。
图8是实施例4制备的PLA纤维多孔有序支架横截面的扫描电镜照片。
图9是实施例5制备的PLA纤维多孔有序支架表面的扫描电镜照片。
图10是实施例5制备的PLA纤维多孔有序支架横截面的扫描电镜照片。
图11是实施例6制备的PLA纤维多孔有序支架表面的扫描电镜照片。
图12是实施例6制备的PLA纤维多孔有序支架横截面的扫描电镜照片。
图13是实施例7制备的PLA纤维多孔有序支架表面的扫描电镜照片。
图14是实施例7制备的PLA纤维多孔有序支架横截面的扫描电镜照片。
图15是实施例8制备的PLA纤维多孔有序支架表面的扫描电镜照片。
图16是实施例8制备的PLA纤维多孔有序支架横截面的扫描电镜照片。
图17是实施例9制备的PLA纤维多孔有序支架表面的扫描电镜照片。
图18是实施例9制备的PLA纤维多孔有序支架横截面的扫描电镜照片。
图19是实施例10制备的PLA纤维多孔有序支架表面的扫描电镜照片。
图20是实施例10制备的PLA纤维多孔有序支架横截面的扫描电镜照片。
图21是实施例11制备的PLA纤维多孔有序支架表面的扫描电镜照片。
图22是实施例11制备的PLA纤维多孔有序支架横截面的扫描电镜照片。
具体实施方式
以下结合实施例进一步说明本发明。
实施例1:
将分子量为170000的PLA切片采用熔融纺丝法制备成平均直径为12.41µm的PLA熔融纺纤维,利用YG086型缕纱测长仪进行绕制平行排列的集合体,转速为300 r/min,纱框周长为1000mm,宽度为3.5cm,100cN的初始张力,得到PLA有序纤维束。称取0.5g PLGA溶解于10mL四氢呋喃中(体积浓度为5%),搅拌直到完全溶解形成均匀PLGA/四氢呋喃溶液。把PLGA/四氢呋喃溶液均匀刷涂在PLA有序纤维束的正反面各两次,然后将其放在通风橱中24h,使四氢呋喃完全挥发。待其挥发完全后放在真空干燥器中,在45℃条件下干燥24h,得到PLGA粘结PLA纤维多孔有序支架(见图1、图2)。该支架的孔径为3.65±2.54µm,有序度为91.90±3.18°,厚度为0.46±0.05cm。
实施例2:
将分子量为170000的PLA切片采用熔融纺丝法制备成平均直径为12.41µm的PLA熔融纺纤维,利用YG086型缕纱测长仪进行绕制平行排列的集合体,转速为300 r/min,纱框周长为1000mm,宽度为3.5cm,100cN的初始张力,得到PLA有序纤维束。称取0.5g PGA溶解于10mL四氢呋喃中(体积浓度为5%),搅拌直到完全溶解形成均匀PGA/四氢呋喃溶液。把PGA/四氢呋喃溶液均匀刷涂在PLA有序纤维束的正反面各两次,然后将其放在通风橱中24h,使四氢呋喃完全挥发。待其挥发完全后放在真空干燥器中,在45℃条件下干燥24h,得到PGA粘结PLA纤维多孔有序支架(见图3、图4)。该支架的孔径为3.15±1.47µm,厚度为0.26±0.04cm。
实施例3:
将分子量为170000的PLA切片采用熔融纺丝法制备成平均直径为12.41µm的PLA熔融纺纤维,利用YG086型缕纱测长仪进行绕制平行排列的集合体,转速为300 r/min,纱框周长为1000mm,宽度为3.5cm,100cN的初始张力,得到PLA有序纤维束。称取0.5g PCL溶解于10mL四氢呋喃中(体积浓度为5%),搅拌直到完全溶解形成均匀PCL/四氢呋喃溶液。把PCL/四氢呋喃溶液均匀刷涂在PLA有序纤维束的正反面各两次,然后将其放在通风橱中24h,使四氢呋喃完全挥发。待其挥发完全后放在真空干燥器中,在45℃条件下干燥24h可以得到PCL粘结PLA纤维多孔有序支架(见图5、图6)。该支架的孔径为5.89±3.04µm,有序度为97.02±3.84°,厚度为0.44±0.04cm。
实施例4:
将分子量为200000的PLA切片采用熔融纺丝法制备成平均直径为12.41µm的PLA熔融纺纤维,利用YG086型缕纱测长仪进行绕制平行排列的集合体,转速为300 r/min,纱框周长为1000mm,宽度为3.5cm,100cN的初始张力,得到PLA有序纤维束。称取0.5g PCL溶解于5mL四氢呋喃中(体积浓度为10%),搅拌直到完全溶解形成均匀PCL/四氢呋喃溶液。把PCL/四氢呋喃溶液均匀刷涂在有序纤维束的正反面各两次,然后将其放在通风橱中24h,使四氢呋喃完全挥发。待其挥发完全后放在真空干燥器中,在45℃条件下干燥24h得到PLA纤维多孔有序支架(见图7、图8)。该支架的孔径为2.66±1.08µm,有序度为88.43±3.49°,厚度为0.43±0.02cm。
实施例5:
将分子量为170000的PLA切片采用熔融纺丝法制备成平均直径为12.41µm的PLA熔融纺纤维,利用YG086型缕纱测长仪进行绕制平行排列的集合体,转速为300 r/min,纱框周长为1000mm,宽度为3.5cm,100cN的初始张力,得到PLA有序纤维束。称取0.5g PCL溶解于20mL四氢呋喃中(体积浓度为2.5%),搅拌直到完全溶解形成均匀PCL/四氢呋喃溶液。把PCL/四氢呋喃溶液均匀刷涂在有序纤维束的正反面各两次,然后将其放在通风橱中24h,使四氢呋喃完全挥发。待其挥发完全后放在真空干燥器中,在45℃条件下干燥24h得到PLA纤维多孔有序支架(见图9、图10)。该支架的孔径为5.54±2.49µm,有序度为84.73±1.49°,厚度为0.36±0.02cm。
实施例6:
将分子量为170000的PLA切片采用熔融纺丝法制备成平均直径为12.41µm的PLA熔融纺纤维,利用YG086型缕纱测长仪进行绕制平行排列的集合体,转速为300 r/min,纱框周长为1000mm,宽度为3.5cm, 100cN的初始张力,得到PLA有序纤维束。称取0.5g PCL溶解于30mL四氢呋喃中(体积浓度为1.7%),搅拌直到完全溶解形成均匀PCL/四氢呋喃溶液。把PCL/四氢呋喃溶液均匀刷涂在有序纤维束的正反面各两次,然后将其放在通风橱中24h,使四氢呋喃完全挥发。待其挥发完全后放在真空干燥器中,在45℃条件下干燥24h可以得到PLA纤维多孔有序支架(见图11、图12)。该支架的孔径为11.13±5.39µm,有序度为88.33±4.64°,厚度为0.35±0.04cm。
实施例7:
将分子量为170000的PLA切片采用熔融纺丝法制备成平均直径为12.41µm的PLA熔融纺纤维,利用YG086型缕纱测长仪进行绕制平行排列的集合体,转速为300 r/min,纱框周长为1000mm,宽度为3.5cm,100cN的初始张力,得到PLA有序纤维束。称取0.5g PCL溶解于10mL四氢呋喃中(体积浓度为5%),搅拌直到完全溶解形成均匀PCL/四氢呋喃溶液。把PCL/四氢呋喃溶液均匀刷涂在有序纤维束的正反面各两次,然后将其放在通风橱中24h,使四氢呋喃完全挥发。再将有序支架完全浸没在四氢呋喃溶液中,浸没时间为1s,然后取出支架,将其分别放在通风橱中24h,让四氢呋喃完全挥发。待其挥发完全后放在真空干燥器中,在45℃条件下干燥24h得到PLA纤维多孔有序支架(见图13、图14)。该支架的孔径为8.59±5.16µm,有序度为85.71±6.52°,厚度为0.31±0.02 cm。
实施例8:
将分子量为170000的PLA切片采用熔融纺丝法制备成平均直径为12.41µm的PLA熔融纺纤维,利用YG086型缕纱测长仪进行绕制平行排列的集合体,转速为300 r/min,纱框周长为1000mm,宽度为3.5cm,100cN的初始张力,得到PLA有序纤维束。称取0.5g PCL溶解于10mL四氢呋喃中(体积浓度为5%),搅拌直到完全溶解形成均匀PCL/四氢呋喃溶液。把PCL/四氢呋喃溶液均匀刷涂在有序纤维束的正反面各两次,然后将其放在通风橱中24h,使四氢呋喃完全挥发。再将有序支架完全浸没在四氢呋喃溶液中,浸没时间为2s,然后取出支架,将其分别放在通风橱中24h,让四氢呋喃完全挥发。待其挥发完全后放在真空干燥器中,在45℃条件下干燥24h得到PLA纤维多孔有序支架(见图15、图16)。该支架的孔径为5.79±2.19µm,有序度为75.59±20.42°,厚度为0.30±0.04 cm。
实施例9:
将分子量为170000的PLA切片采用熔融纺丝法制备成平均直径为12.41µm的PLA熔融纺纤维,利用YG086型缕纱测长仪进行绕制平行排列的集合体,转速为300 r/min,纱框周长为1000mm,宽度为3.5cm,100cN的初始张力,得到PLA有序纤维束。称取0.5g PCL溶解于10mL四氢呋喃中(体积浓度为5%),搅拌直到完全溶解形成均匀PCL/四氢呋喃溶液。把PCL/四氢呋喃溶液均匀刷涂在有序纤维束的正反面各两次,然后将其放在通风橱中24h,使四氢呋喃完全挥发。再将有序支架完全浸没在四氢呋喃溶液中,浸没时间为10s,然后取出支架,将其分别放在通风橱中24h,让四氢呋喃完全挥发。待其挥发完全后放在真空干燥器中,在45℃条件下干燥24h得到PLA纤维多孔有序支架(见图17、图18)。该支架的孔径为3.13±1.04µm,有序度为39.86±4.34°,厚度为0.30±0.01cm。
实施例10:
将分子量为170000的PLA切片采用熔融纺丝法制备成平均直径为12.41µm的PLA熔融纺纤维,利用YG086型缕纱测长仪进行绕制平行排列的集合体,转速为300 r/min,纱框周长为1000mm,宽度为3.5cm,100cN的初始张力,得到PLA有序纤维束。称取0.5g PCL溶解于10mL四氢呋喃中(体积浓度为5%),搅拌直到完全溶解形成均匀PCL/四氢呋喃溶液。把PCL/四氢呋喃溶液均匀刷涂在有序纤维束的正反面各两次,然后将其放在通风橱中24h,使四氢呋喃完全挥发。再将有序支架完全浸没在四氢呋喃溶液中,浸没时间为2s,然后将其放入烘箱中,在60℃条件下烘干20min。再将其放在液氮中5min,淬火结束后,将其放在通风橱中干燥30min。然后将其放在真空干燥器中,在45℃条件下干燥24h得到PLA纤维多孔有序支架(见图19、图20)。该支架的孔径为10.66±3.64µm,有序度为96.70±11.93°,厚度0.26为±0.02cm。
实施例11:
将分子量为170000的PLA切片采用熔融纺丝法制备成平均直径为12.41µm的PLA熔融纺纤维,利用YG086型缕纱测长仪进行绕制平行排列的集合体,转速为300 r/min,纱框周长为1000mm,宽度为3.5cm,100cN的初始张力,得到PLA有序纤维束。称取0.5g PCL溶解于10mL四氢呋喃中(体积浓度为5%),搅拌直到完全溶解形成均匀PCL/四氢呋喃溶液。把PCL/四氢呋喃溶液均匀刷涂在有序纤维束的正反面各两次,然后将其放在通风橱中24h,使四氢呋喃完全挥发。将支架放入烘箱中,在60℃条件下烘干20min,然后将热的支架迅速放入液氮中5min。淬火结束后将其放在通风橱中干燥30min去除冷凝的水蒸气。再将其完全浸没在四氢呋喃溶液中溶解2s,溶解结束后将其放在真空干燥器中,在45℃条件下干燥24h得到PLA纤维多孔有序支架(见图21、图22)。该支架的孔径为25.25±2.91µm,有序度为96.72±18.16°,厚度为0.26±0.01cm。

Claims (1)

1.医用聚乳酸熔融纺纤维多孔有序支架制备方法,其特征是包括如下步骤:
1) 将分子量为170000-200000的聚乳酸切片采用熔融纺丝法制备成直径为10-15µm的聚乳酸熔融纺纤维;
2) 取步骤1)制备的聚乳酸熔融纺纤维,用缕纱测长仪在周长为999-1001mm,宽度为3-4cm的纱框上,以1-300 r/min的转速和100cN的初始张力,对纤维进行平行绕制,得到聚乳酸有序纤维束;
3) 采用以下a)~e)中任一方法,将步骤2) 制备的聚乳酸有序纤维束粘合成稳定结构:
a) 搅拌下,将聚(乳酸-乙醇酸)或聚乙醇酸溶解在四氢呋喃溶液中,配制体积浓度为5%的聚(乳酸-乙醇酸)/四氢呋喃溶液或5%的聚乙醇酸/四氢呋喃溶液;将配制的聚(乳酸-乙醇酸)/四氢呋喃溶液或聚乙醇酸/四氢呋喃溶液均匀刷涂在聚乳酸有序纤维束的正反面各两次,然后将其放在通风橱中,使四氢呋喃完全挥发,于30-60℃下真空干燥;
b) 搅拌下,将聚己内酯溶解在四氢呋喃溶液中,分别配制体积浓度为10%、5%、2.5%或1.7%的聚己内酯/四氢呋喃溶液;将体积浓度为10%、5%、2.5%或1.7%的聚己内酯/四氢呋喃溶液均匀刷涂在聚乳酸有序纤维束的正反面各两次,然后将其放在通风橱中,使四氢呋喃完全挥发,于30-60℃下真空干燥;
c) 搅拌下,将聚己内酯溶解在四氢呋喃溶液中,配制体积浓度为5%的聚己内酯/四氢呋喃溶液,将该聚己内酯/四氢呋喃溶液均匀刷涂在聚乳酸有序纤维束的正反面各两次,然后将其放在通风橱中,使四氢呋喃完全挥发得到聚乳酸有序支架,再将聚乳酸有序支架浸没在四氢呋喃溶液中1-10s,取出支架,将其放在通风橱中,再次让四氢呋喃完全挥发,于30-60℃下真空干燥;
d) 搅拌下,将聚己内酯溶解在四氢呋喃溶液中,配制体积浓度为5%的聚己内酯/四氢呋喃溶液,将该聚己内酯/四氢呋喃溶液均匀刷涂在聚乳酸有序纤维束的正反面各两次,然后将其放在通风橱中,使四氢呋喃完全挥发得到聚乳酸有序支架,再将聚乳酸有序支架浸没在四氢呋喃溶液中2s,取出支架,在60℃下烘干,放在液氮中淬火5min后于30-60℃下真空干燥;
e) 搅拌下,将聚己内酯溶解在四氢呋喃溶液中,配制体积浓度为5%的聚己内酯/四氢呋喃溶液,将该聚己内酯/四氢呋喃溶液均匀刷涂在聚乳酸有序纤维束的正反面各两次,然后将其放在通风橱中,使四氢呋喃完全挥发,在60℃下烘干,放入液氮中淬火5min后,放到通风橱中去除冷凝水蒸气,浸没在四氢呋喃溶液中2s,再在30-60℃下真空干燥。
CN201510689127.3A 2015-10-22 2015-10-22 医用聚乳酸熔融纺纤维多孔有序支架的制备方法 Active CN105233340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510689127.3A CN105233340B (zh) 2015-10-22 2015-10-22 医用聚乳酸熔融纺纤维多孔有序支架的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510689127.3A CN105233340B (zh) 2015-10-22 2015-10-22 医用聚乳酸熔融纺纤维多孔有序支架的制备方法

Publications (2)

Publication Number Publication Date
CN105233340A CN105233340A (zh) 2016-01-13
CN105233340B true CN105233340B (zh) 2018-09-21

Family

ID=55031324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510689127.3A Active CN105233340B (zh) 2015-10-22 2015-10-22 医用聚乳酸熔融纺纤维多孔有序支架的制备方法

Country Status (1)

Country Link
CN (1) CN105233340B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105944145A (zh) * 2016-06-16 2016-09-21 浙江理工大学 具有促进成骨细胞方向性生长和迁移的支架制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399117A (zh) * 2014-11-03 2015-03-11 浙江大学 一种聚乳酸纤维三维仿生多孔有序支架的制备方法
CN104667343A (zh) * 2015-01-27 2015-06-03 浙江大学 聚乳酸熔融纺纤维热粘合固化有序支架的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0208418D0 (en) * 2002-04-11 2002-05-22 Univ Aston Polymeric fibre

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399117A (zh) * 2014-11-03 2015-03-11 浙江大学 一种聚乳酸纤维三维仿生多孔有序支架的制备方法
CN104667343A (zh) * 2015-01-27 2015-06-03 浙江大学 聚乳酸熔融纺纤维热粘合固化有序支架的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation;Antonios G. Mikos et al.;《Journal of Biomaterials Research》;19931231;第27卷(第2期);183-189 *
Stabilized polyglycolic acid fibre-based tubes for tissue engineering;D.J. Mooney et al.;《Biomaterials》;19961231;第17卷(第2期);115-124 *

Also Published As

Publication number Publication date
CN105233340A (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
US11696972B2 (en) Process for the production of a hybrid structure consisting of coupled silk fibroin microfibers and nanofibers, hybrid structure thus obtained and its use as implantable medical device
CN104399117B (zh) 一种聚乳酸纤维三维仿生多孔有序支架的制备方法
Sun et al. Electrospun anisotropic architectures and porous structures for tissue engineering
Yaari et al. Wet spinning and drawing of human recombinant collagen
CN100577720C (zh) 可生物降解及吸收的聚合物纳米纤维膜材料及制法和用途
US9770529B2 (en) Tissue repair scaffold
CN106540327A (zh) 一种仿自然血管的三层人造血管支架及其制备方法
EP2662211A1 (en) Silk biomaterials and methods of use thereof
Yukseloglu et al. Biomaterial applications of silk fibroin electrospun nanofibres
US20150064142A1 (en) Elastic scaffolds for tissue growth
CN105457096A (zh) 一种生物相容性好、可降解的柞蚕丝素蛋白组织工程支架材料的制备方法
CN102908677A (zh) 防粘连可吸收疝气补片的制备方法
CN105970315A (zh) 医用聚左旋乳酸熔融纺纤维的制备方法
Hasan et al. Application of electrospinning techniques for the production of tissue engineering scaffolds: a review
Maleknia et al. Electrospinning of gelatin nanofiber for biomedical application
Liu et al. Electrospun core–sheath fibers for integrating the biocompatibility of silk fibroin and the mechanical properties of PLCL
CN105233340B (zh) 医用聚乳酸熔融纺纤维多孔有序支架的制备方法
Qiao et al. An ordered electrospun polycaprolactone–collagen–silk fibroin scaffold for hepatocyte culture
JP2020501849A (ja) 組織工学及び外科的応用のための整列多孔質繊維状足場
Mohite et al. Biopolymers in Textile-Based Scaffolding and Wound Healing
CN103397477A (zh) 一种聚乳酸-三亚甲基碳酸酯纳米纤维薄膜的制备方法
Manea et al. Medical applications of functional electrospun nanofibers-a review
KR20130051602A (ko) 진피 대체용 3차원 실크 나노 섬유막 및 그 제조방법
CN104667343B (zh) 聚乳酸熔融纺纤维热粘合固化有序支架的制备方法
Shi et al. Fibrous scaffolds for tissue engineering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant