CN105197972A - 低品铝土矿脱硅方法 - Google Patents

低品铝土矿脱硅方法 Download PDF

Info

Publication number
CN105197972A
CN105197972A CN201510566625.9A CN201510566625A CN105197972A CN 105197972 A CN105197972 A CN 105197972A CN 201510566625 A CN201510566625 A CN 201510566625A CN 105197972 A CN105197972 A CN 105197972A
Authority
CN
China
Prior art keywords
bauxite
deironing
low product
acidleach
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510566625.9A
Other languages
English (en)
Other versions
CN105197972B (zh
Inventor
秦传钧
张建设
宁站昭
张保民
王二军
肖郁良
张斌
魏俊峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luoyang Guoxing Mining Technology Co Ltd
Original Assignee
Luoyang Guoxing Mining Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luoyang Guoxing Mining Technology Co Ltd filed Critical Luoyang Guoxing Mining Technology Co Ltd
Priority to CN201510566625.9A priority Critical patent/CN105197972B/zh
Publication of CN105197972A publication Critical patent/CN105197972A/zh
Application granted granted Critical
Publication of CN105197972B publication Critical patent/CN105197972B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供一种低品铝土矿脱硅方法,包括以下步骤:酸浸除铁:向低品铝土矿颗粒中加入盐酸,反应形成酸浸浆液;过滤所述酸浸浆液,得到浸取液和除铁滤渣;干燥所述除铁滤渣得到除铁铝土矿;搅拌捏球:磨碎所述除铁铝土矿,然后加入氟化铵固体进行混合,并捏成颗粒状,得到多个混渣颗粒;焙烧脱硅:在300~700℃对多个所述混渣颗粒进行焙烧处理,以除去所述混渣颗粒中的硅元素得到氟化铝固体残渣。上述方法是一种十分有效地从低品铝土矿中脱除硅的工艺,可以提高低品铝土矿的铝硅比,有利于后续充分利用低品铝土矿。

Description

低品铝土矿脱硅方法
技术领域
本发明涉及一种低品质铝土矿的处理工艺,尤其涉及一种低品铝土矿脱硅方法。
背景技术
铝土矿是一种化学成分变化很大、组成非常复杂的含铝矿物,主要化学成分有Al2O3、SiO2、Fe2O3、TiO2,并且含有少量的K2O、MgO、CaO、S、Ga、V、Cr、P等杂质。随着国民经济的快速持续发展,铝工业也快速地发展着,如此较好地满足了国民经济建设和社会发展的需要,但随之也带来了资源和能源大量消耗的问题。特别是铝土矿资源贫乏问题,已成为制约我国铝工业持续发展的瓶颈问题。据统计,2001~2007年间,我国用于氧化铝生产的铝土矿品位显著下降,矿石铝硅比从平均约10下降至平均不到7,由于2008年新的氧化铝厂的投产,更加剧了资源的紧张局面,矿石平均铝硅比已降至6以下。
目前,我国铝土矿的处理方法有选矿拜耳法、石灰拜耳法、富矿烧结法、混联法、串联法等。但是这些方法生产工艺复杂、生产成本高、综合效益差,随着高铝硅比铝土矿资源的越来越少,这些问题更加明显。因此,仅仅依靠高铝硅比铝土矿已难以维持国内氧化铝生产企业的可持续发展,对低铝硅比的铝土矿进行综合利用的需求日益高涨。然而,对低品铝土矿的利用而言,其中的硅含量比较高,硅元素是影响低品铝土矿的利用的重要因素之一。
发明内容
有鉴于此,确有必要提供一种低品铝土矿脱硅方法,以解决上述问题。
本发明提供一种低品铝土矿脱硅方法,包括以下步骤:
酸浸除铁:向低品铝土矿颗粒中盐酸,反应形成酸浸浆液;过滤所述酸浸浆液,得到浸取液和除铁滤渣;干燥所述除铁滤渣得到除铁铝土矿;
搅拌捏球:磨碎所述除铁铝土矿,然后加入氟化铵固体进行混合,并捏成颗粒状,得到多个混渣颗粒;
焙烧脱硅:在300~700℃对多个所述混渣颗粒进行焙烧处理,以除去多个所述混渣颗粒中的硅元素,得到氟化铝固体残渣。
其中,所述低品铝土矿中的铝硅比小于等于7。所述低品铝土矿的原矿中以氧化铝、二氧化硅等为主要成分,并含有氧化钾、氧化钛、氧化铁等杂质,而且所述低品铝土矿中的各元素基本上是以氧化物形式存在的,其中的氧化铝具体地主要可分为一水硬铝石、三水铝石和一水软铝石。因此,本文中的“硅的脱除率”是指二氧化硅的脱除率,“硅含量”是指氧化硅的含量,“铁含量”是指氧化铁含量,“铁的去除率”是指氧化铁的去除率,“铝的回收率”是指氧化铝的回收率。低品铝土矿原矿中含有一水硬铝石、部分三水铝石和部分一水软铝石。所述室温的温度为10~40℃。
基于上述,在所述酸浸除铁的步骤中,形成所述酸浸浆液的分步骤包括:按照1~1.4mL浓盐酸/1g低品铝土矿的比例向所述低品铝土矿颗粒中加入浓盐酸,并在40~80℃搅拌20~40min进行反应,形成所述酸浸浆液,其中,所述浓盐酸的体积分数为36%~38%。
基于上述,在所述酸浸除铁的步骤中,得到所述浸取液和所述除铁滤渣的分步骤包括:先稀释所述酸浸浆液,得到稀酸浸浆液;再采用压滤机过滤所述稀酸浸浆液,得到所述浸取液和所述除铁滤渣。
基于上述,在所述搅拌捏球的步骤中,所述除铁铝土矿被磨碎成粒度为150~250目的颗粒,然后再与所述氟化铵固体和水混合,被捏成紧实的多个混合球,且水占所有所述混合球总质量的0.1%~5%;干燥多个所述混合球,形成多个所述混渣颗粒。
基于上述,所述焙烧脱硅的步骤包括:将多个所述混渣颗粒置于马弗炉或流化床反应器中,在300~700℃和真空度为0.8~1.2MPa的条件下对多个所述混渣颗粒进行焙烧处理,去除多个所述混渣颗粒中的硅元素,形成所述氟化铝固体残渣。
基于上述,它还包括制备铁红的步骤,所述制备铁红的步骤包括:在80~100℃对所述浸取液依次进行蒸发浓缩、结晶、干燥处理,得到铁红产品;冷却所述蒸发浓缩过程中蒸出的气体,以回收利用盐酸。
与现有技术相比,本发明提供的低品铝土矿脱硅方法利用通过酸热法处理低品铝土矿,主要包括酸浸除铁、搅拌捏球和焙烧脱硅的步骤,其中,在所述搅拌捏球的过程中,将经过酸浸除铁的除铁铝土矿与氟化铵固体混合被捏成颗粒状,形成多个所述混渣颗粒,可以增加在后续焙烧脱硅过程中的气固反应物的接触时间,使得脱硅反应更加充分;在所述焙烧脱硅的过程中,氟化铵遇热分解生成HF和NH3,氨气逸出不参与反应,氟化氢气体在逸出过程中与SiO2反应生成SiF4气体逸出,到达除硅的目的,使得低品铝土矿中的脱硅率达到95%以上。因此,本发明提供了一种十分有效地从低品铝土矿中脱除硅的工艺,可以提高铝土矿的铝硅比,有利于后续充分利用低品铝土矿。
进一步,本发明按照1~1.4mL浓盐酸/1g低品铝土矿的比例加入浓盐酸,并在40~80℃下使得浓盐酸溶解低品铝土矿颗粒中的可溶性物质,可以使得其中的铁的去除率达到85%以上,而且铝的回收率达到95%以上。
更进一步,本发明在所述除铁铝土矿与氟化铵混合形成所述混渣颗粒的过程中,加入少量水,可以使得形成的所述混渣球更加密实,在氟化铵分解时,氟化氢气体与铝土矿有更长的接触时间,使硅的脱除更彻底;干燥除去所述混渣球中的水分,以防止后续在高温下生成的产物氟化铝可与空气中的水汽发成水解反应生成Al2O3
更进一步,本发明还包括回收利用所述浸取液以制取铁红和回收利用盐酸的步骤,使得在脱除低品铝土矿中的硅元素,提高所述低品铝土矿的铝硅比的过程中,同时可以回收利用所述浸取液,从中制得铁红,实现废物利用,从而达到充分利用低品铝土矿、降低成本、节约能源的目的。
附图说明
图1是本发明提供的低品铝土矿脱硅方法流程图。
图2是本发明实施例提供的浸取温度、反应物固液比对低品铝土矿中的铁的去除率的影响曲线图。
图3是本发明实施例提供的氟化铵加入量、焙烧温度对酸浸除铁后的铝土矿中硅的脱除率的影响曲线图。
具体实施方式
下面通过具体实施方式,对本发明的技术方案做进一步的详细描述。
请参阅图1,本发明提供一种低品铝土矿脱硅方法,包括以下步骤:
酸浸除铁:向低品铝土矿颗粒中盐酸反应,形成酸浸浆液;过滤所述酸浸浆液,得到浸取液和除铁滤渣;干燥所述除铁滤渣得到除铁铝土矿。具体地,按照1~1.4mL浓盐酸/1g低品铝土矿的比例向所述低品铝土矿颗粒中加入浓盐酸,并在40~80℃搅拌20~40min进行反应,形成所述酸浸浆液,其中,所述浓盐酸的体积分数为36%~38%;加水稀释所述酸浸浆液,得到稀酸浸浆液;采用压滤机过滤所述稀酸浸浆液,得到所述浸取液和所述除铁滤渣;将所除铁滤渣置于烘干箱中,烘干成所述除铁铝土矿。另外,在80~100℃下,对所述浸取液依次进行蒸发浓缩、结晶、干燥处理,得到铁红产品;冷却所述蒸发浓缩过程中蒸出的气体,以回收利用盐酸。
其中,由于所述低品铝土矿中的铝几乎都以不溶于酸的形式存在,但是矿石中的铁和少量的三水铝石和一水软铝石等可溶性元素却可以用酸溶解除去。故可用盐酸法处理铝土矿去除绝大部分的铁以及一些酸溶性杂质,避免铁在后续工艺中因高温而转变晶格,难溶于酸,不易去除。因此,所述酸浸除铁的步骤中可能发生的反应方程式为:
Al2O3+6HCl=2AlCl3+3H2O
Fe2O3+6HCl=2FeCl3+3H2O。
另外,由于与低品铝土矿颗粒反应的是浓盐酸,所述酸浸除铁过程中所得到的所述酸浸浆液中的酸的浓度仍然比较高,具有强腐蚀性和挥发性,所以要对所述酸浸浆液进行加水稀释,稀释体积倍数为1~3倍,得到所述稀酸浸浆液;那么,过滤所述稀酸浸浆液要用的所述压滤机也应选择耐酸、耐腐蚀材质,如,聚四氟乙烯。
搅拌捏球:磨碎所述除铁铝土矿,然后加入氟化铵固体进行混合,并捏成颗粒状,得到多个混渣颗粒。具体地,所述除铁铝土矿被磨碎成粒度为150~250目的颗粒,然后再与所述氟化铵固体和水混合,被捏成紧实的多个混合球,且水占所有所述混合球总质量的0.1%~5%;干燥多个所述混合球,形成多个所述混渣颗粒。
焙烧脱硅:在300~700℃对多个所述混渣颗粒进行焙烧处理,以除去所述混渣颗粒中的硅元素,得到氟化铝固体残渣。具体地,将多个所述混渣颗粒置于马弗炉或流化床反应器中,并采用真空泵抽出所述马弗炉或所述流化床反应器中的气体,使得所述马弗炉或所述流化床反应器中的真空度维持在0.8~1.2MPa,在300~700℃对多个所述混渣颗粒进行焙烧处理直至多个所述混渣颗粒中的二氧化硅不再转化为氟化硅气体为止,得到所述氟化铝固体残渣。其中,所述焙烧脱硅步骤中的脱硅反应方程主要为:
NH4F=NH3↑+HF↑,
SiO2+4HF=SiF4+2H2O,
Al2O3+6HF=2AlF3+3H2O。
由此可见,本发明提供的低品铝土矿脱硅方法影响硅的脱除率的因素比较多,比如,上述酸浸除铁步骤中的各参数、上述焙烧脱硅步骤中的各参数。下面就这些影响因素,对本发明提供的低品铝土矿脱硅方法作进一步的阐述。
1.酸浸除铁步骤对低品铝土矿脱硅方法的影响
由于低品铝土矿中的铁含量不是很高,而且部分以包裹的形式存在,故反应时间对其有很大影响,反应时间太短,铁元素的去除不能达到很好的效果,太长则势必会造成铝的回收率下降。而且,因低品铝土矿中铁的去除率还与盐酸的加入量和浸取温度有关,选取一个合适的反应物固液质量比和反应温度,可以使低品铝土矿中的Fe2O3尽可能多的溶解,提高铁的去除率。因此,影响低品铝土矿中的铁元素的去除效果的因素主要包括与低品铝土矿和浓盐酸的反应时间、反应温度以及反应物固液质量比。
其中,下面实验中,铁的去除率计算式:
式中:m1为酸浸除铁前低品铝土矿的质量,g;
m2为酸浸除铁后除铁铝土矿的质量,g;
w1为酸浸除铁前低品铝土矿中铁的质量分数;
w2为酸浸除铁后除铁铝土矿中铁的质量分数。
铝的回收率计算式:
式中:m1为酸浸除铁前低品铝土矿的质量,g;
m2为酸浸除铁后除铁铝土矿的质量,g;
w3为酸浸除铁前低品铝土矿中铝的质量分数;
w4为酸浸除铁后除铁铝土矿中铝的质量分数。
1.1反应时间对低品铝土矿的除铁效果的影响
采用单因素实验对反应时间进行探究,实验条件为:低品铝土矿原矿20g,反应温度60℃,浓盐酸用量80ml;实验数据如下表1和2所示:
表1低品铝土矿原矿的组分
组分 Al2O3 SiO2 K2O TiO2 Fe2O3 其他 烧减
含量/% 46.14 32.42 2.48 3.21 2.72 1.31 11.70
表2搅拌反应时间对除铁效果的影响
从表2可以看出:随着低品铝土矿原矿颗粒和浓盐酸的搅拌反应时间的增加,铁的去除率先增加,而后趋于平缓,基本保持不变,这是因为:搅拌反应时间较短时,反应不是很充分,故铁元素溶出去除率偏低,而随着时间的延长,铁的去除率逐渐升高,并慢慢到达一个极限,此时铁的去除率变化不明显。而且在搅拌反应时间为30min时,铁的去除率达到89.88%。另外,随着搅拌反应时间的增加,铝的回收率先明显降低,而后则显得较为平缓,这是因为:开始反应时,低品铝土矿原矿中的部分三水铝石和一水软铝石参加了反应,使得铝的回收率明显下降,而后剩下的一水硬铝石不易参与反应,故铝的回收率变化不明显。考虑到实验工艺,铝的回收率自然是越高越好,但考虑到搅拌反应时间对铁的去除率的影响,搅拌反应时间应取30min为宜,此时,铝的回收率为97.06%。
1.2反应物固液质量比和浸取温度对低品铝土矿的除铁效果的影响
取一定量的如表1所示组成的低品铝土矿,加入不同体积的浓盐酸使得反应物固液质量比分别为2:1、1:1、1:2、1:3、1:4,调节不同浸取温度,选择反应时间为30min,考察浓盐酸加入量与反应温度对铁的去除率的影响,实验结果如图2所示。
由图2可以看出:当浓盐酸的加入量使反应物固液质量比为1:2时,铁的去除率较低,是因为浓盐酸加入量较少,不足以使铁元素溶尽,当反应物固液质量比为1:1时,铁的去除率有所增加,但继续增加浓盐酸的量对铁的去除率影响不大;另外,随着反应浸取温度的增加,铁的去除率逐渐增加,当反应浸取温度为60℃时铁的去除率达到89%,继续增加温度对铁的去除率影响不大。因此,实验确定浓盐酸酸浸的最佳浸固液质量比为1:1,最佳浸取温度为60℃。
2.焙烧脱硅步骤对低品铝土矿脱硅方法的影响
所述焙烧脱硅方法步骤对低品铝土矿脱硅方法的影响的主要因素包括氟化铵的用量、焙烧温度和焙烧时间。下面主要通过单因素实验确定焙烧法去除硅元素的最佳工艺条件。下面实验中使用的铝土矿原料为经过所述酸浸除铁步骤后得到的除铁铝土矿,其主要成分如表3所示:
表3除铁铝土矿的主要成分
组分 Al2O3 SiO2 K2O TiO2 Fe2O3 其他 烧减
含量/% 47.47 33.76 2.47 3.39 0.28 0.978 11.61
其中,在上述除铁铝土矿进行焙烧脱硅的过程中,氟化铵受热分解,其分解产物分别与上述除铁铝土矿中的二氧化硅和三氧化二铝反应。由于在上述除铁铝土矿脱硅进行上述焙烧脱硅处理的过程中,氟化铵用量过少则会导致反应不完全,若氟化铵的用量过多,则一方面会造成物料的浪费,另一方面则会使得氟化铵和上述除铁铝土矿混合后成球困难,致使气固反应不能充分进行。因此,下面的实验中,提及的氟化铵的用量的计算公式是由使得上述除铁铝土矿中的二氧化硅和三氧化二铝恰好完全反应时所使用的氟化铵用量而得到,具体计算式如下:
式中:m3为除铁铝土矿的质量,g;
60为二氧化硅的相对分子质量;
102为三氧化二铝的相对分子质量;
37为氟化铵的相对分子质量。
下面实验采用X荧光分析对所述除铁铝土矿和氟化铵焙烧后的产物氟化铝固体残渣进行定量的元素分析,从而计算出硅的脱除率。二氧化硅脱除率计算式:
式中:m3为除铁铝土矿的质量,g;
m4为氟化铝固体残渣的质量,g;
w5为除铁铝土矿中二氧化硅的质量分数;
w6为氟化铝固体残渣中二氧化硅的质量分数。
2.1焙烧反应时间对低品铝土矿脱硅方法的影响
取5份如表3所示组成的除铁铝土矿20g,并分别磨碎成200目的颗粒,然后分别加入与理论用氟化铵相同的量的氟化铵固体和少量水混合,再捏成紧实的混合球,干燥所述混合球,分别形成所述混渣颗粒;然后分别将所述混渣颗粒置于流化床反应器中,在500℃下焙烧不同的时间进行脱硅处理,其中实验数据如下表4所示:
表4焙烧时间对脱硅效果的影响
从表4可以看出:随着焙烧反应时间的增加,硅的脱除率先增加而后基本保持不变,并在3h时,硅的脱除率已基本达到最高,此时为96.1%,这是因为:焙烧反应时间很短时,所述混渣颗粒物料受热不均匀,氟化铵分解不完全,于是硅的脱除效果不佳;随着焙烧反应时间的增加,氟化铵完全分解,因此硅的脱除率升高,继续增加焙烧时间时,反应已基本完全发生,因此硅的脱除率不会有很大变化。另外,随着焙烧反应时间的增加,氟化铝产率先增加,到达最高后,反而有所下降,并在2h时到达最高为77.87%,这是因为:随着焙烧反应时间的增加,由于氟化铵的分解产品收率有所增加,又因为反应在高温下进行,反应生成的有部分氟化铝与空气中水分发生了水解反应,生成了氧化铝,因此产品的纯度有所下降;当焙烧反应1h时,焙烧产物中氧元素的含量为6.35%,而随着焙烧时间的增加最终氧元素的含量变为10.88%。因此,当焙烧反应时间过长,由于在高温下反应,则会造成大量的能源浪费,消耗人力物力,增加了成本;故,综合各种因素考虑,在焙烧反应2h时硅的脱除率已达基本达到最高,后又有部分增加,但增加不明显,而氟化铝的收率在2h时已达到最高,所以,确定最佳的焙烧反应时间为2h。
2.2焙烧反应物的反应比和反应温度对低品铝土矿脱硅方法的影响
取6份如表3所示组成的除铁铝土矿20g,并分别磨碎成200目的颗粒,然后分别加入理论反应比0.6倍、0.8倍、1.0倍、1.2倍、1.4倍、1.6倍的氟化铵固体和少量水混合,再捏成紧实的混合球,干燥所述混合球,分别形成所述混渣颗粒;然后分别将所述混渣颗粒置于马弗炉中,在分别在300℃、400℃、500℃、600℃、700℃下焙烧2h进行脱硅处理。最终得到焙烧后产品的硅的脱除率与氟化铵的加入量和焙烧温度的关系如图3所示。其中,本文中所谓“反应比”是指氟化铵理论需求量的倍数。
由图3可以看出:随着氟化铵固体加入量的增加,硅的脱除率逐渐增加,当氟化铵固体的加入量高于氟化铵的理论需求量的1.4倍时,硅的脱除率不再增加;另外,随着焙烧温度的增加,硅的脱除率逐渐增加,当焙烧温度为500℃时硅的脱除率达到96%,增加焙烧温度,硅的脱除率有所下降,是因为焙烧温度过高使氟化铵分解过快,硅元素反应不完全,从而硅的脱除率降低。因此,实验确定氟化铵固体的最佳加入量为理论反应比的1.4倍,最佳焙烧温度为500℃。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (6)

1.一种低品铝土矿脱硅方法,包括以下步骤:
酸浸除铁:向低品铝土矿颗粒中加入盐酸,反应形成酸浸浆液;过滤所述酸浸浆液,得到浸取液和除铁滤渣;干燥所述除铁滤渣得到除铁铝土矿;
搅拌捏球:磨碎所述除铁铝土矿,然后加入氟化铵固体进行混合,并捏成颗粒状,得到多个混渣颗粒;
焙烧脱硅:在300~700℃对多个所述混渣颗粒进行焙烧处理,以除去多个所述混渣颗粒中的硅元素,得到氟化铝固体残渣。
2.根据权利要求1所述的低品铝土矿脱硅方法,其特征在于,在所述酸浸除铁的步骤中,形成所述酸浸浆液的分步骤包括:按照1~1.4mL浓盐酸/1g低品铝土矿的比例向所述低品铝土矿颗粒中加入浓盐酸,并在40~80℃搅拌20~40min进行反应,形成所述酸浸浆液,其中,所述浓盐酸的体积分数为36%~38%。
3.根据权利要求2所述的低品铝土矿脱硅方法,其特征在于,在所述酸浸除铁的步骤中,得到所述浸取液和所述除铁滤渣的分步骤包括:先稀释所述酸浸浆液,得到稀酸浸浆液;再采用压滤机过滤所述稀酸浸浆液,得到所述浸取液和所述除铁滤渣。
4.根据权利要求1或2或3所述的低品铝土矿脱硅方法,其特征在于,在所述搅拌捏球的步骤中,所述除铁铝土矿被磨碎成粒度为150~250目的颗粒,然后再与所述氟化铵固体和水混合,被捏成紧实的多个混合球,且水占所有所述混合球总质量的0.1%~5%;干燥多个所述混合球,形成多个所述混渣颗粒。
5.根据权利要求4所述的低品铝土矿脱硅方法,其特征在于,所述焙烧脱硅的步骤包括:将多个所述混渣颗粒置于马弗炉或流化床反应器中,在300~700℃和真空度为0.8~1.2MPa的条件下对多个所述混渣颗粒进行焙烧处理,去除多个所述混渣颗粒中的硅元素,形成所述氟化铝固体残渣。
6.根据权利要求1~3任一项所述的低品铝土矿脱硅方法,其特征在于,它还包括制备铁红的步骤,所述制备铁红的步骤包括:在80~100℃对所述浸取液依次进行蒸发浓缩、结晶、干燥处理,得到铁红产品;冷却所述蒸发浓缩过程中蒸出的气体,以回收利用盐酸。
CN201510566625.9A 2015-09-09 2015-09-09 低品铝土矿脱硅方法 Expired - Fee Related CN105197972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510566625.9A CN105197972B (zh) 2015-09-09 2015-09-09 低品铝土矿脱硅方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510566625.9A CN105197972B (zh) 2015-09-09 2015-09-09 低品铝土矿脱硅方法

Publications (2)

Publication Number Publication Date
CN105197972A true CN105197972A (zh) 2015-12-30
CN105197972B CN105197972B (zh) 2017-03-22

Family

ID=54946008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510566625.9A Expired - Fee Related CN105197972B (zh) 2015-09-09 2015-09-09 低品铝土矿脱硅方法

Country Status (1)

Country Link
CN (1) CN105197972B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108613856A (zh) * 2018-06-06 2018-10-02 中国地质科学院矿产综合利用研究所 一种金矿石样品的分解方法
CN110683553A (zh) * 2018-07-05 2020-01-14 中国科学院过程工程研究所 一种脱除粉煤灰中的二氧化硅同时制备莫来石的方法
CN110681667A (zh) * 2018-07-05 2020-01-14 中国科学院过程工程研究所 一种矿物和/或固废中二氧化硅的脱除方法
CN114749468A (zh) * 2022-03-24 2022-07-15 江西省科学院应用物理研究所 一种利用氟盐处理铝灰渣的工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB279515A (en) * 1926-10-25 1928-09-27 Clay Reduction Company Improvements in or relating to the production of aluminium compounds from raw materials
CN1197765A (zh) * 1997-04-26 1998-11-04 钟正伟 一种用铝土矿提纯氧化铝的方法
CN1382633A (zh) * 2002-05-28 2002-12-04 周民强 酸铝渣制取工业氟化铝的方法
WO2007068057A1 (en) * 2005-12-14 2007-06-21 Karalee Research Pty Limited Extraction and purification of minerals from aluminium ores

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB279515A (en) * 1926-10-25 1928-09-27 Clay Reduction Company Improvements in or relating to the production of aluminium compounds from raw materials
CN1197765A (zh) * 1997-04-26 1998-11-04 钟正伟 一种用铝土矿提纯氧化铝的方法
CN1382633A (zh) * 2002-05-28 2002-12-04 周民强 酸铝渣制取工业氟化铝的方法
WO2007068057A1 (en) * 2005-12-14 2007-06-21 Karalee Research Pty Limited Extraction and purification of minerals from aluminium ores

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108613856A (zh) * 2018-06-06 2018-10-02 中国地质科学院矿产综合利用研究所 一种金矿石样品的分解方法
CN110683553A (zh) * 2018-07-05 2020-01-14 中国科学院过程工程研究所 一种脱除粉煤灰中的二氧化硅同时制备莫来石的方法
CN110681667A (zh) * 2018-07-05 2020-01-14 中国科学院过程工程研究所 一种矿物和/或固废中二氧化硅的脱除方法
CN114749468A (zh) * 2022-03-24 2022-07-15 江西省科学院应用物理研究所 一种利用氟盐处理铝灰渣的工艺

Also Published As

Publication number Publication date
CN105197972B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN105197972A (zh) 低品铝土矿脱硅方法
CN111876616B (zh) 一种石煤钒矿氧化破晶焙烧提钒综合利用系统
CN102399976B (zh) 高碳含钒石煤矿中提取五氧化二钒的焙烧预处理工艺及提取五氧化二钒的方法
CN108517423B (zh) 一种锂云母回转窑焙烧提取锂及锂盐的方法
CN109402380B (zh) 一种从钒渣中提钒的方法
CN104261473B (zh) 一种五氧化二钒的制备方法
CN104773751A (zh) 一种脱除次氧化锌中氟、氯及有价金属的方法
CN104628020B (zh) 一种以粉煤灰和可循环铵盐为原料生产冶金级氧化铝的方法
CN105585032B (zh) 从低品铝土矿分解废气中回收氟资源的方法
CN106011498A (zh) 一种铝土矿微波氯化制备金属铝的方法
CN105110359B (zh) 一种利用低品位铝土矿制备氟化铝的方法
CN102503190A (zh) 利用菱镁矿制备高纯高密度镁砂的方法和装置
CN109439889A (zh) 一种资源化利用钒酸钠的方法
CN105347703A (zh) 一种钙镁碳酸盐矿的分解方法
CN115818676B (zh) 一种低温焙烧含锂废铝电解质提锂收氟的方法
CN106315645B (zh) 一种低品位高硫铝土矿生产氧化铝副产4a沸石的方法
CN101077789A (zh) 一种生产氟化铝的方法
CN105197959B (zh) 从化学浮选法处理低品铝土矿工艺中回收氟资源的方法
CN105197938A (zh) 酸热法处理低品铝土矿的综合利用方法
CN105236416A (zh) 利用低品铝土矿制取白炭黑的方法
CN105883872B (zh) 高品位铝土矿的制备方法
CN103496723B (zh) 一种提高蛇纹石铵盐焙烧产物中氧化镁溶出率的方法
CN109112302B (zh) 一种从高碳石煤中提取钒的方法
CN101077788A (zh) 氟化铝的生产方法
CN110482502A (zh) 一种高效节能的氮化锰生产工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170322

Termination date: 20210909

CF01 Termination of patent right due to non-payment of annual fee