CN105207770A - Self-adaptive synchronization method and circuit of Lu hyperchaotic system based on memristor - Google Patents

Self-adaptive synchronization method and circuit of Lu hyperchaotic system based on memristor Download PDF

Info

Publication number
CN105207770A
CN105207770A CN201510571081.5A CN201510571081A CN105207770A CN 105207770 A CN105207770 A CN 105207770A CN 201510571081 A CN201510571081 A CN 201510571081A CN 105207770 A CN105207770 A CN 105207770A
Authority
CN
China
Prior art keywords
circuit
tunnel
phase
input
memristor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510571081.5A
Other languages
Chinese (zh)
Inventor
李敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201510571081.5A priority Critical patent/CN105207770A/en
Publication of CN105207770A publication Critical patent/CN105207770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

The invention relates to a chaotic system synchronization method and circuit, in particular to a self-adaptive synchronization method and circuit of a Lu hyperchaotic system based on a memristor. The memristor serves as a physical component which is discovered in the Hewlett-Packard laboratory in 2008 and can replace a Chua diode of a Chua circuit to form a chaotic system, and the memristor can also serve as a component to be added to three-dimensional chaotic systems such as a Lorenz system, a Chen system and a Lu system to form a hyperchaotic system. At present, the method and the circuit of taking the memristor as a component to form chaos or hyperchaos are put forward, however, the synchronization method of taking the memristor as a component to form the hyperchaotic system is not put forward, and the defect in the prior art is put forward. The Lu hyperchaotic system using the memristor is provided, and a self-adaptive synchronization method of the chaotic system is provided on the basis.

Description

A kind of adaptive synchronicity method of the Lu hyperchaotic system based on memristor and circuit
Technical field
The present invention relates to a Synchronization of Chaotic Systems and circuit, particularly a kind of adaptive synchronicity method of the Lu hyperchaotic system based on memristor and circuit.
Background technology
Memristor was as the newfound physical component in HP Lab in 2008, the Cai Shi diode in cai's circuit can be replaced to form chaos system, also three-dimensional chaotic system can be increased to as Lorenz system as element, in Chen system and Lu system, form hyperchaotic system, at present, memristor as element formed chaos or hyperchaos Method and circuits oneself be suggested, but the synchronous method utilizing memristor to form hyperchaotic system as an element does not still propose, this is the deficiencies in the prior art parts, the present invention utilizes memristor to propose a kind of Lu hyperchaotic system, and propose the adaptive synchronicity method of this chaos system on this basis.
Summary of the invention
The technical problem to be solved in the present invention is to provide a kind of adaptive synchronicity method and circuit of the Lu hyperchaotic system based on memristor, and the present invention adopts following technological means to realize goal of the invention:
1., based on an adaptive synchronicity method for the Lu hyperchaotic system of memristor, it is characterized in that, comprise the following steps:
(1) three-dimensional Lu chaos system i is:
d x / d t = a ( y - x ) d y / d t = - c y + x z d z / d t = x y - b z a = 36 , b = 3 , c = 20 - - - i
In formula, x, y, z are state variable;
(2) the memristor model that the present invention adopts is ii:
Wherein represent that magnetic control recalls resistance, represent magnetic flux, m, n be greater than zero parameter;
(3) obtaining iii to the memristor differentiate of ii is:
represent and recall and lead, m, n be greater than zero parameter;
(4) using memristor model iii as unidimensional system variable, be added on first equation of three-dimensional Lu chaos system i, obtain a kind of Lu hyperchaotic system iv with memristor:
d x / d t = a ( y - x ) - k x W ( u ) d y / d t = - c y + x z d z / d t = x y - b z d u / d t = - x - - - i v
In formula, x, y, z, u are state variable, parameter value a=36, b=20, c=3, k=2, m=10, n=0.008;
(5) with described in iv based on the Lu hyperchaotic system of memristor for drive system v:
dx 1 / d t = a ( y 1 - x 1 ) - kx 1 W ( u 1 ) dy 1 / d t = - cy 1 + x 1 z 1 dz 1 / d t = x 1 y 1 - bz 1 du 1 / d t = - x 1 - - - v
X in formula 1, y 1, z 1, u 1for state variable, parameter value a=36, b=20, c=3, k=2, m=10, n=0.008;
(6) with described in iv based on the Lu hyperchaotic system of memristor for responding system vi:
dx 2 / d t = a ( y 2 - x 2 ) - kx 2 W ( u 2 ) + v 1 dy 2 / d t = - cy 2 + x 2 z 2 + v 2 dz 2 / d t = x 2 y 2 - bz 2 + v 3 du 2 / d t = - x 2 + v 4 - - - v i
X in formula 2, y 2, z 2, u 2for state variable, v 1, v 2, v 3, v 4for controller, parameter value a=36, b=20, c=3, k=2, m=10, n=0.008;
(7) error system e is defined 1=(y 2-y 1), e 2=(z 2-z 1), when controller get be worth as follows time, drive chaos system v and response chaos system vi to realize synchronous;
v 1 = 0 v 2 = - e 1 ∫ e 1 2 d t v 3 = - e 2 ∫ e 2 2 d t v 4 = 0 - - - v i i
By the Chaotic Synchronous circuit driving chaos system v and response chaos system vi to form be:
dx 1 / d t = a ( y 1 - x 1 ) - kx 1 W ( u 1 ) dy 1 / d t = - cy 1 + x 1 z 1 dz 1 / d t = x 1 y 1 - bz 1 du 1 / d t = - x 1 dx 2 / d t = a ( y 2 - x 2 ) - kx 2 W ( u 2 ) dy 2 / d t = - cy 2 + x 2 z 2 - ( y 2 - y 1 ) ∫ ( y 2 - y 1 ) 2 d t dz 2 / d t = x 2 y 2 - bz 2 - ( z 2 - z 1 ) ∫ ( z 2 - z 1 ) 2 d t du 2 / d t = - x 2 - - - i x
2. the adaptive synchronicity circuit based on the Lu hyperchaotic system of memristor, it is characterized in that: the adaptive synchronicity of a kind of Lu hyperchaotic system based on memristor of described circuit is made up of drive system and responding system, drive system comprises Lu system I circuit and memristor I circuit, responding system comprises controller 1 circuit, controller electricity 2 tunnels, Lu system II circuit and memristor II circuit, and driving system circuit drives responding system circuit by signal;
Lu system I circuit is by integrated operational amplifier (LF347N) and resistance, the three anti-phase adders in tunnel that electric capacity is formed, inverting integrator and inverter and multiplier composition, the anti-phase anti-phase output of the adder input termination first via of the first via and the homophase on the second tunnel export, the anti-phase adder input on the second tunnel connects the reversed-phase output on the second tunnel, the input of multiplier (A2) connects the anti-phase output of the first via and the homophase output on the 3rd tunnel respectively, the input of the anti-phase adder in output termination second tunnel of multiplier (A2), the anti-phase input on the 3rd tunnel connects the in-phase output end on the 3rd tunnel, the input of multiplier (A3) connects the in-phase input end of the first via and the inverting input on the second tunnel respectively, the anti-phase adder input on output termination the 3rd tunnel of multiplier (A3),
Memristor I circuit is made up of integrated operational amplifier (LF353N) and 2 multipliers (AD633JN), integrated operational amplifier (LF353N) and resistance, electric capacity form inverting integrator, the first via homophase of input termination Lu system I circuit exports, and output connects the input of the anti-phase adder of the first via of Lu system I circuit by 2 multipliers;
Lu system II circuit is by integrated operational amplifier (LF347N) and resistance, the three anti-phase adders in tunnel that electric capacity is formed, inverting integrator and inverter and multiplier composition, the anti-phase anti-phase output of the adder input termination first via of the first via and the homophase on the second tunnel export, the anti-phase adder input on the second tunnel connects the reversed-phase output on the second tunnel, the input of multiplier (A4) connects the anti-phase output of the first via and the homophase output on the 3rd tunnel respectively, the input of the anti-phase adder in output termination second tunnel of multiplier (A4), the anti-phase input on the 3rd tunnel connects the in-phase output end on the 3rd tunnel, the input of multiplier (A5) connects the in-phase input end of the first via and the inverting input on the second tunnel respectively, the anti-phase adder input on output termination the 3rd tunnel of multiplier (A5),
Memristor II circuit is made up of integrated operational amplifier (LF353N) and 2 multipliers (AD633JN), integrated operational amplifier (LF353N) and resistance, electric capacity form inverting integrator, the first via homophase of input termination Lu system II circuit exports, and output connects the input of the anti-phase adder of the first via of Lu system II circuit by 2 multipliers;
Controller 1 circuit is made up of anti-phase adder, multiplier, inverter and inverting integrator, anti-phase adder input connects the in-phase output end on Lu system I circuit second tunnel and the reversed-phase output on Lu system II circuit second tunnel, and multiplier (A9) exports the anti-phase adder input connecing Lu system II circuit second tunnel;
Controller 2 circuit is made up of anti-phase adder, multiplier, inverter and inverting integrator, anti-phase adder input connects the in-phase output end on Lu system I circuit the 3rd tunnel and the reversed-phase output on Lu system II circuit the 3rd tunnel, and multiplier (A10) exports the anti-phase adder input connecing Lu system II circuit the 3rd tunnel.
Beneficial effect: the present invention is on the basis of three-dimensional chaotic system, and the present invention utilizes memristor to propose a kind of Lu hyperchaotic system, and proposes the adaptive synchronicity method of this chaos system on this basis.
Accompanying drawing explanation
Fig. 1 is the electrical block diagram of the preferred embodiment of the present invention.
Fig. 2 is Lu system I circuit diagram in the present invention.
Fig. 3 is the circuit diagram of memristor I in the present invention.
Fig. 4 is Lu system II circuit diagram in the present invention.
Fig. 5 is the circuit diagram of memristor II in the present invention.
Fig. 6 is the circuit diagram of middle controller 1 of the present invention.
Fig. 7 is the circuit diagram of middle controller 2 of the present invention.
Fig. 8 is the synchronous circuit design sketch of x1 and x2 in the present invention.
Embodiment
Below in conjunction with accompanying drawing and preferred embodiment, the present invention is further described in detail, see Fig. 1-Fig. 8.
1., based on an adaptive synchronicity method for the Lu hyperchaotic system of memristor, it is characterized in that, comprise the following steps:
(1) three-dimensional Lu chaos system i is:
d x / d t = a ( y - x ) d y / d t = - c y + x z d z / d t = x y - b z a = 36 , b = 3 , c = 20 - - - i
In formula, x, y, z are state variable;
(2) the memristor model that the present invention adopts is ii:
Wherein represent that magnetic control recalls resistance, represent magnetic flux, m, n be greater than zero parameter;
(3) obtaining iii to the memristor differentiate of ii is:
represent and recall and lead, m, n be greater than zero parameter;
(4) using memristor model iii as unidimensional system variable, be added on first equation of three-dimensional Lu chaos system i, obtain a kind of Lu hyperchaotic system iv with memristor:
d x / d t = a ( y - x ) - k x W ( u ) d y / d t = - c y + x z d z / d t = x y - b z d u / d t = - x - - - i v
In formula, x, y, z, u are state variable, parameter value a=36, b=20, c=3, k=2, m=10, n=0.008;
(5) with described in iv based on the Lu hyperchaotic system of memristor for drive system v:
dx 1 / d t = a ( y 1 - x 1 ) - kx 1 W ( u 1 ) dy 1 / d t = - cy 1 + x 1 z 1 dz 1 / d t = x 1 y 1 - bz 1 du 1 / d t = - x 1 - - - v
X in formula 1, y 1, z 1, u 1for state variable, parameter value a=36, b=20, c=3, k=2, m=10, n=0.008;
(6) with described in iv based on the Lu hyperchaotic system of memristor for responding system vi:
dx 2 / d t = a ( y 2 - x 2 ) - kx 2 W ( u 2 ) + v 1 dy 2 / d t = - cy 2 + x 2 z 2 + v 2 dz 2 / d t = x 2 y 2 - bz 2 + v 3 du 2 / d t = - x 2 + v 4 - - - v i
X in formula 2, y 2, z 2, u 2for state variable, v 1, v 2, v 3, v 4for controller, parameter value a=36, b=20, c=3, k=2, m=10, n=0.008;
(7) error system e is defined 1=(y 2-y 1), e 2=(z 2-z 1), when controller get be worth as follows time, drive chaos system v and response chaos system vi to realize synchronous;
v 1 = 0 v 2 = - e 1 ∫ e 1 2 d t v 3 = - e 2 ∫ e 2 2 d t v 4 = 0 - - - v i i
By the Chaotic Synchronous circuit driving chaos system v and response chaos system vi to form be:
dx 1 / d t = a ( y 1 - x 1 ) - kx 1 W ( u 1 ) dy 1 / d t = - cy 1 + x 1 z 1 dz 1 / d t = x 1 y 1 - bz 1 du 1 / d t = - x 1 dx 2 / d t = a ( y 2 - x 2 ) - kx 2 W ( u 2 ) dy 2 / d t = - cy 2 + x 2 z 2 - ( y 2 - y 1 ) ∫ ( y 2 - y 1 ) 2 d t dz 2 / d t = x 2 y 2 - bz 2 - ( z 2 - z 1 ) ∫ ( z 2 - z 1 ) 2 d t du 2 / d t = - x 2 - - - i x
2. the adaptive synchronicity circuit based on the Lu hyperchaotic system of memristor, it is characterized in that: the adaptive synchronicity of a kind of Lu hyperchaotic system based on memristor of described circuit is made up of drive system and responding system, drive system comprises Lu system I circuit and memristor I circuit, responding system comprises controller 1 circuit, controller electricity 2 tunnels, Lu system II circuit and memristor II circuit, and driving system circuit drives responding system circuit by signal;
Lu system I circuit is by integrated operational amplifier (LF347N) and resistance, the three anti-phase adders in tunnel that electric capacity is formed, inverting integrator and inverter and multiplier composition, the anti-phase anti-phase output of the adder input termination first via of the first via and the homophase on the second tunnel export, the anti-phase adder input on the second tunnel connects the reversed-phase output on the second tunnel, the input of multiplier (A2) connects the anti-phase output of the first via and the homophase output on the 3rd tunnel respectively, the input of the anti-phase adder in output termination second tunnel of multiplier (A2), the anti-phase input on the 3rd tunnel connects the in-phase output end on the 3rd tunnel, the input of multiplier (A3) connects the in-phase input end of the first via and the inverting input on the second tunnel respectively, the anti-phase adder input on output termination the 3rd tunnel of multiplier (A3),
Memristor I circuit is made up of integrated operational amplifier (LF353N) and 2 multipliers (AD633JN), integrated operational amplifier (LF353N) and resistance, electric capacity form inverting integrator, the first via homophase of input termination Lu system I circuit exports, and output connects the input of the anti-phase adder of the first via of Lu system I circuit by 2 multipliers;
Lu system II circuit is by integrated operational amplifier (LF347N) and resistance, the three anti-phase adders in tunnel that electric capacity is formed, inverting integrator and inverter and multiplier composition, the anti-phase anti-phase output of the adder input termination first via of the first via and the homophase on the second tunnel export, the anti-phase adder input on the second tunnel connects the reversed-phase output on the second tunnel, the input of multiplier (A4) connects the anti-phase output of the first via and the homophase output on the 3rd tunnel respectively, the input of the anti-phase adder in output termination second tunnel of multiplier (A4), the anti-phase input on the 3rd tunnel connects the in-phase output end on the 3rd tunnel, the input of multiplier (A5) connects the in-phase input end of the first via and the inverting input on the second tunnel respectively, the anti-phase adder input on output termination the 3rd tunnel of multiplier (A5),
Memristor II circuit is made up of integrated operational amplifier (LF353N) and 2 multipliers (AD633JN), integrated operational amplifier (LF353N) and resistance, electric capacity form inverting integrator, the first via homophase of input termination Lu system II circuit exports, and output connects the input of the anti-phase adder of the first via of Lu system II circuit by 2 multipliers;
Controller 1 circuit is made up of anti-phase adder, multiplier, inverter and inverting integrator, anti-phase adder input connects the in-phase output end on Lu system I circuit second tunnel and the reversed-phase output on Lu system II circuit second tunnel, and multiplier (A9) exports the anti-phase adder input connecing Lu system II circuit second tunnel;
Controller 2 circuit is made up of anti-phase adder, multiplier, inverter and inverting integrator, anti-phase adder input connects the in-phase output end on Lu system I circuit the 3rd tunnel and the reversed-phase output on Lu system II circuit the 3rd tunnel, and multiplier (A10) exports the anti-phase adder input connecing Lu system II circuit the 3rd tunnel.
Certainly, above-mentioned explanation is not to the restriction of invention, and the present invention is also not limited only to above-mentioned citing, and the change that those skilled in the art make in essential scope of the present invention, remodeling, interpolation or replacement, also belong to protection scope of the present invention.

Claims (2)

1., based on an adaptive synchronicity method for the Lu hyperchaotic system of memristor, it is characterized in that, comprise the following steps:
(1) three-dimensional Lu chaos system i is:
d x / d t = a ( y - x ) d y / d t = - c y + x z d z / d t = x y - b z a = 36 , b = 3 , c = 20 - - - i
In formula, x, y, z are state variable;
(2) the memristor model that the present invention adopts is ii:
Wherein represent that magnetic control recalls resistance, represent magnetic flux, m, n be greater than zero parameter;
(3) obtaining iii to the memristor differentiate of ii is:
represent and recall and lead, m, n be greater than zero parameter;
(4) using memristor model iii as unidimensional system variable, be added on first equation of three-dimensional Lu chaos system i, obtain a kind of Lu hyperchaotic system iv with memristor:
d x / d t = a ( y - x ) - k x W ( u ) d y / d t = - c y + x z d z / d t = x y - b z d u / d t = - x - - - i v
In formula, x, y, z, u are state variable, parameter value a=36, b=20, c=3, k=2, m=10, n=0.008;
(5) with described in iv based on the Lu hyperchaotic system of memristor for drive system v:
dx 1 / d t = a ( y 1 - x 1 ) - kx 1 W ( u 1 ) dy 1 / d t = - cy 1 + x 1 z 1 dz 1 / d t = x 1 y 1 - bz 1 du 1 / d t = - x 1 - - - v
X in formula 1, y 1, z 1, u 1for state variable, parameter value a=36, b=20, c=3, k=2, m=10, n=0.008;
(6) with described in iv based on the Lu hyperchaotic system of memristor for responding system vi:
dx 2 / d t = a ( y 2 - x 2 ) - kx 2 W ( u 2 ) + v 1 dy 2 / d t = - cy 2 + x 2 z 2 + v 2 dz 2 / d t = x 2 y 2 - bz 2 + v 3 du 2 / d t = - x 2 + v 4 - - - v i
X in formula 2, y 2, z 2, u 2for state variable, v 1, v 2, v 3, v 4for controller, parameter value a=36, b=20, c=3, k=2, m=10, n=0.008;
(7) error system e is defined 1=(y 2-y 1), e 2=(z 2-z 1), when controller get be worth as follows time, drive chaos system v and response chaos system vi to realize synchronous;
v 1 = 0 v 2 = - e 1 ∫ e 1 2 d t v 3 = - e 2 ∫ e 2 2 d t v 4 = 0 - - - v i i
By the Chaotic Synchronous circuit driving chaos system v and response chaos system vi to form be:
dx 1 / d t = a ( y 1 - x 1 ) - kx 1 W ( u 1 ) dy 1 / d t = - cy 1 + x 1 z 1 dz 1 / d t = x 1 y 1 - bz 1 du 1 / d t = - x 1 dx 2 / d t = a ( y 2 - x 2 ) - kx 2 W ( u 2 ) dy 2 / d t = - cy 2 + x 2 z 2 - ( y 2 - y 1 ) ∫ ( y 2 - y 1 ) 2 d t dz 2 / d t = x 2 y 2 - bz 2 - ( z 2 - z 1 ) ∫ ( z 2 - z 1 ) 2 d t du 2 / d t = - x 2 - - - i x
2. the adaptive synchronicity circuit based on the Lu hyperchaotic system of memristor, it is characterized in that: the adaptive synchronicity of a kind of Lu hyperchaotic system based on memristor of described circuit is made up of drive system and responding system, drive system comprises Lu system I circuit and memristor I circuit, responding system comprises controller 1 circuit, controller electricity 2 tunnels, Lu system II circuit and memristor II circuit, and driving system circuit drives responding system circuit by signal;
Lu system I circuit is by integrated operational amplifier (LF347N) and resistance, the three anti-phase adders in tunnel that electric capacity is formed, inverting integrator and inverter and multiplier composition, the anti-phase anti-phase output of the adder input termination first via of the first via and the homophase on the second tunnel export, the anti-phase adder input on the second tunnel connects the reversed-phase output on the second tunnel, the input of multiplier (A2) connects the anti-phase output of the first via and the homophase output on the 3rd tunnel respectively, the input of the anti-phase adder in output termination second tunnel of multiplier (A2), the anti-phase input on the 3rd tunnel connects the in-phase output end on the 3rd tunnel, the input of multiplier (A3) connects the in-phase input end of the first via and the inverting input on the second tunnel respectively, the anti-phase adder input on output termination the 3rd tunnel of multiplier (A3),
Memristor I circuit is made up of integrated operational amplifier (LF353N) and 2 multipliers (AD633JN), integrated operational amplifier (LF353N) and resistance, electric capacity form inverting integrator, the first via homophase of input termination Lu system I circuit exports, and output connects the input of the anti-phase adder of the first via of Lu system I circuit by 2 multipliers;
Lu system II circuit is by integrated operational amplifier (LF347N) and resistance, the three anti-phase adders in tunnel that electric capacity is formed, inverting integrator and inverter and multiplier composition, the anti-phase anti-phase output of the adder input termination first via of the first via and the homophase on the second tunnel export, the anti-phase adder input on the second tunnel connects the reversed-phase output on the second tunnel, the input of multiplier (A4) connects the anti-phase output of the first via and the homophase output on the 3rd tunnel respectively, the input of the anti-phase adder in output termination second tunnel of multiplier (A4), the anti-phase input on the 3rd tunnel connects the in-phase output end on the 3rd tunnel, the input of multiplier (A5) connects the in-phase input end of the first via and the inverting input on the second tunnel respectively, the anti-phase adder input on output termination the 3rd tunnel of multiplier (A5),
Memristor II circuit is made up of integrated operational amplifier (LF353N) and 2 multipliers (AD633JN), integrated operational amplifier (LF353N) and resistance, electric capacity form inverting integrator, the first via homophase of input termination Lu system II circuit exports, and output connects the input of the anti-phase adder of the first via of Lu system II circuit by 2 multipliers;
Controller 1 circuit is made up of anti-phase adder, multiplier, inverter and inverting integrator, anti-phase adder input connects the in-phase output end on Lu system I circuit second tunnel and the reversed-phase output on Lu system II circuit second tunnel, and multiplier (A9) exports the anti-phase adder input connecing Lu system II circuit second tunnel;
Controller 2 circuit is made up of anti-phase adder, multiplier, inverter and inverting integrator, anti-phase adder input connects the in-phase output end on Lu system I circuit the 3rd tunnel and the reversed-phase output on Lu system II circuit the 3rd tunnel, and multiplier (A10) exports the anti-phase adder input connecing Lu system II circuit the 3rd tunnel.
CN201510571081.5A 2015-09-09 2015-09-09 Self-adaptive synchronization method and circuit of Lu hyperchaotic system based on memristor Pending CN105207770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510571081.5A CN105207770A (en) 2015-09-09 2015-09-09 Self-adaptive synchronization method and circuit of Lu hyperchaotic system based on memristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510571081.5A CN105207770A (en) 2015-09-09 2015-09-09 Self-adaptive synchronization method and circuit of Lu hyperchaotic system based on memristor

Publications (1)

Publication Number Publication Date
CN105207770A true CN105207770A (en) 2015-12-30

Family

ID=54955229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510571081.5A Pending CN105207770A (en) 2015-09-09 2015-09-09 Self-adaptive synchronization method and circuit of Lu hyperchaotic system based on memristor

Country Status (1)

Country Link
CN (1) CN105207770A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236919A (en) * 2013-03-29 2013-08-07 王少夫 Method for realizing chaotic system adaptive synchronization based on coupling functions
CN204290990U (en) * 2014-12-03 2015-04-22 滨州学院 Based on the classical Lu hyperchaotic system circuit of memristor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236919A (en) * 2013-03-29 2013-08-07 王少夫 Method for realizing chaotic system adaptive synchronization based on coupling functions
CN204290990U (en) * 2014-12-03 2015-04-22 滨州学院 Based on the classical Lu hyperchaotic system circuit of memristor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蒋楠: "超混沌Lorenz系统与超混沌Rossler系统的自适应控制同步", 《太原师范学院学报》 *

Similar Documents

Publication Publication Date Title
CN105207769A (en) Memristor-based four-wing hyper-chaotic system self-adaptive synchronization method and circuit
CN104811296A (en) Method for building Lorenz super-chaos system beneficial for ultimate frontier estimation and circuit
CN104883250A (en) Lorenz-type hyperchaotic system construction method used for ultimate boundary estimation and circuit thereof
CN104092532B (en) Balance-point-free hyper-chaos system based on three-dimensional chaos system, and analogue circuit
CN104378197A (en) Construction method and circuit of memristor-based x-square-contained Lorenz type hyper-chaotic system
CN105262577A (en) Adaptive synchronization method and circuit of memristor-based x-power-including Chen hyper-chaotic system
CN105119713A (en) Adaptive synchronization method and circuit for memristor-based Lorenz hyperchaotic system
CN102983839A (en) Method for realizing GMSK (Guassian Minimum Shift Keying) signal generator based on FPGA (Field Programmable Gate Array)
CN105471574A (en) Lorenz hyperchaotic system circuit with different feedbacks and convenient ultimate boundary estimation
CN105187194A (en) Memristor-based Chen hyperchaotic system self-adaptive synchronization method and circuit
CN105119706A (en) Self-adaptive synchronization method and circuit for Lorenz hyperchaotic system including y squaredbased on memristor
CN105099664A (en) Adaptive synchronization method and adaptive synchronization circuit of y<2>-contained Chen hyper-chaotic system based on memristor
CN105207770A (en) Self-adaptive synchronization method and circuit of Lu hyperchaotic system based on memristor
CN104883252A (en) Lorenz type hyper-chaos system construction method and circuit with different variable and easy ultimate boundary estimation
CN105262578A (en) Adaptive synchronization method and circuit for memristor-based Lu hyperchaotic system including x power
CN105119709A (en) Simplest five-item chaotic system based balance-point-free four-dimensional hyper-chaotic system self-adaptive synchronization method and circuit
CN105187193A (en) Self-adaptive synchronization method of memristor-based Lu hyperchaotic system with y square and circuit
CN105187195A (en) Self-adaptive synchronizing method of memristor-based x-power-contained Lorenz hyper-chaos system, and circuit
CN105119711A (en) Rikitake system-based four-dimensional equilibrium point-free hyperchaotic system adaptive synchronization method and circuit
CN204272145U (en) Based on the Chen type hyperchaotic system circuit containing y side of memristor
CN104883253A (en) Lorenz type hyper-chaotic system construction method and circuit with different variable and easy ultimate boundary estimation
CN105577358A (en) Construction method of memristor-based Lu type hyper-chaotic system including y party
CN104468077A (en) Construction method and circuit of Lu type hyperchaotic system with y power based on memristor
CN105262579A (en) Adaptive synchronization method and circuit for Rikitake-system-based four-dimensional hyperchaotic system without equilibrium point
CN105515756A (en) Method for constructing Chen type hyper-chaotic system with y power on basis of memristor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151230